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This paper describes Princeton University’s approach to the 2005 DARPA Grand Chal-
lenge, an off-road race for fully autonomous ground vehicles. The system, Prospect
Eleven, takes a simple approach to address the problems posed by the Grand Challenge,
including obstacle detection, path planning, and extended operation in harsh environ-
ments. Obstacles are detected using stereo vision, and tracked in the time domain to im-
prove accuracy in localization and reduce false positives. The navigation system pro-
cesses a geometric representation of the world to identify passable regions in the terrain
ahead, and the vehicle is controlled to drive through these regions. Performance of the
system is evaluated both during the Grand Challenge and in subsequent desert testing.
The vehicle completed 9.3 miles of the course on race day, and extensive portions of the
2004 and 2005 Grand Challenge courses in later tests. © 2006 Wiley Periodicals, Inc.

1. BACKGROUND

Prospect Eleven was Princeton University’s entry in
the 2005 DARPA Grand Challenge, a competition for
autonomous vehicles, held on October 8, 2005, on an
off-road course in the vicinity of Primm, Nevada. The
race was organized by the Defense Advanced Re-
search Projects Agency �DARPA� to promote research

in autonomous ground vehicles. This was the second
instance of the race, the first having been held a year
earlier. Princeton University did not participate in the
first race, and no entrants completed the course that
year.

The Princeton team consisted entirely of under-
graduates under the direction of Professor Alain
Kornhauser. Among Prospect Eleven’s unique fea-
tures are its inexpensive and simple design and its re-
liance on stereo vision as its only means of obstacle
detection. What follows is a high-level description of*To whom all correspondence should be addressed.
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Prospect Eleven’s main systems, the lessons learned
while developing these systems, and a discussion of
the vehicle’s accomplishments to date.

2. MECHANICAL SYSTEMS

The Princeton University team received a stock 2005
GMC Canyon truck to serve as a development plat-
form. The throttle, braking, and steering systems
were modified to allow for drive-by-wire operation.

Like many modern cars, the gas pedal in the Can-
yon is fully electronic so it was not necessary to es-
tablish a mechanical linkage to the engine throttle. In-
stead, a computer-generated voltage simulates the
behavior of the physical pedal. The brake pedal is me-
chanically controlled by two independent systems: A
custom-built linear ball-screw actuator used under
normal operation, and a pneumatic piston capable of
applying 670 N of force for emergency use. These are
connected to the brake pedal with a sheathed steel
cable, and either system may be in operation without
preventing the operation of the other. An inline ten-
sion sensor is used to measure the degree of brake ap-
plication. Steering control is accomplished via a DC
motor mounted under the steering column and at-
tached to the steering wheel with a set of gears. An
optical rotary encoder, also attached to the steering
wheel, provides precise position feedback.

3. VEHICLE CONTROL

The vehicle’s steering wheel angle and vehicle speed
are maintained with modified Proportional-Integral-
Derivative �PID� control loops. During normal au-
tonomous operation, each of the PID controllers runs
at approximately 20 Hz.

Steering control uses the optical encoder as input,
and controls the steering motor as needed. A two-
layer system of PID controllers regulates Prospect
Eleven’s speed. In the first PID control layer, the ref-
erence input is the car’s velocity and the output is a
throttle voltage if the output is positive; or a desired
brake tension, if negative. The desired brake tension
is then monitored by the second PID controller. This
controller takes the current brake tension as input
and controls the braking motor. Figure 1 depicts the
speed control block diagram. Figure 2 shows desired
and actual velocity during Prospect Eleven’s first run
at the National Qualification Event �NQE�.

4. COMPUTING

All computing is performed by two standard desktop
computers. These are mounted in a shock-isolated
rackmount case behind the passenger seat. The rack
sits on four fluidic shock mounts designed to attenu-
ate high-frequency vibrations, which can cause hard
drive failure. To provide further protection, each
computer has a RAID array which mirrors the con-
tents of the primary hard drive.

Vision processing and obstacle detection algo-
rithms were written in C++. All other car control,
data acquisition, and decision making control sys-
tems were implemented in C# �“C-sharp”� on the
other computer. Both systems run Microsoft Win-
dows. The C# language proved particularly effective
as a development platform; the extensive Microsoft
.NET libraries and intuitive object-oriented structure
allowed rapid debugging, while permitting the
implementation of advanced functionality, such as
multithreading and low-level input/output.

5. STEREO VISION

Prospect Eleven relied solely on stereo vision to de-
tect and range obstacles. In doing so, it was unique
among the contestants present at the Grand Chal-
lenge finals.

Obstacle detection using stereo vision can be bro-
ken down into three problems: �1� Obtaining an ac-
curate depth map of the scene ahead from pixel dis-
parities between the two cameras, �2� identifying
obstacles in the scene, and �3� calculating the range of
detected obstacles so they can be avoided.

This process is susceptible to many environmen-
tal sources of error, including unfavorable lighting
conditions and irregular terrain. Central to the ap-
proach of this paper is the assumption that most of
this error is random, and hence can be averaged out

Figure 1. Speed control functional block diagram.
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by filtering many measurements of obstacle position
over a period of time. This approach suggests simple
and fast algorithms, so that many samples may be
obtained.

A Point Grey Research �Vancouver, Canada�
Bumblebee, a commercially-available stereo camera
pair, captures simultaneous images from two black
and white charge-coupled devices �CCDs�. The base-
line separation is 12 cm. The included libraries pro-
cess images from the camera by comparing each pixel
in one image to the corresponding feature in the other
image. The difference in pixel location �disparity� is
inversely proportional to the pixel’s depth in the
scene. From this, a depth map is calculated. A depth
map is simply an image in which each pixel value cor-
responds to the disparity value of that pixel in the
scene. The included software libraries perform vali-
dation of the depth map. In order to simplify the
overall algorithm and ensure fast performance, sub-
pixel interpolation is not used. As a result, disparities
may only take on integer values. For example, at a
range of 20 m, the difference in range between two
adjacent disparity values is 3 m.

Several strategies were found to be effective in
improving the number of accurate and validated
matches—particularly in poor lighting conditions.
Red photographic filters mounted in front of each
lens were used to increase contrast by blocking blue
light and reducing ultraviolet haze, mitigating prob-
lems such as CCD “bleeding” on bright days, and
boosting the brightness of the ground—the area of in-
terest in each frame. Results were further improved
by custom camera gain control which was designed

to optimize the exposure in the ground plane at the
expense of the upper half of the frame.

5.1. Obstacle Detection

As mentioned, it is important that Prospect Eleven
ranges an obstacle many times, such that many mea-
surements may be filtered to increase accuracy. This
is only possible with a fast obstacle detection algo-
rithm. This section presents an algorithm which is
very fast and well-suited for heavily quantized data.
When faced with conditions such as those encoun-
tered on the Grand Challenge course, the system
performs sufficiently well for obstacle avoidance.

Several authors have also examined the problem
of fast obstacle detection. One approach, adopted by
Matthies & Grandjean �1994�, is to consider the slope
of a pixel relative to a ground plane. It is supposed
that a significant obstacle will have a slope greater
than some threshold. Similarly, Broggi, Caraffi, Fed-
riga & Grisleri �2005� simply search each column in
the depth map for large intervals at similar dispari-
ties. Indeed, for a camera mounted nearly parallel to
the ground plane, as was the case for Prospect
Eleven and Broggi et al. �2005� this approach ap-
proximates thresholding vertical slope over some
window. The algorithm in this paper parallels that of
Broggi et al. �2005�.

Were disparity values not so heavily quantized,
a logical measure of similarity might be variance.
However, as a result of quantization, the algorithm
simply looks for a contiguous span within the col-
umn, for which the disparity is the same value

Figure 2. Speed versus time at start of NQE Run 1.
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throughout the span. Such spans occur in flat scenes
in the image, so it must be required that they be of at
least a certain length, l, to be classified as an ob-
stacle. In contrast to Broggi et al. �2005�, this paper’s
approach is to make l dependent on the extent to
which the current interval is above the row-wise me-
dian disparity. The justification for this is simple: For
a relatively flat scene, the disparity of a pixel which
belongs to an obstacle should be above the median
disparity in its row. Setting l to be lower for pixels
above the median enables information from the en-
tire image to be considered, while detecting ob-
stacles in a single column. We set l to be 12 for pix-
els, which are above the median by 2; 20 for pixels
above the median by 1; and 35 for pixels at the me-
dian disparity value. Use of the median may not be
effective in unstructured environments, but since the

Grand Challenge course was graded, it was as-
sumed that most rows would be roughly homoge-
neous over the traversable region.

The algorithm can be structured as a finite state
machine which scans each column from top to bot-
tom and has states IN OBSTACLE and NOT IN OB-
STACLE. When the state is NOT IN OBSTACLE, the
code simply looks for an interval satisfying the
above criteria. In state IN OBSTACLE, it grows the
interval downward until it first fails to meet a
slightly weaker form of the above criteria. The
weaker form differs only in the constants used, and
is employed because the base of an obstacle is more
similar to the background than the top. Figure 3
shows a scene image, with obstacle pixels high-
lighted, as well as the corresponding depth map.
One column in Figure 3�a� is highlighted. Figure 4
shows depth values and the algorithm’s output on
this highlighted column.

The time complexity of the algorithm is linear.
Each pixel need only be examined once, and median
calculation can be performed efficiently using a ra-
dix sort. Figure 5 shows the computation times of
193 images at 640�480 resolution versus the propor-
tion of pixels in the image which were identified as
obstacles.

Once each pixel is classified as being an obstacle
or not an obstacle, bounding boxes are constructed
around each connected obstacle region. In doing so,
a central point and width are computed for each
box. A confidence measure is computed based on the

Figure 3. �a� Sample scene image, with detected obstacle
pixels highlighted and sample column outlined, as ana-
lyzed in Figure 4. �b� The corresponding disparity map.

Figure 4. Disparity values and obstacle detection in the highlighted column of Figure 3�a�. The shaded region is detected
as an obstacle.
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detected size of the obstacle and the similarity of
disparity values within the obstacle. A box is classi-
fied as an obstacle if its confidence measure exceeds
a threshold. Table I gives the performance of this
algorithm on several obstacles at various distances.
A � indicates successful detection, and an × indi-
cates that the obstacle was not detected.

As can be seen in Table I, the range at which
short obstacles can be reliably detected is quite lim-
ited. Fortunately, the primary function of obstacle
detection during the Grand Challenge was to detect
graded berms on either side of the course. Data re-
corded during the Grand Challenge indicate that
Prospect Eleven was able to do so at ranges of ap-
proximately 8 m, which was adequate for naviga-
tion during the race. The limited detection distance
for small but dangerous obstacles capped the vehi-
cle’s maximum speed.

5.2. Tracking in the Time Domain

Detected obstacles are tracked in the time domain to
improve accuracy in positioning and limit false

positives. When a new image is processed, the list of
obstacles from that image is compared to the list of
currently tracked obstacles. Each new obstacle is
matched to the closest existing one, or declared a
new obstacle if no suitable match exists. A confi-
dence measure is maintained for each obstacle,
based on the aforementioned confidence of each de-
tection, number of frames in which it was detected,
and the number of frames in which it was not
detected—despite being in detection range. Only ob-
stacles whose confidence measure exceeds a thresh-
old are used in path planning. A Kalman filter main-
tains the estimate of the obstacle’s location.

Matching is effective in improving localization,
particularly for obstacles at ranges above 8 m. The
measurement error for localization decreases qua-
dratically as a function of range. Though ground-
truth data are not available, a direct approach to ob-
stacles at randomized positions is simulated with a
wide variety of parameters. Figure 6 gives the mean
precision of localization at various ranges over
10,000 simulations. Values simulated include vehicle
speeds in the range from 6 m/s to 13 m/s, mini-
mum detection ranges between 1.5 m and 5 m,
maximum detection ranges between 15 m and 20 m,
detection frequencies between 6 Hz and 10 Hz, and
disparity calculations with unbiased Gaussian error
with �2 between 0.05 pixels and 0.5 pixels. The error
model assumes that error is caused entirely by mis-
calculation and quantization of disparity values. The
periodic behavior of the measurement error is a re-
sult of quantization: For ranges which correspond to
a nearly integer disparity value, quantization causes
very little error. Though there are certainly many
more sources of error than those modeled, and ac-
tual error is much greater, the simulation demon-
strates that tracking is effective at reducing error in
localization.

Figure 5. Computation time versus proportion of ob-
stacle pixels over 193 640�480 images.

Table I. Detection of objects at various ranges �in m�.

Object 4.5 6 7.5 9 10.5 12 13.5 15 16.5

Downturned cinderblock �19.5 cm� � � � × × × × × ×
Upright cinderblock �40 cm� � � � � � × × × ×
Shelves �65 cm� � � � � � � � � ×
Trashcan �69 cm� � � � � � � � � ×

Note: �=Successful detection; ×=Obstacle not detected.
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6. NAVIGATION

The choice of navigation scheme was governed by the
specific structure of the competition. DARPA’s rules
and a review of the 2004 competition suggested the
following:

1. DARPA would provide a high-level high-
detail global positioning system �GPS� path
from start to finish,

2. A traversable path would exist within course
boundaries, and

3. The course would be narrow and lie on
desert roads.

An algorithm which chooses a steering angle at
each instant without preplanning a path ahead is suf-
ficient for the Grand Challenge. Global convergence
problems are largely mitigated due to the provided
GPS path. This path performs the function of a high-
level planned path. For these reasons, the navigation
software implements a reactive algorithm that pro-
cesses a region limited to the detection range of the
stereo vision system.

The algorithm implemented is a nearness dia-
gram �ND� approach �Minguez & Montano, 2004�
modified to suit the structure of the competition. The
ND navigation scheme, as implemented by Minguez
and Montano, begins by forming a polar plot of the
distance from the vehicle to the nearest obstacle at
each angle. This plot is manipulated to identify avail-
able gaps in the obstacles surrounding a robot, and a
control vector is selected from among five different
control strategies based on the particular structure of
available openings.

Our implementation differs by: �1� Changing the
gap calculation to accommodate road boundaries, �2�
changing the gap representation from angular width
to physical end points and width in meters, and �3�
utilizing the physical dimensions of the gap to col-
lapse ND’s five control schemes into one. These
modifications adapt the ND approach to travel along
roads.

6.1. World Representation

The navigation system maintains an internal model
of the world composed of the DARPA-defined GPS
course and detected obstacle locations. The model is
a Cartesian plane with the origin located at the first
course waypoint. Terrain elevation is neglected. Ap-
proximating the globe as a plane was found to be
sufficient throughout the race. The course represen-
tation was geometric, with course segments repre-
sented as rectangles capped with semicircles, and
obstacles represented as circles of varying diameter
and location. Approximating obstacles as circles
leads to inaccuracies in representing planar ob-
stacles, such as when walls appear as a string of
small circles. However, the nature of the competition
lessened the impact of this shortcoming as fre-
quently encountered objects, such as gate posts, tank
traps, and bushes, are all well approximated by
circles.

This internal representation stands in contrast to
cost map approaches. The geometric model requires
less memory than large cost maps, and in general
can calculate intersections and other quantities ana-
lytically. However, a drawback of this method is that

Figure 6. Error in localization versus range in meters.

750 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



its obstacle representation is binary—space must ei-
ther be fully traversable or blocked. Since the stereo
vision system cannot distinguish between obstacles
of different severity, such as rocks which one would
prefer to avoid versus a parked car that one must
avoid, the binary representation simply reflected a
constraint of our stereo vision system, and was not
itself a limitation.

6.2. Gap Calculation

The central task of the navigation system is to ex-
tract the location of “gaps” in the terrain in front of
the vehicle, where gaps are defined as physical
openings wide enough for the vehicle to travel
through. The first step in locating these is the con-
struction of a polar tube plot, which closely parallels
the ND. Whereas the ND graphs distance to the
nearest obstacle in an angular sector, the tube plot
graphs the distance to the nearest obstacle in a rect-
angular region �a tube�, extending at a given angle
off of the car’s heading �Figure 7�. Using tubes in-
stead of sectors preserves the actual width of gaps at
different distances from the vehicle. Next, disconti-
nuities in the plot are identified, and gaps are
formed from a pair of adjacent left and right end-
points. Because road borders are continuous lines,
no discontinuities are present to form appropriate
gaps between road edges and obstacles. Another
mechanism was developed to achieve suitable gap
formation on roads or in corridors. Additional “cor-
ridor” gaps are formed between an unpaired end-
point and a point along the adjacent corridor bound-
ary. The appropriate contact point along the
boundary is taken to be the point of intersection of
the boundary with a line passing through the un-
paired endpoint perpendicular to the vehicle’s direc-
tion of travel �Figure 8�.

6.3. Control Action Selection

A control action comprising desired heading and
speed is calculated based on the available gaps.
First, a target gap is selected based upon width and
angle from the vehicle’s heading. Wider gaps are
more desirable, as are those which require the least
deviation from current heading. Once chosen, a gap
is biased to be targeted in subsequent time steps to
prevent alternating between gaps. This is a serious
problem, because such indecision effectively takes
the average between the two gaps, where an ob-
stacle lies. Next, a pursuit point along the course
centerline is selected. In the absence of obstacles,
aiming at this pursuit point will guide the vehicle
along the GPS course. To cause the vehicle to dodge
obstacles by a margin of d where possible, the target
gap endpoints are each moved toward each other by
d+w/2, where w is the width of the vehicle. If the
gap is too narrow to move each endpoint the re-
quired distance, both endpoints are placed at the
middle of the gap, so the vehicle will still pass
through narrower openings if d is unavailable. The
desired heading is calculated to be the heading
within the narrowed target gap closest to the head-
ing of the pursuit point. This method allows the ve-
hicle to dodge obstacles by precise distances.

The desired speed is computed as the minimum
of three terms: �1� The DARPA mandated speed
limit, �2� a safety speed limit based on the average
curvature of the track ahead of the car, and �3� a
reactive term proportional to the length of the tube

Figure 7. �a� A sample world configuration consisting of
GPS course boundaries, a circular obstacle, and the ve-
hicle. Projected tubes are shown in gray. �b� The resulting
polar tube plot.

Figure 8. Corridor gap geometry. Black ×’s mark un-
paired endpoints; gray ×’s mark corridor endpoints; and
braces show the resulting corridor gaps.
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projected from the front of the vehicle. This last term
slows the vehicle while dodging obstacles.

7. RESULTS

7.1. Site Visits

To earn an invitation to the NQE in Fontana, Califor-
nia, teams had to demonstrate basic GPS-following
and obstacle avoidance capabilities during a site
visit by DARPA officials. During the first site visit in
May, Prospect Eleven failed to evade several trash-
cans, and was not originally placed in the top 40
contestants. However, our team did earn a second
site visit in June, and performed well enough to earn
an invitation to the NQE as one of three alternates.

7.2. National Qualification Event

The NQE consisted of five runs over a 3.5 km
course. The course included a 100-ft tunnel under
which robots lost GPS fix, rumble strips, four parked
cars, a tank trap, hay bales, a simulated mountain
pass, and tire stacks. Each run was judged on time,
evasion of obstacles, and completion of course gates.
Though Prospect Eleven performed admirably on
three runs, its poor performance on the other two
demonstrated serious software reliability issues.
Table II shows the results of the five NQE runs. Dur-
ing Runs 1–3, the vehicle’s GPS system was mis-
aligned. Despite this, during Runs 1 and 3, the vision
system was able to keep Prospect Eleven within
boundaries by detecting physical course markings.
In Run 2, the misalignment caused Prospect Eleven
to collide with the first obstacle. During Run 4, slow
software performance resulted in unstable steering
control. This was a result of several extraneous pro-
cesses left running on the vehicle, as well a systemic

software bug, discussed in the next section. The fifth
run was essentially perfect and within 2 min of the
course record.

7.3. Grand Challenge Event

The top 23 robots from the NQE were invited to par-
ticipate in the Grand Challenge Event on October 8,
2005 in Primm, Nevada. Prospect Eleven was seeded
tenth. The race started smoothly, and Prospect
Eleven appeared on schedule at the 8 mile mark.
Shortly thereafter, at approximately 9.4 miles, steer-
ing control became unstable. The DARPA chase ve-
hicle disabled Prospect Eleven, and Prospect Elev-
en’s race was over.

An analysis of the logs made it clear that the
culprit was again slow software performance. Nor-
mally, Prospect Eleven’s control loops run at
16–20 Hz; however, at the time the vehicle was dis-
abled they were only running at 0.3 Hz. Further
analysis revealed that this was caused by a bug in
the obstacle tracking code, as obstacles were never
entirely cleared from the list of tracked obstacles
when passed. Tracking the position of thousands of
irrelevant obstacles overwhelmed the processor, and
starved critical code.

7.4. Post-Grand Challenge

In order to evaluate Prospect Eleven’s performance
without this software bug, the course was attempted
once more on October 31, 2005. By this point, course
conditions had changed considerably from the day
of the Grand Challenge: Several formerly dry lake
beds had been filled with rain in the intervening
weeks. Also, the heavy rains cut a number of deep
washouts across the path. In addition, some parts of
the course had been altered following the Grand
Challenge, with ramps bulldozed, and a short
stretch of track deliberately rendered impassable. In
all of the above cases, Prospect Eleven was removed

Table II. Results at the National Qualification Event.

Result Run 1 Run 2 Run 3 Run 4 Run 5

Obstacles avoided �of 5� 5 0 5 2 5
Gates passed �of 50� 48 0 50 8 50
Time 13:03 DNF 12:34 DNF 12:11

Note: DNF=did not finish.
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from autonomous operation, and manually driven
around the impasse. In addition, Prospect Eleven
suffered a communications failure between the GPS
unit and the guidance computer just before Beer
Bottle Pass, a mountain pass near the end of the
course, that would have ended a fully autonomous
attempt. This was fixed en route. Nevertheless, Pros-
pect Eleven drove the rest of the course autono-
mously, successfully navigating two tunnels, mul-
tiple gates, and descending winding Beer Bottle Pass
at night without any intervention.

To assess repeatability, Prospect Eleven as-
cended and descended Beer Bottle Pass again the
following day. Although traversal of the pass itself
was uneventful, the vehicle blew out its left front tire
at the base of the pass on the descent, following a
collision with a small sharp rock. The front wheels
were also jarred out of alignment. This failure dem-
onstrates a limit of the vehicle’s stereo vision tech-
nology, which could not detect small but crucial fea-
tures of this size. The descent occurred at night. The
vehicle headlights provided sufficient illumination
for robust obstacle detection.

As a final test, Prospect Eleven attempted the
2004 Grand Challenge course backward, from
Primm, NV to Barstow, CA. Again, the vehicle was
unable to complete a fully autonomous traversal of
the course due to environmental factors. Manual
control had to be taken back a number of times to
guide the vehicle around washouts and, in one case,
to divert the vehicle around an underpass that had
filled with silt. Also, three hardware failures would
have ended a fully autonomous attempt of the
course: A communications cable came loose, the
steering position encoder became jammed with
sand, and the vehicle’s spare tire, installed to replace
the old left front tire, was eventually destroyed by
the terrain. The failure of the spare was expected
due to the misalignment of the wheels after the pre-
vious collision. Despite these issues, Prospect Eleven
navigated a substantial distance autonomously. The
vehicle traversed the three mountain passes of the
course without incident, including a descent of Dag-
gett Pass in total darkness.

8. CONCLUSION

Over the course of the Grand Challenge qualification,
competition, and subsequent testing, Prospect Eleven

performed well. Though the system was designed to
exploit the specific structure of the Grand Challenge
race, it showed the capability to perform in some en-
vironments more complicated than those originally
envisioned. This demonstrates the promise of a
simple approach to autonomous systems. Though it
is useful to consider implementation as a system of
interconnected modules, each of which may be indi-
vidually optimized, Prospect Eleven shows that over-
all performance relies on carefully considering the in-
tegration of components in the system as a whole. For
instance, the use of a binary obstacle representation,
though in itself suboptimal, contains all information
that the stereo vision system can provide and more
accurately reflects the limitations of the detector.
Prospect Eleven shows the feasibility of a simple au-
tonomous design that can operate effectively in dif-
ficult environments.
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