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Accumulating decision evidence

» Humans and animals near-optimally
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Neural network models

A generic deep recurrent network can learn to

Continuous-time scalar modes Preliminary fit to experimental data

Output dominated by the largest singular value of W,: Model dynamics predict changes in stimulus

accumulate information to make decisions make optimal decisions o sensitivity and integration performance
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» Hand-designed neural network models can Gradient descent dynamics | I
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» Does integrating information require
specially-designed neural hardware?
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» Can we capture nonlinear learning dynamics
with a simple model?

Monkey behavioral data from a random-dot
motion task (Law & Gold 2008)
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» Can we describe learning trajectories in

closed form? M

Can we predict experimental data?
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: : Gradient descent still nonconvex and coupled, e.g.
Assumptions and notation :
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» True stimulus label y € {—1,1} =1

» Stimulus gives us information at a rate A
and with noise c?: x; ~ N(Ay dt, c?dt)

» Extends drift diffusion model to include learning
50 dynamics

» Links phenomenological model to learning in

neural population
» Exact solutions, allowing exact log likelihood

computation
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» Predicts learning-driven changes for both
behavioral and neural data

where 2Y*t |s the input-output cross correlation
and 271”2 |s the input cross correlation



