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Accumulating decision evidence

I Humans and animals near-optimally
accumulate information to make decisions

I Neural correlates of accumulation have been
found in areas including LIP and FOF, and
predict certainty (Kiani & Shadlen 2009)

Brunton, Botvinick, & Brody 2013 Roitman & Shadlen 2002

I Hand-designed neural network models can
reproduce this behavior (Usher &
McClelland 2001, Wong & Wang 2006,
Bogacz et al. 2006), but do not include the
learning process

I We derive an analytically tractable
model of the entire learning trajectory

Questions

I Does integrating information require
specially-designed neural hardware?

I Can we capture nonlinear learning dynamics
with a simple model?

I Can we describe learning trajectories in
closed form?

I Can we predict experimental data?

Assumptions and notation

I True stimulus label y ∈ {−1, 1}
I Stimulus gives us information at a rate A

and with noise c2: xt ∼ N(Ay dt, c2 dt)

Neural network models

A generic deep recurrent network can learn to
make optimal decisions

A linear deep network captures nonlinear
learning dynamics

Gradient descent still nonconvex and coupled, e.g.
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where Σyxt is the input-output cross correlation
and Σxt1

xt2 is the input cross correlation

Continuous-time scalar modes

Output dominated by the largest singular value of Wr :
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Taking a continuous-time limit dt → 0:
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Output from continuous-time scalar mode is an

Ornstein-Uhlenbeck process

dŷ = (Bŷ + A) dt + c dW

Gradient descent dynamics

Accuracy = Φ
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Preliminary fit to experimental data

Model dynamics predict changes in stimulus
sensitivity and integration performance

Monkey behavioral data from a random-dot
motion task (Law & Gold 2008)

Model features

I Extends drift diffusion model to include learning
dynamics

I Links phenomenological model to learning in
neural population

I Exact solutions, allowing exact log likelihood
computation

I Predicts learning-driven changes for both
behavioral and neural data


