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ABSTRACT
In this paper we present Kratos, an autonomous ground robot capable of static obstacle field navigation and
lane following. A sole color stereo camera provides all environmental data. We detect obstacles by generating a
3D point cloud and then searching for nearby points of differing heights, and represent the results as a cost map
of the environment. For lane detection we merge the output of a custom set of filters and iterate the RANSAC
algorithm to fit parabolas to lane markings. Kratos’ state estimation is built on a square root central difference
Kalman filter, incorporating input from wheel odometry, a digital compass, and a GPS receiver. A 2D A* search
plans the straightest optimal path between Kratos’ position and a target waypoint, taking vehicle geometry into
account. A novel C++ wrapper for Carnegie Mellon’s IPC framework provides flexible communication between
all services. Testing showed that obstacle detection and path planning were highly effective at generating safe
paths through complicated obstacle fields, but that Kratos tended to brush obstacles due to the proportional law
control algorithm cutting turns. In addition, the lane detection algorithm made significant errors when only a
short stretch of a lane line was visible or when lighting conditions changed. Kratos ultimately earned first place
in the Design category of the Intelligent Ground Vehicle Competition, and third place overall.
Keywords: robotics, IGVC, stereo vision, lane detection, IPC, Kalman Filter, cost map, path planning

1. TEAM OVERVIEW
The Princeton Autonomous Vehicle Engineering (PAVE) IGVC team consists of nine undergraduate students at
Princeton University, all of whom were members of Princeton’s all-undergraduate semi-finalist DARPA Urban
Challenge team and bring hands-on experience with computer vision and autonomous navigation. Our entry into
the 2008 IGVC, Kratos, builds upon the systems in our prior robots, Prospect Eleven1 and Prospect Twelve.2

2. DESIGN PROCESS
The short development time for this project (February through May, 2008) necessitated an efficient design
process. We analyzed the requirements and restrictions specified in the rules for the 2008 IGVC3 and distilled
a set of concrete, solvable design objectives. Before construction began the entire robot was modeled with the
Autodesk Inventor 2008 CAD software to ensure the design’s feasibility (Figure 1).

(a) CAD Model (b) Real-World

Figure 1: Visualizations of Kratos
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2.1 Mechanical Design
Based on competition rules, Kratos had to be capable of climbing a 15% grade at 5 mph. A comprehensive power
analysis, factoring in real-world conditions, informed our drive motor selection. We assumed a 90% gearbox
efficiency in each of three reduction stages. Based on experimental results we used .2 and .1 as coefficients of
rolling friction over grass and wood respectively. We additionally adjusted the motor power curves for increased
winding resistance. Applying our analysis to the IGVC requirements we identified three distinct cases of robot
motion, as outlined in Table 1.

Case Net Force Power Required Motor Power Power per side
1: Full speed forward on grass 196.2 438.5 601.5 300.8
2: Turning in place on grass 130.8 292.3 401.0 401.1
3: Driving up a 10◦ incline 268.4 600.0 823.0 411.5

Table 1: Power requirements for robot motion. Speed in (m/s), force in (N), power in (W). Cases 1 and 3 assume
power is split evenly between the each side of the robot, whereas case 2 assumes only one motor is operating.

The drive-train configuration consisted of two CIM motors on each side of the robot. This configuration
produces a maximum of 440W per side, which is enough power to meet all of the cases outlined in Table 1,
though 80A cicruit breakers slightly reduced the available power. To determine final gearbox ratios and wheel
diameters, we performed a full analysis of the motor power curve. Key values for the 2-motor setup were taken
from published data,4 additional motor parameters were calculated, and a numerical simulation of the motor
power curve was conducted.5

Kratos operated with 12.4” diameter wheels and a 40:1 overall gear ratio, consisting of a 12:1 planetary
gearbox and a 10:3 chain drive. This configuration provides ample power and quick acceleration in all of the
design cases, with substantial safety margins for known failure points such as torque limitations, chain strength
and current limits. The only drawback of this setup is that the predicted maximum speed in all three cases was
reduced from 5 mph to around 4 mph. However, we considered it better to relax our original design requirements
than operate with reduced safety margins. A numerical simulation was used to predict our top speed and
acceleration, graphed in Figure 2a. These results are very closely aligned with actual speed data taken from the
robot, shown in Figure 2b. These graphs demonstrate the accuracy of our pre-fabrication simulation.
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(a) Numerical Simulation
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(b) Data From Test Run

Figure 2: Predicted and Actual Robot Speeds

2.2 Fabrication and Assembly
Using the Autodesk Inventor 2008 CAD software we converted individual parts either to 2D engineering drawings
for manual fabrication or CNC programs for automated manufacturing. We selected the 80/20 c© framing system
over aluminum or steel bars to construct Kratos’ chassis; these custom-extruded aluminum bars are stronger
than square-tube extruded aluminum of the same size and allow for rapid assembly and disassembly. The
primary chassis bars are held together by custom machined aluminum plates, while 2 inch aluminum L-brackets
provide corner reinforcement in areas of high stress. A platform of 1/4” polycarbonate rests on the bottom
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of the chassis and supports Kratos’ internal components. Polyethylene sheets line the perimeter of the robot,
protecting sensitive internal equipment from external hazards.

2.3 Electrical Design
The IGVC requires at most a running time of 6 minutes. Given the value of extended testing, however, we
aimed instead to have enough on-board power for one hour of continuous operation with at least three hours on
standby. An analysis of the power requirements for all electrical components showed a required 983W at peak
and 236W during idle; at 12V, this translates to 82A and 20A, respectively. We consequently selected three
deep-cycle batteries with a rating of 33A-hr, providing a total of 99A-hr at full charge. Kratos is therefore able
to last under its own power for over one hour of continuous operation and remain self-powered at idle for over
5 hours. An on-board 12V battery charger allows Kratos unlimited operation in any location with a 120V AC
power source.

2.4 Electronics and Computing
A Labjack UE9 data acquisition unit allows for digital and analog input/output between our electronics and
computers via Ethernet. The UE9 generates PWM signals that command Kratos’ Victor884 motor controllers
and performs 4x quadrature counting to track the position of the US Digital HB6M rotary incremental encoders
on each axle. The UE9’s digital I/O controls Kratos’ warning alarm and detects the hardware motor-cutoff
Emergency Stop status.

Given the computational intensity of the algorithms we employ (Section 3), Kratos is equipped with two
on-board computers, one devoted to vision processing while the other is responsible for navigation and low-level
control. Both computers are configured identically, with 2.0GHz Intel Core2Duo processors, 2GB of RAM, and
200GB hard drives, powered by 200W DC power supplies. The cases are mounted together and secured to the
chassis with shock-isolating feet. A gigabit Ethernet switch connects the two computers and the Labjack UE9.

2.5 Sensors
The sole environmental sensor on Kratos is a Point Grey Bumblebee2 color stereo camera, avoiding the challenges
posed by fusing separate obstacle and lane detection sensors. The Bumblebee2 has a horizontal FOV of 70◦ and
an effective range of 18 meters. We accounted for the Bumblebee2’s minimum detection distance of 1m by
mounting it on Kratos’ sensor tower (with a 12◦ downward pitch) such that its undetectable zone is contained
entirely within the robot’s physical envelope.

Kratos is equipped with a Hemisphere A100 GPS receiver, located at the top of the sensor tower. Using
WAAS differential corrections it provides global position data to 0.6 m accuracy, as well as heading and velocity,
at 10Hz via an RS232 serial connection. A Honeywell HMR3000 digital compass outputs magnetic bearing
with 1◦ accuracy at 20Hz, also over RS232. Finally, two US Digital HB6M rotary incremental encoders, one
mounted on each wheel axle, provide local motion data accurate to .1 mm. The GPS receiver, camera and
compass are all vertically aligned within the sensor tower, which is positioned above the midpoint between the
two wheels. All of Kratos’ sensors therefore share the same reference location, eliminating the need to perform
frame transformations in software.

3. SOFTWARE
3.1 Platform
Kratos’ two computers run the Windows Server operating system for ease of use and maximal hardware com-
patibility. All software is written in platform-independent C++ using the Visual Studio IDE. The Newmat6

and wykobi7 libraries provide linear algebra and geometry functionality respectively, and the Qt library and
Designer allow for rapid multi-platform GUI development. Each software component runs as an independent
program connected to a central server using Carnegie Mellon’s Inter-Process Communication (IPC) platform,8

which provides an API for message publishing and subscription, serialization, and timing.
We developed a novel C++ wrapper for IPC to speed development, minimize errors, and ensure all modules

share identical message definitions. Most robotics frameworks are either oriented around named messages (i.e.
IPC) or named services (i.e. Microsoft Robotics Developer Studio9). Our wrapper, IPC++, object orients the
framework around the messages themselves and localizes it to a dynamically linked library, allowing changes
to message definitions without recompilation. From a programming standpoint IPC++ improves upon IPC by
abstracting away message identifiers and memory management. We intend to publicly release IPC++ in 2009.
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3.2 Vision
3.2.1 Obstacle Detection
Point Grey’s stereo vision library initially computes a disparity map by matching similar pixels between the two
simultaneously captured stereo images. Leveraging knowledge of the camera’s intrinsic characteristics as well as
the inverse relationship between disparity and distance, Point Grey’s library then converts the disparity map into
a depth map of each matched point in the image. We finally apply a simplified version of the obstacle detection
algorithm proposed by Manduchi et al.,10 which searches for pairs of points that are roughly vertical (Algorithm
1). The results of our stereo obstacle detection are shown in Figure 3.

Stereo obstacle detection’s primary shortcoming is the imperfection inherent to disparity maps; pixel matching
is difficult in areas with low texture, poor lighting, or uneven contrast. To improve the quality of its disparity
map generation Point Grey’s library imposes several validation checks on points in the disparity map, including
rejecting pixels in low texture areas or that match to a large number of other pixels. Another significant problem
with stereo vision is its inherent maximum and minimum sensing distances; disparity is too small to detect for
distant objects, and close objects are not in the field of view of both cameras. In practice we found the 18 meter
effective detection range provided by the Bumblebee2 more than adequate for the IGVC, and as discussed earlier
(Section 2.5) we were able to design around the minimum detection range.

(a) Camera Image (b) 3-D Map (c) Obstacle Points

Figure 3: Stages of Obstacle Point Detection

Input: Depth Map, MaxDepthDiff = .3 meters, MinHeightDiff = .3 meters, MaxHeightDiff = .5 meters,
MinAngle = 80◦, FocalLength

Output: Obstacle Points
foreach Point P in Depth Map do

SearchHeight = FocalLength × MaxHeightDiff / Depth(P );
SearchBase = 2 × SearchHeight / tan(MinAngle);
T = the inverted triangle of pixels above P , with height SearchHeight and base SearchBase;
foreach Point Q in T do

HeightDiff = |Height(Q) - Height(P )|;
DepthDiff = |Depth(Q) - Depth(P )|;
XDiff = |LateralPosition(Q) - LateralPosition(P )|;
if DepthDiff < MaxDepthDiff and MinHeightDiff < HeightDiff < MaxHeightDepth and HeightDiff
/ XDiff > tan(MinAngle) then

FlagAsObstacle(P );
FlagAsObstacle(Q);

end
end

end
Algorithm 1: The depth map to obstacle points algorithm.

3.2.2 Lane Detection
Our lane detection algorithm, an extended version of the system used by Princeton in the DARPA Urban
Challenge, functions in three phases. First, a series of filters is applied to each pixel in the image to determine
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whether it might fall on a lane line. Two color filters respond to pixels that correspond to the yellow and white
colors of lane markings, while a rectangular pulse width filter responds to edges of the correct width for a lane
marking (adjusted by vertical location in the image). Finally, an obstacle filter raises the score of pixels that
do not fall on an obstacle. The image of obstacle points is blurred and then re-thresholded to binary values to
better block pieces of the obstacles from being marked as lanes. This type of filter was made possible by using
the same camera for both obstacle and lane detection, giving us a common image space for processing.

The results of all three filters are fused into a “heat map” indicating the likelihood that each pixel falls on a
lane marking. We then apply the RANSAC algorithm11 to find the parabolic fit that passes near the most lane
pixels. Because a parabola does not perfectly describe the geometry of a lane, a greedy pixel-by-pixel search is
performed from the furthest pixel in the lane marking. Figure 4 demonstrates the stages of the lane detection
algorithm.

Figure 4: Stages of Lane Detection

3.2.3 Vision Results
Our stereo obstacle detection scheme is able to reliably detect obstacles up to 18 meters (60 feet) away, with the
number of obstacle points detected increasing exponentially as the distance decreases (Figure 5). After testing,
we determined that the depth calculations performed by Point Grey’s libraries showed a slight bias at long
distance. We accounted for the bias by empirically fitting a correction function, yielding

da =
2

100000
(dm)4 + dm,

where dm is the measured depth and da is the actual depth.
Our lane detection algorithm was tested extensively during the DARPA Urban Challenge. We evaluated

algorithmic performance on 200 images along a highway, with one solid lane marking and several dashed lane
markings. Between two and three lanes are visible in each image. In the 200 images, we find that one lane is
found in 7% of images, two lanes are found in 88% of images and three are found in 5% of images. In all 200
images, only 5 false positives were observed.

3.3 State Estimation
We use a square root central difference Kalman filter (SRCDKF) to fuse GPS, wheel encoder, and compass data
into a near-optimal estimate of the vehicle’s position.12 The central difference Kalman filter (CDKF) is a type of
sigma point filter like the unscented Kalman filter (UKF) which uses a deterministic set of points to represent a
multivariate Gaussian distribution over states and measurements. When propagated through nonlinear process
and measurement models, these points represent the resulting posterior Gaussian random variable accurately to
the second order Taylor series expansion of the nonlinear system. In contrast, the popular extended Kalman
filter (EKF) is only accurate up to the first order.

To obtain numerical stability and efficiency, the square root formulation of the CDKF manipulates the lower
triangular Cholesky factor of the error covariance matrices. In this way the represented covariance matrices are

5



0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

D
is

ta
n

c
e

 (
m

)

 

 

0 2 4 6 8 10 12 14 16 18 20
0

2000

4000

6000

Measured Distance (m) (Uncalibrated)

N
u

m
b

e
r 

o
f 

o
b

s
ta

c
le

 p
o

in
ts

 

 

Actual Distance

Measured Distance (Calibrated)

Detected Obstacle Points

Figure 5: Stereo Vision Results

necessarily symmetric and positive definite. The computational complexity is O(L3) where L is the length of
the state vector. We represent the state of the robot with a six variable state vector,

x =


x
y
θ
δ
vr

vl

 , (1)

where x is the vehicle x coordinate in meters in a Cartesian local frame, y is the vehicle y coordinate in meters,
θ ∈ [0, 2π) is heading, δ ∈ [0, 2π) is a bias between compass heading and GPS heading, vr is right wheel tread
speed in m/s, and vl is left wheel tread speed in m/s.

3.3.1 Process Model
We use a discrete time model of a differential drive robot given by Larsen et al.13

x(t+ dt) =



x(t) +
(

vr(t)+vl(t)
2

)
sin
(
θ(t) + vl(t)−vr(t)

2b

)
dt

y(t) +
(

vr(t)+vl(t)
2

)
cos
(
θ(t) + vl(t)−vr(t)

2b

)
dt

θ(t) +
(

vl(t)−vr(t)
b

)
dt

δ(t) + η1dt
vr(t) + η2dt
vl(t) + η3dt


,

where b is the track width of the robot, η = [η1 η2 η3]T is a Gaussian random variable and dt is the integration
time step of the system (approximately 1/20 s in our implementation).

3.3.2 Measurement Models
The filter incorporates sensor measurements using nonlinear measurement models that predict the value of a
given sensor measurement from the current estimate of the state variables. GPS position measurements are
predicted to be

yGPS Position(t) =
(
x(t) + α1

y(t) + α2

)
,
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Figure 6: Sample input measurements and filter output

where α = [α1 α2]T is a Gaussian random variable corrupting the x and y GPS measurements. The GPS
heading measurement is predicted to be

yGPS Heading(t) = (θ(t)− πu(−vr(t)− vl(t)) + ζ) %2π,

where u(x) is the Heaviside step function, ζ is Gaussian noise corrupting the GPS heading measurement, and
% is the modulo operator. When the robot is traveling in reverse, the GPS measured direction is opposite the
robot heading. The πu(vr(t) + vl(t)) term incorporates this effect by subtracting π from the predicted heading
value when the robot is traveling backwards. The GPS speed measurement model is

yGPS Speed(t) =
∣∣∣∣vr(t) + vl(t)

2
+ σ

∣∣∣∣
where σ is Gaussian noise in the GPS speed measurement. The absolute value reflects the fact that the GPS
speed is always a positive reading. Measurements of the vehicle’s wheel speed are provided by encoders, which
use the following measurement model,

yWheel Encoders(t) =
(
vr(t) + ξ1
vl(t) + ξ2

)
,

where ξ = [ξ1 ξ2]T is a Gaussian random variable. Finally, we take the compass measurement model to be

yCompass Heading(t) = (θ(t) + δ(t) + β) %2π,

where β is Gaussian noise and δ(t) is the estimated bias between the compass heading and GPS heading. This
bias term allows the filter to automatically correct for magnetic variation by learning a correction factor based
on GPS heading.

3.3.3 Testing and Results
The SRCDKF was implemented first in Matlab and checked against an implementation of a linear Kalman filter
before being transcribed into C++. The C++ implementation was verified against the Matlab code and tested
in a simulator of the process and measurement dynamics before being deployed on the robot. Figure 6 shows
sample heading and position estimates from the filter.

3.4 Navigation
Kratos’ navigation scheme follows a cost map approach: the environment is gridded into square cells, which each
have an associated numerical cost. With this environmental representation, path planning can be reduced to the
well-understood graph search problem.

3.4.1 Cost Map Generation
Stereo points are stored in a dedicated cost map representing the camera’s field of view. Each cell in the stereo
cost map is assigned a numerical cost according to

c(p) = max(kclear,min(1, n(p))kfirst + max(0, n(p)− 1)kadditional), (2)
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(a) Stereo cost map divided into segments (b) Kratos’ “footprint.” The red segment indicates the
maximum side length, the blue segment represents
the buffer, and the shaded green area represents the
entire footprint

Figure 7

where c(p) is the cost associated with the cell containing the point p, n(p) is the number of obstacle or lane
points in the cell, kclear is the cost associated with a clear cost cell, kfirst is the cost associated with the first
stereo point in a cell, and kadditional is the added cost for each additional stereo point.

The camera’s field of view is divided into s discrete angular regions (Figure 7a). Clear cells closer than the
nearest non-clear cell in each region as well as all occupied cells are transformed into global coordinates according
to the state estimation data associated with the stereo capture and averaged into the global cost map according
to a set learning rate α. By initializing the global cost map’s cells with a cost kstarting greater than kclear, open
cells’ costs are lowered as they are viewed to be clear. Figure 9a shows a cost map generated from stereo vision
data with our algorithm.

Because the robot’s size is greater than a cost cell’s, the cost of a cell does not represent the total cost of
the robot being located at that cell. A second global cost map stores the sum of the cost at each cell within the
robot’s “footprint,” a square with side length equaling the robot’s longest protrusion from the reference point
plus a buffer (Figure 7b).

3.4.2 Waypoint Selection
When GPS waypoints are provided, they are presorted to give the shortest overall path by enumerating all
possible permutations. When lane following, the target waypoint is inferred based on the detected lanes. The
detected lane lines are extended backwards to the position of the robot in order to determine which lanes are on
the left and right sides. If both lanes are available, the farthest point on the shorter lane is averaged with the
corresponding point on the other lane to place a waypoint in the center of the lane; if only one lane is detected
the waypoint is placed a constant distance to the left or right of the farthest point detected.

3.4.3 Path Planning
Path planning is accomplished via a 2D A* graph search from the robot’s current position to the destination
waypoint. Search nodes correspond to cells in the “footprint” cost map, expanded by allowing transitions to the
eight neighboring cells - a tradeoff of an increase in branching factor for a shallower solution. Node cost f(n) is
determined by

f(n) = g(n) + h(n) (3)

according to the standard A* representation, where g(n) is node depth and h(n) is the heuristic value.14 Node
depth is assigned according to

g(n) = c(n) +
√

(xn − xn′)2 + (yn − yn′)2 + g(n′), (4)
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(a) Two unfavorable paths (b) A preferable path

Figure 8: Equally optimal paths with the first heuristic (endpoints are green)

where c(n) is the cost of node n in the “footprint” cost map and n′ is the node expanded to yield n. The overall
path, therefore, minimizes its total cost

path cost = path length +
goal∑

n=start

c(n). (5)

The primary heuristic h(n) is the length of the shortest cell-wise path between n and the goal assuming all cells
have not been seen, developed according to:

straight(n) = max(|xn − xstart|, |yn − ystart|)−min(|xn − xstart|, |yn − ystart|), (6)

diagonal(n) =
√

2min(|xn − xstart|, |yn − ystart|), and (7)
h(n) = (cellsize+ kstarting)(straight(n) + diagonal(n)), (8)

where x and y are indices in the cost map and cellsize is the length of a cell side. Though h is not an admissible or
consistent heuristic because cell costs along the path may have decreased below kstarting (if kstarting > kempty), in
practice we found using an expected cost value below kstarting resulted in too expansive a search to be performed
in real time. The resulting path is therefore not guaranteed to be optimal in preferring seen to unseen cells, but
will avoid obstacles.

Though the heuristic above proved adept at avoiding obstacles and efficiently computing paths, it makes
no preference in path structure; so long as two paths have the same total cost according to Equation 5, they
are considered of equal optimality. This feature is problematic when implementing cell-wise paths in the real
world, where they are naturally interpolated. Figure 8a demonstrates a trivial example, where two paths in an
obstacle-free environment are viewed as equally optimal, though upon interpolation they clearly are not; Figure
8b shows the most desirable path in this situation, which interpolates roughly to a straight line. This path
selection issue is more pernicious than mere detours, however; if paths alternate between various solutions (i.e.
between the two paths in Figure 8a), a robot in the real world will behave erratically. In the worst case, if the
paths alternate with an obstacle between them, the robot may never converge to any of the paths and collide
with the obstacle.

We solved this path arbitration problem by adding a second “path straightness” heuristic that breaks node
cost ties. The second heuristic h′(n) measures how close the node is to the straight-line path between the start
and goal cells according to

h′(n) = ‖(~n− ~start)× ( ~goal − ~start)‖, (9)

where two components of the vectors are x and y from above and the third is 0. Applying this second heuristic
guarantees path arbitration will be settled in favor of straighter paths, like the one in Figure 8b.

In order to further minimize computation we implemented the graph search on a binary heap with stored node
indices, improving the update key operation from O(n) to O(log n) time. While this optimization substantially
increased memory consumption, it resulted in a significant performance improvement. When implemented on
its final form on Kratos, the planner operated at roughly 12Hz in an obstacle-free environment and 5Hz in a
cluttered environment. Figure 9b shows a real-world trajectory generated by our algorithm.
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(a) A cost map generated from stereo vision data (b) A path planned through a cost map

Figure 9: Cost map creation and trajectory generation results
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(a) Proportional navigation law
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(b) Cross track error law

Figure 10: Path tracking controller geometries

3.5 Path Tracking
The node centroids on the path found by the path planning module are connected with line segments to form a
continuous desired path. We can describe this curve by its arc length parametrization r(s) ∈ <2 where s ∈ [0, L]
and L is the total length of the path. The path tracking module takes this desired path r(s), the position of the
robot p(t), and the velocity vector of the robot v(t) as input and computes desired left and right wheel speeds
vl(t) and vr(t) respectively which cause the robot to track the path. We implemented and evaluated two path
tracking control systems.

The first system is a proportional navigation law based on the angle between the robot’s current heading and
the heading to a look ahead point on the path (Fig. 10a). In this method we first find the point r(n∗) on the
path nearest to the point p(t) between the robot’s wheels, where

n∗ = argminn‖r(n)− p(t)‖.

Then we find the point r(n∗+d(t)) a distance d(t) ∝ ||v(t)|| ahead along the path. Scaling the look ahead distance
with speed improves stability at the cost of worse tracking. Finally, we set the desired rotational velocity Ω(t)
of the robot proportional to h(t), the signed angle between the vector from the robot to the look ahead point,
r(n∗ + d(t))− p(t), and the robot’s current velocity vector v(t).

The second system is a cross-track error controller proposed by Hoffman et al. for carlike robots.15 The
cross-track controller minimizes the crosstrack error e(t), defined as the signed distance from the closest point
on the path r(n∗) to the point p(t) between the robot’s wheels,

|e(t)| = ||r(n∗)− p(t)||.

The crosstrack error metric in a point model of the robot evolves according to

ė(t) = ||v(t)|| sin(ψ(t)),
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where ||v(t)|| is the robot speed and ψ(t) is its heading relative to the trajectory, that is, the angle between ṙ(n∗)
and v(t) (see Fig. 10b).15 The control law is nonlinear and given by

Ω(t) ∝ ψ(t) + arctan
kee(t)
||v(t)||

,

which will send the cross track error to zero if the proportionality constant is large.15

Although these two schemes may appear quite different, for straight paths the angle to the look ahead point is
ψ(t)+arctan e(t)

d(t) , so the controllers are identical if the same proportionality constant is used and d(t) = 1
ke
||v(t)||.

For curved paths, the proportional navigation law will tend to cut corners to the inside due to the look ahead
point rounding the corner first, while the cross track law will tend to cut corners to the outside. A compromise
between these extremes would be a fruitful improvement for the future. For the competition we settled on the
proportional navigation law approach.

The forward translational velocity ν(t) is set proportional to the local path curvature to slow the vehicle in
corners. Left and right wheel speeds are determined from the desired rotational velocity Ω(t) and translational
velocity ν(t) according to

vl(t) = ν(t) +
bΩ(t)

2

vr(t) = ν(t)− bΩ(t)
2

where b is the track width of the robot. These desired wheel speeds are attained using a proportional-integral
controller for each wheel.

4. RESULTS
4.1 Navigation Challenge
The IGVC Navigation Challenge tasked entrants with navigating a static obstacle field, including a course-wide
fence, to achieve waypoints in an arbitrary order. Kratos’ first and third runs successfully navigated the fence
and the majority of the waypoints. Both trials ended when Kratos brushed a plastic construction fence. Based
on recorded data we attribute these failures to the proportional navigation law path tracking scheme, which was
known to cut turns; our stereo vision system accurately detected the fence and the trajectory generation scheme
plotted paths around it.

Kratos’ second run proved the strength of its generic trajectory generation algorithm at navigating an un-
structured environment. The course-wide fence inadvertently ended short of the course boundary, providing a
second opening for passage. Kratos was able to successfully identify and navigate this gap without any prior
knowledge of the course structure.

4.2 Autonomous Challenge
The Autonomous Challenge consisted of a figure-eight track of parallel white lines dotted with obstacles such as
traffic barrels and trash cans, and included two wooden ramps. One of the most challenging sections of the run,
located at the outset of the course, was a three-layer chicane that required robots to squeeze all the way to the
right of the lane, all to way to the left of the lane, and then all the way back to the right of the lane to avoid
colliding with traffic barrels. On its best trial Kratos successfully navigated the chicane and then continued half-
way around the course before failing to see a lane line on a tight turn and exiting the course. On many of the trials
Kratos failed to pass the chicane for a variety of reasons. One major issue was the maneuverability of our robot.
The large wheelbase and weight of the robot made precision turning difficult, and there was very little room for
error when passing through the narrow openings; on one of the runs, the robot was disqualified since it brushed
against one of the obstacles on the way out of the last layer of the chicane. Another identifiable problem was our
path planning strategy. If the path seemed nearly blocked (as in the chicane case) our A* search would often try
to “escape” by backing up and attempting to find another way around. This is not necessarily unintelligent for
a robot trying to reach a waypoint, but disregards the specific rules of the Autonomous Challenge. Finally, the
camera’s field of view did not allow it to see lanes close to the robot’s body, and the lane detection algorithm had
difficulty picking out the lanes in the middle of the chicane since only short pieces were visible. Lane detection
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also required manual retuning as lighting conditions changed, causing the system to fail if not tuned frequently
or if the sun was near the horizon (such that lighting conditions depended on the direction of travel).

5. CONCLUSION
In this paper we presented Kratos, a small autonomous ground robot capable of navigating a static obstacle field.
Kratos was ultimately awarded 3rd place overall, Rookie of the Year, 1st place Design Competition, 4th place
Navigation Challenge, and 6th place Autonomous Challenge at the 2008 Intelligent Ground Vehicle Competition.
Work is currently underway on a new robot, building on Kratos’ design, to be entered in the 2009 IGVC.
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