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Abstract

In this work, we propose a new training method for finding minimum weight norm
solutions in over-parameterized neural networks (NNs). This method seeks to
improve training speed and generalization performance by framing NN training as
a constrained optimization problem wherein the sum of the norm of the weights
in each layer of the network is minimized, under the constraint of exactly fitting
training data. It draws inspiration from support vector machines (SVMs), which
are able to generalize well, despite often having an infinite number of free pa-
rameters in their primal form, and from recent theoretical generalization bounds
on NNs which suggest that lower norm solutions generalize better. To solve this
constrained optimization problem, our method employs Lagrange multipliers that
act as integrators of error over training and identify ‘support vector’-like examples.
The method can be implemented as a wrapper around gradient based methods
and uses standard back-propagation of gradients from the NN for both regression
and classification versions of the algorithm. We provide theoretical justifications
for the effectiveness of this algorithm in comparison to early stopping and L2-
regularization using simple, analytically tractable settings. In particular, we show
faster convergence to the max-margin hyperplane in a shallow network (compared
to vanilla gradient descent); faster convergence to the minimum-norm solution
in a linear chain (compared to L2-regularization); and initialization-independent
generalization performance in a deep linear network. Finally, using the MNIST
dataset, we demonstrate that this algorithm can boost test accuracy and identify
difficult examples in real-world datasets.

1 Introduction

Deep neural networks are often over-parameterized relative to their training dataset size [17, 18, 25,
14, 30, 9, 1, 23]. Nevertheless, they still generalize well to novel inputs. This generalization ability
has been traced to two interrelated aspects of the optimization problem: first, a large body of work has
shown that the complexity of the function instantiated by a neural network is related to the norm of its
weights [22, 4, 5, 2] suggesting that networks will generalize well to the extent that the optimization
process ends with reasonably small weights. Second, recent results on the dynamics of gradient
descent learning in the high dimensional regime have explained why gradient descent dynamics
naturally yield low norm solutions in the underdetermined regime, even with infinite training time,
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Figure 1: Over-parameterization and generalization via minimum norm solutions. (A) A simple ReLU
network with random first layer weights and trained second layer weights. The network receives
a scalar input and bias term, and is trained to minimize squared error on ten points (red circles)
from a target sinusoid (red curve) shown in panels B-E. (B-E) Blue curves show example functions
learned by networks with differing numbers of hidden units Nh = {2, 5, 10, 500}. Networks in
panels B, C, & D show the standard progression from underfitting the training data to overfitting, with
a happy medium in panel C. However the large network in panel E generalizes best. This network
has 50× more parameters than training examples but generalizes well, because among the infinity of
solutions attaining zero training error we have chosen a low norm solution. In this work we derive
training algorithms for nonlinear deep networks that explicitly seek minimum norm solutions in the
underdetermined, accurate label regime, allowing good generalization in large networks.

provided that networks are initialized with small weights [1]. Together, these findings provide one
explanation for why vanilla deep networks often generalize well without any sort of regularization
(beyond starting from small initializations).

As a concrete example, Fig 1 depicts a simple ReLU network receiving a scalar input (panel A),
trained from ten samples of a sinusoidal target function. As the number of hidden units is increased
from 2 to 10, the network shows the usual progression from underfitting to overfitting (panels B-D).
However, a large network with 500 hidden units generalizes best in this simple scenario, because
among the many weight configurations that attain zero training error, we have selected a low norm
solution.

These prior results have focused on explaining the success of vanilla deep networks trained using
gradient descent, the nearly ubiquitous workhorse of deep learning. In this work, we present a novel
training algorithm specifically designed to seek low norm solutions for the underdetermined, accurate-
label regime in which many deep networks operate. In particular, deep NNs are typically trained to
minimize an unconstrained objective, for instance, the cross-entropy error on a corpus of training
data. Here we investigate an alternative paradigm of constrained optimization in over-parametrized
networks, wherein training proceeds by requiring a neural network to minimize the size of its weights
subject to the constraint that it exactly fits its training data. This scheme, which brings Lagrangian
constrained optimization methods into deep learning, behaves dramatically differently from standard
gradient descent, showing no apparent overtraining, improved generalization performance compared
to standard SGD training, insensitivity to weight initialization, and improvements in norm-based
generalization bound values.

In Section 2, we introduce the main constrained optimization formulation and discuss its connection
to support vector machines. As it is based on constrained optimization, it is applicable in the low
label noise, underdetermined regime in which a deep network can exactly fit the training dataset.
However, this is typically the case in deep learning applications. In Section 3, we introduce four
illustrative toy problems to demonstrate the operation of the method. First, we show that the method
successfully identifies support vector-like training examples that control the separating hyperplane.
Next, we show that the formulation differs from L2-regularization by yielding fast convergence to
minimum norm solutions without shifting the location of training loss minima. Third, we analyze the
method when applied to shallow networks, and contrast it with the standard binary cross entropy loss.
We show that the method can give much faster convergence to the max-margin hyperplane. Finally,
we analyze how, in the underdetermined regime, the Minnorm training procedure decays weights in
the ‘frozen subspace’ in which no data lies, yielding improved generalization and reduced sensitivity
to weight initialization compared to standard SGD training. In Section 4 we apply the method to the
MNIST dataset, where it trains in similar time to SGD but achieves better test accuracy and exhibits
no overtraining.
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2 Overview of Minnorm training

The method we describe here is conceptually similar to the optimization problem underlying the
SVM algorithm, which yields robust classification by finding a maximum margin solution [6]. This
robustness allows SVMs to generalize well when trained on finite datasets despite being effectively
over-parameterized. For instance [10] describes a kernel for which SVM learning is equivalent to
finding a max margin classifier for an infinite width shallow ReLU neural network with random first
layer weights. Despite having an infinite-dimensional feature space, fitting this model does not lead to
high generalization error because, among all decision boundaries which correctly classify the training
samples, the SVM optimization algorithm selects the one with maximum margin. Unfortunately,
despite their benefits, SVMs do not scale well with the number of training samples when solved in
the dual form. In this paper we propose a method for taking advantage of the robust performance of
maximum margin-style solutions while maintaining the training speed and scalability of deep NNs.

The essence of the method is to formulate an optimization problem which, expressed informally,
corresponds roughly to “minimize the complexity of the network’s input-output map subject to
fitting all training points exactly.” Because the complexity of a network’s input-output map is
complicated, we replace this with a surrogate: the norm of the weights in each layer. From this high
level formulation, it is also apparent that such an approach only applies when (a) the network can
fit all training points exactly, i.e., it is underdetermined; and (b) the labels are accurate, such that
exactly fitting them is desirable. If the labels themselves are noisy, then the traditional unconstrained
optimization formulations might be preferable to the methods we develop here. We now describe
several instantiations of this high level formulation.

First we note that the standard hard margin SVM is an example of this approach. Consider training
a linear SVM to learn a set of weights W ∈ R1×N which provide the max-margin classification of
the input-output pairs (xµ ∈ RN×1, yµ ∈ {−1, 1}) for a dataset containing P examples µ = 1, ..., P
with ŷµ = Wxµ. The maximum margin optimization problem is easily converted to the equivalent
problem of finding the smallest-norm weights subject to the constraint that all examples are bounded
by a constant margin:

min ||W ||22 s.t. ŷµyµ ≥ 1 for µ = 1, ..., P. (1)

This primal form of the SVM is convex.

Here we propose an extension of this optimization to deep non-linear networks by instead minimizing
the sum of the squared norm of weights Wl in each layer, l = 1, · · · , D

min
∑

l

||Wl||2F s.t. ŷµ = yµ for µ = 1, ..., P. (2)

The above equations are appropriate for the regression context where yµ ∈ R take continuous scalar
values, but we will generalize the method to handle classification shortly. Note that the optimization
is no longer convex since ŷ(x) is a depth D NN. In the context of neural network training, this
optimization is based on the idea that NNs with small weights implement simpler functions, and
hence a minimum norm solution is likely to generalize well. The fact that lower norm NNs implement
simpler functions is formalized by a variety of norm-based generalization bounds for deep NNs [21],
[22], [4], and we note that it depends on using activation functions which are simpler near the origin.
Critically, Minnorm training differs from simply adding an L2 penalty to bias the network towards
low weight solutions, because such a penalty will move the fixed points of the objective function and
increase training error.

To solve (2), we introduce Lagrange multipliers αµ for each example and form the Lagrangian:

Lρ(W,α) =
D∑

l=1

1

2
||Wl||2F +

P∑

µ=1

αµ(yµ − ŷµ) +
ρ

2
‖ŷ − y‖2. (3)

The Minnorm optimization problem corresponds to maximizing the Lagrangian over α while simulta-
neously minimizing over weights. Optimizing the first two terms in the above Lagrangian directly
(ρ = 0) can work in practice, but it leads to oscillations as we discuss in Section 3.2. To damp these
we use an augmented Lagrangian method (see e.g. [7]) by including a quadratic term modulated by
scalar parameter ρ to improve convergence. This additional term contributes nothing to the gradient
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Algorithm 1: Minnorm training: Regression

Data: {xµ, yµ}Pµ=1
Initialize: αµ = 0 µ = 1, ..., P ; W = your favorite initialization
Parameters: ρ, η, s, Q
for number of epochs do

for number of mini-batches do
S = set of minibatch indices of size Q
LQρ (W,α) =

∑D
l=1

1
2 ||Wl||2F +

∑
µ∈S α

µ(yµ − ŷµ) + ρ
2

∑
µ∈S(yµ − ŷµ)2

W t+1 = W t − η∂WLQρ (W t, α)

αµt+1 = αµt + s(yµ − ŷµ(W t+1)) µ ∈ S;

of the Lagrangian at the Minnorm solution, assuming that all the constraints are satisfied (training
predictions match data), and hence it does not impact the fixed points of the optimization process.

We perform a pair of iterative updates similar to the dual-ascent algorithm to optimize for the network
weights. First

W t+1 = W t − η∂WLρ(W t, α), (4)
where η is the step size for weight updates. The above equation corresponds to gradient descent on
the Lagrangian and can be applied to arbitrary deep networks via standard automatic differentiation.
This weight update step can be replaced by multiple gradient steps or alternative neural network
training approaches such as momentum [28] or Adam [15]. The second step is the update of the
Lagrange multipliers with step size s:

αµt+1 = αµt + s(yµ − ŷµ(W t+1)). (5)

These updates change the cost function being optimized in the first update, and hence differ from
prior methods which have brought SVM training into deep networks by employing the hinge loss
with standard unconstrained optimization [29]. From the updates of the αµ, they can be loosely
interpreted as the integrated errors made by the network for each example over the course of training.
Pseudocode is given in Alg. 1. The framework we just described is designed for regression, but can
easily be extended to classification as we now discuss.

To derive algorithms for the binary and multi-class classification problems, we keep the same
weight norm penalty but adjust the requirements of the constraints (algorithmic details are given in
Appendix A). In the binary setting, the most important change is that the equalities in the optimization
formulation become inequalities, which in turn leads to a constraint that the Lagrange multipliers are
non-negative. Therefore we replace the gradient update of the αµ with projected gradient descent
to enforce this non-negativity. In the multi-class setting we extend the binary algorithm using a
one-vs-all classification scheme which introduces Lagrangian parameters for each sample and output
channel (indexed as αµi ). Pseudocode for this multi-class formulation is given in Alg. 2. Extensions
such as allowing for slack variables are discussed in Appendix C, and have been found effective in a
slightly different setting in [29] which replaces the final softmax layer of a neural network with an
SVM classifier.

3 Analysis of Minnorm training in simplified settings

The Minnorm optimization scheme introduces new parameters and hyperparameters into the opti-
mization process. In this section we provide interpretations and analyses of these parameters by
investigating simple tractable settings. First, we show that the Lagrange multipliers can be interpreted
similarly to support vector weights in standard SVM training. Hence only non-zero Lagrange multi-
plier variables influence the location of the decision boundary, and intuitively identify the ‘hardest’
examples in the dataset. Second, we investigate the convergence properties of the algorithm in a
minimally deep setting, and compare it to the standard practice of adding an L2 weight decay penalty
to the typical unconstrained optimization formulation. We show that in the L2 penalty case, the
location of the training error optimum is shifted in inverse proportion to the speed of convergence
to the minimum norm solution, whereas our Minnorm algorithm achieves fast convergence without
moving the location of the minimum. Third, we analyze the speed of convergence to the max-margin
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Algorithm 2: Minnorm training: Multi-class classification

Data: {xµ, yµ}Pµ=1
Initialize: αµ = 0 µ = 1, ..., P, i = 1, ..., No, W = your favorite initialization;
Parameters: ρ, η, s, Q
for number of epochs do

for number of minibatches do
S = set of minibatch indices of size Q
LQρ (W,α) =∑D

l=1
1
2 ||Wl||2F +

∑
µ∈S

∑No
i=1 α

µ(1− yµi ŷµi ) + ρ
2

∑
µ∈S:αµ>0

∑No
i=1(1− yµi ŷµi )2

W t+1 = W t − η∂WLQρ (W t, α)

αµi,t+1 = π+
[
αµi,t + s(1− yµi ŷµi (W t+1))

]
µ ∈ S; i = 1, ..., No,

whereπ+ is a projection onto the positive orthant.

hyperplane in a simple setting with shallow networks under the standard binary cross entropy (BCE)
loss, and under Minnorm training. We find that Minnorm training can converge substantially faster
than gradient descent on the cross entropy loss. Finally, it has been shown that gradient-based
training of underdetermined deep networks can yield a frozen subspace in which weights do not
change because no data lies in these directions [1]. In this subspace, the initial random weights
remain indefinitely and can harm generalization performance. Using deep linear neural networks in
a student-teacher formalism, we show that Minnorm training successfully decays weights in these
frozen directions, yielding generalization that matches explicit pruning of the frozen subspace; and
no overtraining.

3.1 Fixed point structure and support vector-like variables

The major difference between Minnorm training and standard unconstrained optimization formu-
lations is that optimization occurs with an augmented set of Lagrange multiplier variables that
enforce the zero training error constraint. Here we seek greater understanding of these quantities by
investigating the structure of the fixed points if training converges.

The fixed points of the dynamics in Eqns. (4)-(5) are

Wl =
P∑

µ=1

αµ
∂ŷµ

∂Wl
for l = 1, · · · , D, (6)

yµ = ŷµ for µ = 1, · · · , P. (7)

The latter equation arises from the Lagrange multipliers and shows that if the optimization converges,
it attains zero training error. The first expression yields insight into the weights at the optimal
solution. In particular, it states that the optimal minimum norm weights are a linear combination
of the matrices ∂ŷµ

∂Wl
. The matrix ∂ŷµ

∂Wl
is the derivative of the network’s output on example µ with

respect to matrix Wl. The weightings of the linear combination are the Lagrange multipliers αµ.
Even without knowing the precise values of the αµ, these equations reveal substantial structure in the
ultimate solutions. The crucial fact is that each weight matrix Wl is a combination of just P̃ terms,
where P̃ is the number of nonzero αµ; but it lives in a Nl+1 ×Nl space, where Nl is the number of
neurons in layer l. Hence if P̃ < Nl+1 ×Nl, there will be a subspace of the weights which is zeroed
out in the minimum norm solution. Moreover, we note that the same αµ apply to different layers.
This means that the total vectorized weights Vec(W1, · · · ,WD) are a linear combination of the P̃
vectors Vec

(
∂ŷµ

∂W1
, · · · , ∂ŷµ∂WD

)
. Hence there will be a zeroed subspace of the weights provided that

P̃ < Ntot, where Ntot is the total number of parameters in the network. This gestures to the potential
reduction in number of effective parameters in deep networks when trained in this way.

Finally, we note that as the only contributions to weights come from nonzero αµ, they play a role
analogous to support vector coefficients in standard SVM formulations (and coincide exactly in the
shallow case). To demonstrate this point, Fig. 2 compares support vectors identified in a binary
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Figure 2: Support vector-like quantities in nonlinear deep networks. A standard linear SVM and
several deep networks are trained on a simple linearly separable binary classification. (A) SVM
with linear kernel. Identified support vectors highlighted in red. (B) Minnorm training of 1 hidden
layer, 100 hidden unit ReLU network. Examples with nonzero αµ at the end of training highlighted
in red. (C) Minnorm training of 3 hidden layer, 100 hidden units/layer network. Examples with
nonzero αµ at the end of training highlighted in red. (D) Lagrange multipliers yiα

µ
i (as in Eq. 42)

during training. The Lagrange multiplier variables in Minnorm training serve a similar role to support
vectors, identifying those training samples that set the boundary between classes. These can be a
small fraction of the total dataset, as shown in this case.

classification task using standard SVM training with nonzero Lagrange multipliers found in deep
nonlinear networks with Minnorm training: both methods find the same support vectors. Also, the
deep multilayer nonlinear networks still settle on a simple, nearly linear classification boundary,
suggesting that their complexity is not causing over-fitting. The connection of the Minnorm Lagrange
multipliers to support vectors has several potential applications. First, non-support vectors need not
be backpropagated, as their contribution to the weight update is zero. This offers a potential run
time speed up for datasets with a low number of important examples, as is often seen in practice.
Second, these variables are related to influence functions describing the importance of each example
to a particular classification [16]. Third, the examples that are support vectors can be illuminating,
identifying the hardest (or possibly mislabeled) training examples, as we show later in numerical
experiments.

3.2 Training dynamics in a simple linear chain

Moving beyond the fixed points, we now turn to convergence dynamics. In particular we contrast
Minnorm training with the common practice of adding an L2 penalty on the weights and solving
an unconstrained optimization problem. We examine the tractable case of a simple toy problem
consisting of learning a linear chain of three neurons. This model serves as a minimal example of
depth. We present this network with a single example with scalar input and label (x, y), which can
be fit perfectly by a linear chain that can learn functions of the form ŷ = w2w1x. However, the loss
surface for this network is non-convex [3, 12, 24] and the solution manifold for this simple case is
the hyperbola w1w2 = 1. The minimum norm solution in this case is where the weights at each layer
are equal (w1 = w2 = ±1).

In Fig 3, we compare the weight trajectories during training for vanilla gradient descent, L2-
regularization and the Minnorm algorithm. We now theoretically analyze the dynamics of gra-
dient descent with L2 regularization and compare it to the dynamics of Minnorm training to better
understand their convergence rates, accuracy, and stability.

3.2.1 L2 regularized gradient descent

In the scalar two neuron chain with a single example, the traditional unconstrained training loss
function with an L2 penalty (weight decay) takes the form:

l(w1, w2) =
1

2
(y − w2w1x)

2
+
γ

2

(
w2

2 + w2
1

)
, (8)

and the gradient descent dynamics in the continuous time limit have the form:

τẇ1 = (y − w2w1x)w2x− γw1, τ ẇ2 = (y − w2w1x)w1x− γw2, (9)
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Figure 3: Comparison of the weight trajectories during vanilla gradient descent, L2-regularization
and the Minnorm training for a toy model starting from the same initial point. (A) SGD (5K epochs)
converges quickly to the zero training error manifold but will not approach a low norm solution with
balanced weights across layers. (B) L2-regularization (γ = 0.05, 20K epochs) converges fast but to a
point off of the zero training error manifold (C) L2-regularization (γ = 0.005, 20K epochs) reaches
the solution manifold but is progressing towards the minimum norm solution glacially. (D) Minnorm
(5K epochs, ρ = s = 100, η = 0.01) avoids this speed-accuracy tradeoff and needs only 5K epochs
to converge to the minimum norm solution on the zero training error manifold.

where τ = 1
η is the inverse learning rate. If weights start imbalanced (w2(0) 6= w1(0)), this must be

corrected to achieve the minimum norm solution. To track the speed at which they achieve balance,
we define the weight gap (between layers) as ∆ = 1

2 (w2
2 − w2

1), so that

d∆

dt
=

d

dt

1

2
(w2

2 − w2
1) = w2ẇ2 − w1ẇ1 = −2γ

τ

1

2
(w2

2 − w2
1) = −2γ

τ
∆. (10)

Thus, the weight gap decays exponentially with a timescale of τ
2γ so that regularization strength is

inversely proportional to convergence time. However, regularization also shifts the fixed points of the
dynamics which satisfy:

(y − w2w1x) =
γw1

w2x
, (y − w2w1x) =

γw2

w1x
. (11)

Setting the RHS of the preceding two equations equal to each other implies that for γ > 0, at the fixed
point we have w2 = w1 which implies that the fixed point satisfies y − ŷ = γ

x , thus the convergence
time-scale scales inversely with the training error due to regularization. This trade-off can be observed
in Fig 3 B and C, where low regularization causes slow learning close to the solution manifold and
large regularization causes faster learning which shifts off the solution manifold.

3.2.2 Minnorm dynamics

We now analyze the dynamics of the Minnorm algorithm, via dual ascent on (3) in the two neuron
chain, which yields the continuous time dynamics:

τα̇ = r(y − ŷ), (12)
τẇ1 = −w1 + αw2 − ρ(ŷ − y)w2x, (13)
τẇ2 = −w2 + αw1 − ρ(ŷ − y)w1x. (14)

Note that we define r = τs = s
η . We can use (13) and (14) to again show that the weight gap will

decay exponentially but this time with a time-scale of τ/2 independent of ρ, r:

d∆

dt
=

d

dt

1

2
(w2

2 − w2
1) = w2ẇ2 − w1ẇ1 =

1

τ

(
−w2

2 + w2
1

)
= −2∆

τ
. (15)

This also implies that the “balanced” condition of w2 ≈ w1 = w is a reasonable simplification and
we will use the notation w̄ = w2w1 = w2. We can use the fact that d

dtw
2 = 2wẇ to show that (13)

and (14) imply:
τ ˙̄w = −2w̄ + 2αw̄ + 2ρ(y − ŷ)w̄. (16)

7



In the simple case of y = 1, x = 1, our dynamics simplify to the pair of coupled differential equations:

τ ˙̄w = 2w̄ (α− 1 + ρ(1− w̄)) , τ α̇ = r(1− w̄). (17)

The fixed point of the dynamics occurs at (w = 1, α = 1) and we linearize the dynamics about this
fixed point (see Appendix B for the full calculation and, e.g., [27] section 6.3 for more detail on this
method). This analysis leads to the eigenvalues:

λ =
1

2τ

(
−2ρ±

√
4ρ2 − 8r

)
. (18)

The fixed point will be stable when the real part of both eigenvalues is negative, which occurs for any
ρ and r greater than zero, and will be a stable spiral point when the eigenvalues have an imaginary
component which corresponds to r ≥ 1

2ρ
2. Thus, a stable spiral fixed point will occur under the

choice of large r and small ρ.

In the special case of ρ = 0, the eigenvalues become purely imaginary λ = ± i
√
2r
τ implying that the

fixed point is a neutrally stable center and that the solutions will oscillate at a rate proportional to√
r. In this case we can analytically analyze the dynamics by taking the ratio of the two dynamical

equations and collecting like terms on each side of the equality. We then integrate to show:

ln(w̄)− w̄ + c0 =
2

r

(
α2

2
− α

)
. (19)

See Appendix B for derivation details and note that c0 is a constant determined by the initial values
of the weights and Lagrange multipliers. The above equations suggest that the oscillations will be
more pronounced in weight space if r is small. The practical lessons emerging from this analysis
are to keep updates of the Lagrange multipliers relatively fast (large r and therefore large s) and add
some amount of ρ for stabilization.

3.3 Convergence speed to the max-margin hyperplane in shallow networks

A key motivation behind our method is the goal of finding a max-margin classification boundary
similar to that of an SVM. Here we study the speed of convergence to the max-margin solution
in the case of a shallow (zero hidden layer) neural network. Traditional networks trained with the
cross-entropy loss converge to the maximum margin solution, but this convergence is extremely slow,
roughly log(t) [26, 20, 8]. By contrast, we illustrate through a simple example that the Minnorm
training algorithm makes this ’implicit bias’ of regular training explicit in its formulation, which
allows it fast exponential convergence, roughly O(e−

t
τ ). We consider the simple case of a binary

classification in two dimensions with one example per class. Without loss of generality, we take
the positive class input to be x1 = 1√

2
(1, 1) and the negative class input to be x2 = 1√

2
(−1,−1) as

shown in Fig. 4A. We now analyze the convergence speed in both cases.

3.3.1 Convergence speed of gradient descent on the binary cross-entropy loss

We first study the dynamics of learning in the traditional setting of cross-entropy error, which for this
setting reduces to logistic regression. The convergence rate of gradient descent to the max margin
hyperplane is known [26] to be O(log(t)). Here we furnish explicit solutions in this simple setting.

We consider a shallow neural network with weight vector W = [w1w2] and sigmoidal output
ŷµ = σ(Wxµ) where σ(u) = 1

1+e−u . The binary cross entropy loss is

LBCE =

P∑

µ=1

−ỹµ log ŷµ − (1− ỹµ) log(1− ŷµ)

where ỹµ = yµ/2 + 1/2 is the the output label {−1, 1} recoded to {0, 1}. Differentiating with
respect to the weights yields the gradient descent update:

Wt+1 = Wt + η
P∑

µ=1

[ỹµ − σ(Wxµ)]xµ
T

.

8
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Figure 4: Convergence to the max-margin solution in shallow networks. (A) A binary classification
task in two dimensions with one positive and one negative example. Trajectories of the network’s
weight vector over learning starting from (1/

√
2,−1/

√
2) are shown for a shallow network learning

with the binary cross entropy loss (red), and for the Minnorm method (blue). (B) The binary
cross entropy network grows weights in the direction parallel to the max-margin vector, but leaves
components of the weights perpendicular to the max-margin unchanged. (C) Minnorm training
rapidly converges to the max-margin weight vector. Weights parallel to the max-margin vector
converge exponentially to their fixed point, with some ringing. Weights perpendicular to the max-
margin decay exponentially. (D) As the BCE network’s weights grow, the angle to the max-margin
hyperplane decreases slowly at rate O(1/ log(t)). The Minnorm weights converge exponentially fast
to the max-margin solution (note log-scale y-axis). Simulation parameters: For the BCE network,
τ = 1/10. For the Minnorm network, τ = 1, r = 1/4.

Taking the continuous time limit (valid for small η), for our dataset we have

τẆ =
[
1− σ(Wx1)

]
x1

T

+
[
0− σ(Wx2)

]
x2

T

(20)

=

[
eWx1

1 + eWx1

]
x1

T

+ σ(−Wx1)x1
T

(21)

= 2σ(−Wx1)x1
T

, (22)

where we have used the fact that x1 = −x2. We now decompose the weights as W (t) =
w|| 1√

2
(1, 1)T + w⊥ 1√

2
(1,−1)T into a component parallel and perpendicular to the direction of

the maximum margin hyperplane. We have

τẆ = ẇ||
1√
2

(1, 1)T + ẇ⊥
1√
2

(1,−1)T = 2σ(−w||) 1√
2

(1, 1)T ,

and hence

τẇ|| = 2σ(−w||), (23)

τẇ⊥ = 0. (24)

The component in the direction of the max margin hyperplane will therefore continue to grow without
bound (w|| → ∞), while the component orthogonal to the max margin hyperplane w⊥ = w⊥(0)
remains unchanged. Eqn. (23) is separable and may be integrated to find the time required to go from
some initial value w||(0) = w

||
0 to the value w||(t) = w

||
f :

τ
dw||

dt
=

2

1 + ew||
(25)

∫
dt =

∫ w
||
f

w
||
0

τ

2

(
1 + ew

||)
dw|| (26)

t =
τ

2

[
w
||
f − w

||
0 + ew

||
f − ew

||
0

]
(27)

From this it is easy to see that at long times when w|| is large, it will grow logarithmically with time,
w||(t) = O (log t) , consistent with the findings of [26]. The angle between w(t) and the max-margin
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solution ŵ = x1 thus scales as

sin θ =
w⊥√

(w||)2 + (w⊥)2
=

1

w||
w⊥

√
(1 + w⊥

w|| )
2

= O

(
1

log(t)

)
. (28)

It follows that in the large t limit, the angle between w(t) and the max-margin classifier will scale as
θ = O

(
1

log(t)

)
. These dynamics are shown in Fig. 4B and D.

3.3.2 Convergence speed of Minnorm training

In this setting, the continuous time dynamics have the form:

τẆ = −W +
∑

µ

αµyµxµ = −W + (α1 + α2)x1, (29)

and both Lagrange multipliers have the form

α̇µ = r(1− w||x1) s.t. αµ ≥ 0. (30)

By decomposing the weight dynamics we see:

τẇ|| = −w|| + α1 + α2 (31)
τẇ⊥ = −w⊥ (32)

τα̇µ = r(1− w||) s.t. αµ ≥ 0 µ = 1, 2. (33)

This is a system of linear differential equations. From the perpendicular dynamics, we see that this
component of the weights is decoupled from the other variables and decays exponentially with time
scale τ . The parallel dynamics remain coupled to the Lagrange multiplier dynamics. We note that the
dynamics for all αµ are the same, and hence if they are initialized identically (here to zero), they will
remain equal and we have α = α1 = α2. Therefore we have the two variable system

τẇ|| = −w|| + 2α (34)

τα̇ = r(1− w||) s.t. α ≥ 0. (35)

with a fixed point at (α = 1
2 , w

|| = 1). For small perturbations around this fixed point we may neglect
the inequality constraint on α, and the dynamics correspond to eigenvalues λ = 1

2τ

(
−1±

√
1− 8r

)
.

In the practically relevant regime where r > 0 and τ finite, both eigenvalues have negative real part
and the continuous time system is always stable. If 8r > 1, the dynamics oscillate as a stable spiral
with exponential decay as O(e−

t
2τ ). Supposing the parameters are chosen to critically damp the

system (r = 1
8 ) we see that the parallel component will converge with time scale 2τ to its fixed point,

w|| = 1 +O
(
e−

t
2τ

)
. Combining this with the form of w⊥ implies that the angle of the solution to

the max margin converges as θ = O
(
e−

t
τ

)
at large times. These dynamics are shown in Fig. 4B and

D. In sum, while traditional training techniques can eventually attain minimal norm or max margin
solutions, the Minnorm algorithm based on dual ascent can be substantially faster.

3.4 Pruning the frozen subspace in deep linear networks

As a final example, we consider generalization dynamics using the linear student-teacher framework
studied in [1]. In this toy model, a teacher network with randomly drawn Gaussian weights W̄ ∼
N (0, I) generates a dataset by labeling a set of P randomly drawn i.i.d. N -dimensional Gaussian
inputs xµ ∼ N (0, 1

N I). The scalar output of the teacher network, plus noise ε ∼ N (0, 1/SNR),
yields the target values yµ = W̄xµ + ε that are fed to the student network. The student network is
trained with a mean-squared error loss. These assumptions on the training data and teacher parameters
in the student-teacher setting allow for exact calculation of the test error, that is, the expected L2

error of the student on a new example. The analysis in [1] shows that, in under-determined shallow
networks, there is a frozen subspace of the weights that do not change under vanilla gradient descent.
The weight initialization in this subspace persists indefinitely, harming generalization performance.
Thus in under-determined networks, generalization error scales with the size of initial weight scale.
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Figure 5: Minnorm training in underdetermined deep linear neural networks. Three layer deep linear
networks with 300 hidden units and 150 examples are trained on the student-teacher task used in [1]
with and SNR (variance of teacher parameters divided by variance in noise) of 5. (A) Training error
dynamics for Minnorm and BGD training for weight initialization scale σ0

w = 1. Minnorm training
makes exponentially rapid progress. (B) Test error dynamics. The Minnorm algorithm attains better
final performance than BGD, eventually reaching the performance of a network where weights in the
frozen subspace have been pruned. In contrast to BGD, the Minnorm dynamics show no overtraining.
(C) Test error as a function of initial weight scale σ0

w, averaged over 20 runs. In contrast to vanilla
BGD, Minnorm training removes the dependence of test error on initialization weight scale. We note
that, for fast training speeds, a weight scale of σ0

w = 1 is the current best practice for linear networks
[13, 24], but this incurs a cost in test error when used with BGD.

Here we show that Minnorm training decays weights in these directions, removing the dependence of
generalization error on initialization in this setting.

Figure 5 shows training and test dynamics for vanilla batch gradient descent and Minnorm training. As
shown in panels A and B, Minnorm dynamics train quickly, yield better generalization performance
and show no overtraining in this overparameterized case. The Minnorm algorithm eventually attains
the performance of the linear model in which we have hand-pruned all weights in the frozen subspace
orthogonal to the input examples, demonstrating that the method successfully decays weights in these
irrelevant directions. Finally, panel C shows the asymptotic test error as a function of the standard
deviation of initial weights, showing that unlike BGD, Minnorm training achieves the same test error
regardless of initialization.

To analyze this effect theoretically, consider the case where the student is an D layer deep linear
network that produces output ŷ =

∏D
l=1Wlx, where WL is a row vector because we have restricted

to a single output. From the fixed points of Minnorm training in Eqn. (6), and using the fact that
∂ŷµ

∂W1
= (
∏D
l=2Wl)

Txµ
T

for the deep linear network, we have W1 =
∑P
µ=1 α

µ(
∏D
l=2Wl)

Txµ
T

.
The overall input-output map of the network is thus

D∏

l=1

Wl =
( D∏

l=2

Wl

)( D∏

l=2

Wl

)T P∑

µ=1

αµxµ
T

=

∥∥∥∥∥
D∏

l=2

Wl

∥∥∥∥∥

2

2

∑

µ:αµ 6=0

αµxµ
T

. (36)

Hence at convergence, the overall weights must lie in the P̃ -dimensional subspace spanned by the
inputs corresponding to non-zero Lagrange multipliers, and the subspace orthogonal to these inputs
is completely zeroed out.

4 Training deep nonlinear networks on real-world tasks

In this section we apply the Minnorm algorithm to nonlinear deep networks in the multiclass setting
using the MNIST dataset, comparing its performance to minibatch gradient descent and L2 weight
decay. We train a fully connected network with 2 hidden layers and 800 hidden units with ReLU
activations on 50K examples for each algorithm. We then pick the optimal stopping time (and weight
decay in the L2 regularized setting) on the validation set (10K examples), and report the test accuracy
for the same stopping time (and weight decay) on the test set (10K examples). Details about the
hyperparameters can be found in Appendix D. In Table 1 we report the validation error and test
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Figure 6: Results in nonlinear deep networks on MNIST. Networks contained 2 hidden layers of 800
ReLU units each, training hyperparameters (in particular, L2 weight decay) optimized on a validation
set. (A) Training error. (B) Test error. (C) Percentage of examples that have non-zero αi for at least
one class. About 90% of the dataset has zero α for all classes after 30 epochs of training. (D) Weight
norms over training (

∑3
l=1 ‖W‖2F ). (E) Norm-based capacity bound of [22] ignoring constant factors.

Minnorm training is about as fast as SGD but generalizes better, and attains a 5-fold improvement in
generalization bound.

error averaged over 10 runs. The Minnorm algorithm with minibatch gradient descent performs
best. Interestingly, Minnorm with full batch also provides an improvement over previous methods,
suggesting that this method could be amenable to large batch training. Our experiments here focus
on testing the merit of different optimization methods on a fixed vanilla network architecture, rather
than attaining state of the art performance, and we note that the Minnorm training method may be
applied with standard regularizers such as dropout, batchnorm, and more complicated architectures
like convolutional networks [19, 25].

Val. Error (%) Train Error Test Error (%)
Vanilla SGD 1.78 ± 0.057 0.0008 ± 0.0024 1.82 ± 0.056

Weight Decay 1.55 ± 0.042 0.0136 ± 0.005 1.74 ± 0.051
Minnorm, BGD 1.56 ± 0.03 0.0 ± 0.0 1.52 ± 0.054
Minnorm, SGD 1.42 ± 0.052 0.0 ± 0.0 1.46 ± 0.063

Table 1: Generalization performance of SGD, Weight decay and Minnorm on MNIST.

Figure 6 confirms several of the qualitative results seen on toy datasets, including perfect training
accuracy, better validation accuracy than L2 weight penalties or vanilla SGD, and no over-training.
The Minnorm algorithm finds substantially smaller weight norm solutions that still attain zero training
error.

Minnorm training can also help improve generalization bounds based on weight norms. In Fig. 6 E,
we plot a generalization error bound based on weight norm and stable rank [22]. Ignoring constant
factors which would remain constant in our comparison, for our networks this metric is

√√√√
3∏

l=1

‖Wl‖22
3∑

l=1

‖Wl‖2F
‖Wl‖22

.

Minnorm training improves this generalization bound over vanilla SGD by a factor of about five.
While such norm-based bounds are still often vacuous (but see [2], they have been found to predict
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0 (2.27 ± 2.59)
2 (0.12 ± 0.32)
5 (1.03 ± 0.97)
8 (1.54 ± 1.39)

1 (11.44 ± 4.7)
2 (0.647 ± 1.15)

5 (11.12 ± 4.27) 9 (5.9 ± 1.4)

2 (3.49 ± 1.4)

1 (0.11 ± 0.24)

7 (1.59 ± 1.90)

2 (4e-4 ± 1e-3)
5 (1.99 ± 1.6)

6 (8e-2 ± 2e-1)

4 (4.06 ± 2.40)

7 (5.48 ± 3.86)
9 (-0.02 ± 0.07)

6 (9.322 ± 2.63)

0 (9.90 ± 2.27)

1 (8.81 ± 2.40)

0 (3.67 ± 3.00)
2 (4.41 ± 4.55)
4 (3.02± 2.50)
7 (1.38± 1.31)

8 (9.74 ± 4.01)

2 (4.62 ± 2.66)
5 (4.93 ± 2.60)
6 (1.96 ± 0.34)
7 (3.68 ± .009)

3 (0.28 ± 0.50)

2 (2.99 ± 2.14)

0 (1.21 ± 1.88)

2 (0.65 ± 1.54)
5 (1.31± 1.05)

Figure 7: Generalized support vectors on the MNIST dataset. Examples for each digit class with
non-zero αµ across 10 trials. The label and coefficient (in parentheses) for the correct class is in
green above. Nonzero Lagrange multipliers for incorrect labels are in red below. Intuitively, support
vectors are difficult examples that are easily confused with other categories.

the qualitative behavior of generalization error [4, 22]. We note that our networks trained with weight
decay achieve a strong generalization bound, but this is a bound on the difference between training
and test accuracy. Because weight decay has worse training error than Minnorm, this leads to slightly
worse test performance. Finding non-vacuous generalization bounds for neural networks is an active
area of research [2, 11] and our training algorithm can tighten these bounds by minimizing the
quantities of interest.

Finally, in Fig. 7 we plot some examples which result in non-zero αµi at the end of training in all
10 trials. Since our formulation consists of 10 αµi (corresponding to the 10 digit classes) for each
example µ, a non-zero co-efficient of the incorrect class αµi:ŷi 6=y indicates the digit classes this xµ

maybe confused for. As we can see, these identified ‘support vectors’ do include ambiguous outliers.

5 Conclusion

In this work we have described a novel training procedure suitable for training large deep networks in
the underdetermined, accurate label regime. Through theoretical analyses, we have shown several
favorable properties of the algorithm, including fast convergence to minimum norm solutions without
moving fixed points; identification of important examples through a support vector-like mechanism;
and generalization benefits. The Minnorm algorithms introduced here hold promise in several
additional directions which we have left as topics for future work. For one, the training procedure
considered here can be combined with current regularizers such as dropout and batchnorm. In
addition, the exact training error constraint can potentially be relaxed by including slack variables,
which is particularly important for the regime of inaccurate/noisy labels. Finally, the zero support
vectors could be removed from backpropagation, decreasing wall-clock training time. On MNIST,
for instance, a substantial fraction of examples are not support vectors (Fig. 6 C). Given that large
models operating in an accurate label regime are commonplace in current practice, we argue that our
method presents a promising new direction for training neural network models.
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Appendix

A Classification version of the algorithm

Binary Before considering multi-class problems, we begin with binary classification with data
yµ ∈ {−1, 1} where we define f(xµ) to be the pre-activation in the final output neuron of a deep
network. Then our Minnorm algorithm corresponds to the optimization:

min
∑

l

||Wl||2F s.t. yµf(xµ) ≥ 1 for µ = 1, ..., P. (37)

The Lagrangian takes the form:

L(W,α) =
1

2

∑

l

||Wl||2F +
∑

µ

αµ(1− yµf(xµ)). (38)

In this setting of an inequality-constrained optimization we seek to find weights satisfying:

Ŵ = arg min
W

max
αµ≥0

L(W,α). (39)

In order to deal with the positivity constraint on the Lagrange multipliers, we apply projected gradient
descent (PGD), defining π+ to be the projection onto the positive orthant. The PGD algorithm has
the following two steps

W t+1 = W t + η
∑

µ

αµt y
µ∂W f(xµ,W t), (40)

αµt+1 = π+ [αµt + s(1− f(xµ))] . (41)

Multi-class We can extend the binary classification algorithm to work on multi-class data. To do
so consider output vector y = {−1, 1}No where one element index i will correspond to the correct
classifier: yi = 1 and other indices j 6= i satisfy yj = −1. Note that this will lead to Lagrangian
parameters for each sample and output channel (indexed as αµi ). This approach is typically known as
a one-vs-all classification scheme in multiclass SVMs and is what is used for all multi-class results in
this paper. The Lagrangian takes the form

L(W,α) =
1

2

∑

l

‖Wl‖22 +
P∑

µ=1

No∑

i=1

αµi (1− yµi fi(xµ)) (42)
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where No is the number of output neurons and fi(x) is the pre-activation of the ith output neuron.
Other versions of multiclass classification in SVMs have straightforward analogues in our framework,
and can require fewer Lagrange multiplier variables, but we leave this for future work. We now turn
to an analysis of the dynamics of learning in simplified settings using this scheme.

B Simple chain dynamics and stability analysis derivations

We can now analyze the dynamics of the Minnorm algorithm, via dual ascent on the augmented
Lagrangian:

τα̇ = r(y − ŷ), (43)
τẇ1 = −w1 + αw2 − ρ(ŷ − y)w2x, (44)
τẇ2 = −w2 + αw1 − ρ(ŷ − y)w1x. (45)

Note that we are defining r = sτ = s
η . We can use (44) and (45) to again show that the weight gap

∆ will decay exponentially:

d∆

dt
=

d

dt

1

2
(w2

2 − w2
1) = w2ẇ2 − w1ẇ1 =

1

τ

(
−w2

2 + w2
1

)
= −2∆

τ
. (46)

Thus time scale of the decay in weight gap is simply the inverse step size on the weights τ = 1
η . This

also implies that the “balanced” condition of w2 ≈ w1 = w is a reasonable simplification and we
will use the notation w̄ = w2w1 = w2. We can use the fact that d

dtw
2 = 2wẇ to show that (44) and

(45) imply:
τ ˙̄w = −2w̄ + 2αw̄ + 2ρ(y − ŷ)w̄. (47)

In the simple case of y = 1, x = 1, our dynamics simplify to the pair of coupled differential equations:

τ ˙̄w = 2w̄ (α− 1 + ρ(1− w̄)) , τ α̇ = r(1− w̄). (48)

The fixed point of the dynamics occurs at (w = 1, α = 1). We can test the stability of this fixed point
by adding a small perturbation of α = 1 + δα and w̄ = 1 + δw̄, so that

δ ˙̄w = ˙̄w =
2

τ
(δα− ρδw̄) , δα̇ = α̇ = − r

τ
δw̄. (49)

Thus, if we let x = [δw̄, δα]T , we can write linearized dynamics as:

ẋ =
1

τ
Tx, where T =

(
−2ρ 2
−r 0

)
. (50)

Diagonalizing T yields the following constraint on the eigenvalues of T:

λτ(λτ + 2ρ) + 2r = 0. (51)

Using the quadratic formula, the eigenvalues take the form:

λ =
1

2τ

(
−2ρ±

√
4ρ2 − 8r

)
. (52)

Thus the fixed point will be stable for and ρ and r greater than zero, and will be a stable spiral point
if r ≥ 1

2ρ
2. This suggests that a stable spiral fixed point will likely occur under the choice of large r

and small ρ.

If we consider the special case of ρ = 0, the eigenvalues become purely imaginary λ = ± i
√
2r
τ

indicating that the fixed point is a neutrally stable center and that the solutions will oscillate at a rate
proportional to

√
r. In this case we can analytically analyze the dynamics by taking the ratio of the

two dynamical equations:

dw̄

dα
=

1

r

2w̄(α− 1)

1− w̄ . (53)

We can re-arrange this equation to collect like terms on each side of the equality:

dw̄(1− w̄)

w̄
=

2

r
dα(α− 1). (54)
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We then integrate both sides of the expression which yields:

ln(w̄)− w̄ + c0 =
2

r

(
α2

2
− α

)
, (55)

where c0 is a constant determined by the initial values of weights and Lagrange multipliers.

C Alternative implementations

Here we include some alternative implementations and extensions of the Minnorm algorithm for
future study.

C.1 Adding slack terms

minW,C
∑

l

||Wl||2F + C
∑

µ

ξµ (56)

s.t. yµf(xµ) ≥ 1− ξµ, µ = 1, · · · , P. (57)

In this case, we can write the complete loss function without lagrange multipliers as:

min
W,C

∑

l

||Wl||2F + C
P∑

µ=1

max [1− f(xµ)yµk , 0]. (58)

C.2 Soft-max implementation

In this setting we only have a single Lagrange multiplier to store for each example, regardless of
the output dimension, but the algorithm involves some additional complexity in computing a max
operation over output neurons. Here we simply enforce the condition that the correct classification is
a certain amount larger than the next largest classification, thus if we let i∗µ be the index of yµ equal
to one (corresponding to the correct class), then we require:

ŷi∗µ −max
j 6=i∗µ

ŷj ≥ 1. (59)

The Lagrangian in the soft-max setting will have the form:

L(W,α) =
∑

l

‖Wl‖22 +

P∑

µ=1

αµ(1− ŷi∗µ + max
j 6=i∗µ

ŷj). (60)
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Figure 8: Here we provide an example of how α varies through training for s = (0.5, 1.0, 5.0) and
ρ=(0, 0.5, 1.0, 5.0) for 1 hidden layer with 100 units trained on the binary classification task described
in the main text.

D Details of the experiment for MNIST

All the experiments had constant learning rate with no momentum to avoid extraneous factors.

D.1 Vanilla SGD:

Batch size: Q = 128
Learning rate: η = 0.1

D.2 L2-regularization:

Batch size: Q = 128
Learning rate: η = 0.1
L2-coefficient grid: {10−3, 5× 10−3, 10−4, 5× 10−4, 10−5, 5× 10−5}
Final L2-coefficient: 5× 10−4

D.3 Minnorm, BGD:

ρ = 0
s = .0002
Learning rate: η = .001

D.4 Minnorm, SGD:

Batch size: Q = 128
Augmented lagrangian co-efficient: ρ = 0
Lagrangian update s = 7.8125
Learning rate: η = 10−5
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