
Under review as a conference paper at ICLR 2015

QUALITATIVELY CHARACTERIZING NEURAL
NETWORK OPTIMIZATION PROBLEMS

Ian J. Goodfellow∗ & Oriol Vinyals∗ & Andrew M. Saxe∗∗
∗Google Inc., Mountain View, CA
∗∗Department of Electrical Engineering, Stanford University, Stanford, CA
{goodfellow,vinyals}@google.com, asaxe@stanford.edu

ABSTRACT

Training neural networks involves solving large-scale non-convex optimization
problems. This task has long been believed to be extremely difficult, with fear of
local minima and other obstacles motivating a variety of schemes to improve opti-
mization, such as unsupervised pretraining. However, modern neural networks are
able to achieve negligible training error on complex tasks, using only direct train-
ing with stochastic gradient descent. We introduce a simple analysis technique to
look for evidence that such networks are overcoming local optima. We find that,
in fact, on a straight path from initialization to solution, a variety of state of the art
neural networks never encounter any significant obstacles.

1 INTRODUCTION

Neural networks are generally regarded as difficult to optimize. The objective functions we must
optimize in order to train them are non-convex and there are not many theoretical guarantees about
the performance of the most popular algorithms on these problems. Nevertheless, neural networks
are commonly trained successfully and obtain state of the art results on many tasks.

In this paper, we present a variety of simple experiments designed to roughly characterize the objec-
tive functions involved in neural network training. These experiments are not intended to measure
any specific quantitative property of the objective function, but rather to answer some simple qual-
itative questions. Do neural networks enter and escape a series of local minima? Do they move at
varying speed as they approach and then pass a variety of saddle points? Do they follow a narrow
and winding ravine as it gradually descends to a low valley?

Answering these questions definitively is difficult, but we present evidence strongly suggesting that
the answer to all of these questions is no. We show that there exists a linear subspace in which
neural network training could proceed by descending a single smooth slope with no barriers. Early
symmetry breaking is the most conspicuous consequence of non-convexity. (It remains possible that
SGD could enter a different subspace where more exotic structures exist) Local optima and barriers
in the objective function do not appear to be a major problem, suggesting that less exotic problems
such as poor conditioning and variance in the gradient estimate are the primary difficulties in training
neural networks.

In all cases, we examine the total cost function (added up across all training examples). SGD of
course only ever acts on unbiased stochastic approximations to this loss function. The structure of
these stochastic approximations could be different from the global loss functions that we examine
here, so it remains possible that neural networks are difficult to train due to exotic structures in
individual terms of the total cost function.

The results of our experiments were qualitatively the same for all seven models we examined, which
were drawn from a variety of categories, including fully-connected supervised feed-forward net-
works (Rumelhart et al., 1986) with a variety of activation functions, supervised convolutional net-
works (LeCun et al., 2010), unsupervised models, recurrent models of sequences, and analytically
tractable factored linear models.

Our models were all chosen because they performed well on competitive benchmark tasks. More
research is needed to determine whether one should interpret our results as implying that all neural

1

ar
X

iv
:1

41
2.

65
44

v4
 [

cs
.N

E
]

 9
 M

ar
 2

01
5

Under review as a conference paper at ICLR 2015

network objective functions lack exotic structures, or as implying that SGD only works well when
these structures are absent.

2 LINEAR PATH EXPERIMENTS

Training a neural network consists of finding the optimal set of parameters θ. These are initialized
to some set of small, random, initial parameters θ = θi. We then train using stochastic gradient de-
scent (usually with extra features such as momentum) to minimize J(θ) until reaching convergence
(usually some early stopping criterion). At the end of training, θ = θf .

The trajectory that SGD follows from θi to θf is complicated and high-dimensional. It is difficult
to summarize such a trajectory meaningfully in a two-dimensional visualization. Simple learning
curves showing the value of the objective function over time do not convey some fairly simple
information. For example, when a learning curve bounces up and down repeatedly, we do not know
whether the objective function is highly bumpy or whether SGD is rapidly changing direction due
to noise in the stochastic, minibatch-based, estimate of the gradient. When the objective function
remains constant for long periods of time, we do not know whether the parameters are stuck in a
flat region, oscillating around a local minimum, or tracing their way around the perimeter of a large
obstacle.

In this paper, we introduce a simple technique for qualitatively analyzing objective functions. We
simply evaluate J(θ) at a series of points θ = (1−α)θ0+αθ1 for varying values of α. This sweeps
out a line in parameter space. We can see whether the cross-section of the objective function along
this line is well-behaved.

When we set θ0 = θi and θ1 = θf , we find that the objective function has a simple, approximately
convex shape along this cross-section. In other words, if we knew the correct direction, a single
coarse line search could do a good job of training a neural network.

These results are consistent with recent empirical and theoretical work arguing that local minima are
not a significant problem for training large neural networks (Saxe et al., 2013; Dauphin et al., 2014;
Choromanska et al., 2014).

3 FEED-FORWARD FULLY CONNECTED NETWORKS

We begin our investigation with the simplest kind of neural network, the deterministic, feed-forward,
fully-connected supervised network. For these experiments we use the MNIST dataset (LeCun
et al., 1998). When not using dataset augmentation, the best result in this category is a maxout
network (Goodfellow et al., 2013c) regularized with dropout (Srivastava et al., 2014) and adversarial
training (Goodfellow et al., 2014), and trained using SGD with momentum. See the appendix of this
paper for a full specification of the architecture and training algorithm for this and all subsequent
experiments. This configuration results in an average of 78.2 mistakes on the MNIST test set, out of
10,000 examples total. Without adversarial training, the model also performs very well, with only
94 mistakes. Running the linear interpolation experiment on this problem, we find in Fig. 1 that the
1-D subspace spanning the initial parameters and final parameters is very well-behaved, and that
SGD spends most of its time exploring the flat region at the bottom of the valley. Maxout units do
not saturate (they can saturate with respect to their input, but not with respect to their parameters), so
perhaps it should not be too surprising that optimization is simple in this case. To determine whether
the hard zero saturation of ReLUs (Jarrett et al., 2009; Glorot et al., 2011) or the two-sided saturation
of logistic sigmoids can induce additional difficulties, we ran the linear interpolation experiment for
both of these activation functions. The results are presented in Fig. 2 and Fig. 3. Again, we find that
the 1-D subspace spanning the initial and final parameters contains no difficult, exotic structures.

One possible objection to these results is that we have explored α with too coarse of a resolution
to expose local non-convex structures. We therefore ran a variety of higher-resolution experiments,
presented in Fig. 4. For these experiments, we did not use dropout, because the resolution we use
here is high enough to expose artifacts induced by the Monte Carlo approximation to the true dropout
loss function, which involves a sum over all (exponentially many) dropout masks. Maxout tends to
overfit on MNIST if used without dropout, so we used ReLUs for these experiments. We found that
increased resolution did not expose any small, difficult structures.

2

Under review as a conference paper at ICLR 2015

0.0 0.5 1.0 1.5 2.0
α

0.0

0.5

1.0

1.5

2.0

2.5

J
(θ

)

Linear interpolation of adversarially trained maxout on MNIST

J(θ) train
J(θ) validation

0 100 200 300 400 500 600
time (epochs)

0.5

1.0

1.5

2.0

2.5

J
(θ

)

SGD training of adversarial maxout on MNIST

J(θ) train
J(θ) validation

0.0 0.5 1.0 1.5 2.0
α

0.0

0.5

1.0

1.5

2.0

2.5

J
(θ

)

Linear interpolation of maxout on MNIST

J(θ) train
J(θ) validation

0 50 100 150 200
time (epochs)

0.0

0.5

1.0

1.5

2.0

J
(θ

)

SGD training of maxout on MNIST

J(θ) train
J(θ) validation

Figure 1: Experiments with maxout on MNIST. Top row) The state of the art model, with adver-
sarial training. Bottom row) The previous best maxout network, without adversarial training. Left
column) The linear interpolation experiment. This experiment shows that the objective function is
fairly smooth within the 1-D subspace spanning the initial and final parameters of the model. Apart
from the flattening near α = 0, it appears nearly convex in this subspace. If we chose the initial
direction correctly, we could solve the problem with a coarse line search. Local optima and barriers
such as ridges in the objective function do not appear to be a problem, nor does it appear that the
network needs to thread a narrow and winding ravine. Right column) The progress of the actual
SGD algorithm over time. The vast majority of learning happens in the first few epochs. Thereafter,
the algorithm struggles to make progress. The lack of progress does not appear to be due to moving
around obstacles. Instead, it may be due to a less exotic optimization difficulty, such as noise in the
estimate of the gradient, or poor conditioning.

0.0 0.5 1.0 1.5 2.0
α

0.0

0.5

1.0

1.5

2.0

2.5

3.0

J
(θ

)

Linear interpolation of sigmoids on MNIST

J(θ) train
J(θ) validation

0.0 0.5 1.0 1.5 2.0
α

0.0

0.5

1.0

1.5

2.0

2.5

J
(θ

)

Linear interpolation of ReLUs on MNIST

J(θ) train
J(θ) validation

Figure 2: The linear interpolation curves for fully connected networks with different activation
functions. Left) Sigmoid activation function. Right) ReLU activation function.

3

Under review as a conference paper at ICLR 2015

0.0 0.5 1.0 1.5 2.0
α

10-2

10-1

100

101

J
(θ

)

Comparison of activation functions on MNIST

J(θ) train (maxout)
J(θ) train (ReLU)
J(θ) train (sigmoid)

Figure 3: The linear interpolation experiment for maxout, ReLUs, and sigmoids on MNIST, all
plotted on the same axis for comparison. For this plot, we put the y axis in log scale, otherwise
differences at the bottom of the curve are difficult to see.

0.0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.5

1.0

1.5

2.0

2.5

J
(θ

)

High resolution ReLU interpolation on MNIST

J(θ) train
J(θ) validation

0.5 0.6 0.7 0.8 0.9 1.0
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

J
(θ

)

High resolution ReLU interpolation on MNIST

J(θ) train
J(θ) validation

(a) (b)

0.000 0.002 0.004 0.006 0.008 0.010
α

2.294

2.296

2.298

2.300

2.302

2.304

J
(θ

)

Initial portion of high resolution ReLU curve

J(θ) train
J(θ) validation

0.990 0.992 0.994 0.996 0.998 1.000
α

0.00184

0.00186

0.00188

0.00190

0.00192

J
(θ

)

Final portion of high resolution ReLU curve

J(θ) train

(c) (d)

Figure 4: Higher resolution linear interpolation experiments. a) Tiling the interval [0, 1] with 200
values of α. b) A zoomed-in view of the same plot. c) Tiling the interval [0, .01] with 200 values of
α, to see whether the initial symmetry breaking causes difficult structures. d) Tiling the interval [.99,
1.] with 200 values of α, to see if the behavior of the objective function is more exotic in regions
where the parameters encode fully learned intermediate concepts. We do not show the validation set
objective here because it is too widely separated from the training set objective and would require
zooming out the plot too far.

4

Under review as a conference paper at ICLR 2015

0.0 0.5 1.0 1.5 2.0
α

0

2

4

6

8

10

12

14

J
(θ

)

Linear interpolation of maxout on MNIST between two solutions

J(θ) train
J(θ) validation

0.0 0.5 1.0 1.5 2.0
α

0

2000

4000

6000

8000

10000

12000

14000

J
(θ

)

Linear interpolation of maxout on MNIST from random starting point

J(θ) train
J(θ) validation

Figure 5: Here we use linear interpolation to search for local minima. Left) By interpolating between
two different SGD solutions, we show that each solution is a different local minimum within this
1-D subspace. Right) If we interpolate between a random point in space and an SGD solution, we
find no local minima besides the SGD solution, suggesting that local minima are rare.

0.0 0.5 1.0 1.5 2.0
α

0

5

10

15

20

25

J
(θ

)

Linear interpolation of convolutional maxout on CIFAR

J(θ) train

0.00 0.05 0.10 0.15 0.20 0.25 0.30
α

2.22

2.24

2.26

2.28

2.30

2.32

2.34

J
(θ

)

Linear interpolation of convolutional maxout on CIFAR

J(θ) train

Figure 6: The linear interpolation experiment for a convolutional maxout network on the CIFAR-10
dataset (Krizhevsky & Hinton, 2009). Left) At a global scale, the curve looks very well-behaved.
Right) Zoomed in near the initial point, we see there is a shallow barrier that SGD must navigate.

There are of course multiple minima in neural network optimization problems, and the shortest path
between two minima can contain a barrier of higher cost. We can find two different solutions by us-
ing different random seeds for the random number generators used to initialize the weights, generate
dropout masks, and select examples for SGD minibatches. (It is possible that these solutions are not
minima but saddle points that SGD failed to escape) We do not find any local minima within this
subspace other than solution points, and these different solutions appear to correspond to different
choices of how to break the symmetry of the saddle point at the origin, rather than to fundamentally
different solutions of varying quality. See Fig. 5.

4 ADVANCED NETWORKS

Having performed experiments to understand the behavior of neural network optimization on su-
pervised feedforward networks, we now verify that the same behavior occurs for more advanced
networks.

In the case of convolutional networks, we find that there is a single barrier in the objective function,
near where the network is initialized. This may simply correspond to the network being initialized
with too large of random weights. This barrier is reasonably wide but not very tall. See Fig. 6 for
details.

To examine the behavior of SGD on generative models, we experimented with an MP-DBM (Good-
fellow et al., 2013a). This model is useful for our purposes because it gets good performance as
a generative model and as a classifier, and its objective function is easy to evaluate (no MCMC
business). Here we find a secondary local minimum with high error, but a visualization of the SGD
trajectory reveals that SGD passed far enough around the anomaly to avoid having it affect learn-

5

Under review as a conference paper at ICLR 2015

0.0 0.5 1.0 1.5 2.0
α

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

J
(θ

)

Linear interpolation of an MP-DBM on MNIST

J(θ) train
J(θ) validation

195 200 205 210 215 220 225
0

20
40

60
80

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Figure 7: Experiments with the MP-DBM. Left) The linear interpolation experiment reveals a sec-
ondary local minimum with high error. Right) On the two horizonal axes, we plot components of
θ that capture the extrema of θ throughout the learning process. On the vertical axis, we plot the
objective function. Each point is another epoch of actual SGD learning. This plot allows us to see
that SGD did not pass near this anomaly.

0.0 0.2 0.4 0.6 0.8 1.0
α

3

4

5

6

7

8

9

10

J
(θ

)

Linear interpolation of an LSTM on Penn Treebank

J(θ) train
J(θ) validation

Figure 8: The linear interpolation experiment for an LSTM trained on the Penn Treebank dataset.

ing. See Fig. 7. The MP-DBM was initialized with very large, sparse, weights, which may have
contributed to this model having more non-convex behavior than the others.

Finally, we performed the linear interpolation experiment for an LSTM regularized with
dropout (Hochreiter & Schmidhuber, 1997; Zaremba et al., 2014) on the Penn Treebank
dataset (Marcus et al., 1993). See Fig. 8. This experiment did not find any difficult structures,
showing that the exotic features of non-convex optimization do not appear to cause difficulty even
for recurrent models of sequences.

5 DEEP LINEAR NETWORKS

Saxe et al. (2013) have advocated developing a mathematical theory of deep network learning dy-
namics by studying simplified mathematical models of these networks. Deep networks are formed
by composing an alternating series of learned affine transformations and fixed non-linearities. One
simplified way to model these functions is to compose only a series of learned linear transforma-
tions. The composition of a series of linear transformations is itself a linear transformation, so this
mathematical model lacks the expressive capacity of a general deep network. However, because the
weights of such a model are factored, its learning dynamics resemble those of the deep network.
In particular, while linear regression is a convex problem, deep linear regression is a non-convex
problem.

Deep linear regression suffers from saddle points but does not suffer from local minima of varying
quality. All minima are global minima, and are linked to each other in a continuous manifold.

Our linear interpolation experiments can be carried out analytically rather than experimentally in the
case of deep linear regression. The results are strikingly similar to our results with deep non-linear
networks.

6

Under review as a conference paper at ICLR 2015

0.0 0.5 1.0 1.5 2.0
α

0

1

2

3

4

5

6

7

8

9

J
(θ

)

Linear interpolation of a deep linear model

J(θ) train

Figure 9: Linear interpolation from a small random initialization point to a solution for a linear
regression model of depth 2. This shows the same qualitative features as our linear interpolation
experiments for neural networks: a flattening of the objective function near the saddle point at the
origin, and only one minimum within this 1-D subspace.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
α

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

J
(θ

)

Linear interpolation between two solutions for a deep linear model

J(θ) train

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
α

0.0

0.2

0.4

0.6

0.8

1.0

1.2

J
(θ

)

Interpolating from a random point to a solution for a deep linear model

J(θ) train, trial 0
J(θ) train, trial 1
J(θ) train, trial 2
J(θ) train, trial 3
J(θ) train, trial 4

Figure 10: Left) Interpolation between two solutions to deep linear regression. Though these two
solutions lie on connected manifold of globally minimal values, the straight line between them en-
counters a barrier of higher cost. The curve for the low dimensional linear model has all the same
qualitative characteristics as the curve for the high dimensional non-linear networks we studied.
Right) Interpolation between a random point with large norm and an solution to deep linear regres-
sion. As with the neural network, this search does not encounter any minima other than the solution
used to initialize the search.

Specifically, we show that the problem of training y = w1w2x to output 1 when x = 1 using mean
squared error is sufficient to produce all of the qualitative features of neural network training that
our linear interpolation experiments have exposed. See Fig. 9 and Fig. 10.

6 DISCUSSION

The reason for the success of SGD on a wide variety of tasks is now clear: these tasks are relatively
easy to optimize. The primary difficulty is finding the correct search direction. While this task is still
difficult, it is not nearly as difficult as escaping sequences of local minima or threading a winding,
high-dimensional ravine.

This work has only considered neural networks that perform very well. It is possible that these neural
networks perform well because extensive hyperparameter search has found problems that SGD is
able to optimize easily, but that other hyperparameters correspond to optimization problems that are
too hard. In particular, it seems likely that very large neural networks are easier to fit to a particular
task.

Future work should aim to characterize the set of problems that are easy for SGD. Perhaps more
advanced optimization algorithms could allow the training of smaller models.

7

Under review as a conference paper at ICLR 2015

ACKNOWLEDGMENTS

We would like to thank Jörg Bornschein for helpful discussions. We would like to thank Yaroslav
Bulatov, Chung-Cheng Chiu, Greg Corrado, and Jeff Dean for their reviews of drafts of this work.
We would like to thank the developers of Theano(Bergstra et al., 2010; Bastien et al., 2012) and
Pylearn2(Goodfellow et al., 2013b).

REFERENCES

Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan, Bergstra, James, Goodfellow, Ian J., Bergeron,
Arnaud, Bouchard, Nicolas, and Bengio, Yoshua. Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

Bergstra, James, Breuleux, Olivier, Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan, Des-
jardins, Guillaume, Turian, Joseph, Warde-Farley, David, and Bengio, Yoshua. Theano: a CPU
and GPU math expression compiler. In Proceedings of the Python for Scientific Computing Con-
ference (SciPy), June 2010. Oral Presentation.

Choromanska, A., Henaff, M., Mathieu, M., Ben Arous, G., and LeCun, Y. The Loss Surface of
Multilayer Networks. ArXiv e-prints, November 2014.

Dauphin, Yann N, Pascanu, Razvan, Gulcehre, Caglar, Cho, Kyunghyun, Ganguli, Surya, and Ben-
gio, Yoshua. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., and Weinberger, K.Q.
(eds.), Advances in Neural Information Processing Systems 27, pp. 2933–2941. Curran Asso-
ciates, Inc., 2014.

Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Deep sparse rectifier neural networks. In
JMLR W&CP: Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics (AISTATS 2011), April 2011.

Goodfellow, Ian, Shlens, Jonathon, and Szegedy, Christian. Explaining and harnessing adversarial
examples. 2014. URL http://arxiv.org/abs/1412.6572.

Goodfellow, Ian J., Mirza, Mehdi, Courville, Aaron, and Bengio, Yoshua. Multi-prediction deep
Boltzmann machines. In Neural Information Processing Systems, December 2013a.

Goodfellow, Ian J., Warde-Farley, David, Lamblin, Pascal, Dumoulin, Vincent, Mirza, Mehdi, Pas-
canu, Razvan, Bergstra, James, Bastien, Frédéric, and Bengio, Yoshua. Pylearn2: a machine
learning research library. arXiv preprint arXiv:1308.4214, 2013b.

Goodfellow, Ian J., Warde-Farley, David, Mirza, Mehdi, Courville, Aaron, and Bengio, Yoshua.
Maxout networks. In Dasgupta, Sanjoy and McAllester, David (eds.), International Conference
on Machine Learning, pp. 1319–1327, 2013c.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

Jarrett, Kevin, Kavukcuoglu, Koray, Ranzato, Marc’Aurelio, and LeCun, Yann. What is the best
multi-stage architecture for object recognition? In Proc. International Conference on Computer
Vision (ICCV’09), pp. 2146–2153. IEEE, 2009.

Krizhevsky, Alex and Hinton, Geoffrey. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

LeCun, Yann, Bottou, Leon, Bengio, Yoshua, and Haffner, Patrick. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

LeCun, Yann, Kavukcuoglu, Koray, and Farabet, Clément. Convolutional networks and applications
in vision. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium
on, pp. 253–256. IEEE, 2010.

Marcus, Mitchell P., Santorini, Beatrice, and Marcinkiewicz, Mary Ann. Building a large annotated
corpus of english: The penn treebank. COMPUTATIONAL LINGUISTICS, 19(2):313–330, 1993.

8

http://arxiv.org/abs/1412.6572

Under review as a conference paper at ICLR 2015

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning internal representations by error
propagation. volume 1, chapter 8, pp. 318–362. MIT Press, Cambridge, 1986.

Saxe, Andrew M., McClelland, James L., and Ganguli, Surya. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In ICLR, 2013.

Srivastava, Nitish. Improving Neural Networks with Dropout. Master’s thesis, University of
Toronto, Toronto, Canada, January 2013.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol. Recurrent neural network regularization.
CoRR, abs/1409.2329, 2014. URL http://arxiv.org/abs/1409.2329.

A EXPERIMENT DETAILS

All of our experiments except for the sigmoid network were using hyperparameters taken directly
from the literature. We fully specify each of them here.

Adversarially trained maxout network: This model is the one used by Goodfellow et al. (2014).
There is no public configuration for it, but the paper describes how to modify the previous best
maxout network to obtain it.

Maxout network: This model was retrained using the publicly available implementation used
by Goodfellow et al. (2013c). The code is available at:

https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/
papers/maxout/mnist_pi.yaml

ReLU network with dropout: This model is intended to nearly reproduce the the dropout ReLU
network described by Srivastava (2013). It is a standard reference implementation provided by
Pylearn2 (Goodfellow et al., 2013b) and the specific file is available here:

https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/
papers/dropout/mnist_valid.yaml

ReLU network without dropout: We simply removed the dropout from the preceding configuration
file.

Sigmoid network: We simply replaced the ReLU non-linearities with sigmoids. This performs ac-
ceptably for a sigmoid network; it gets a test set error rate of 1.66%.

Convolutional network: We used the best convolutional network available in Pylearn2
for the CIFAR-10 dataset, specifically the one developed by Goodfellow et al. (2013c).
In order to reduce the computational cost of computing the training set objective,
we used the the variant without data augmentation. The configuration file is avail-
able here: https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/
scripts/papers/maxout/cifar10_no_aug_valid.yaml

MP-DBM: We used the best MP-DBM for classifying MNIST, as described by Goodfellow et al.
(2013a).

Dropout LSTM: We used the configuration described in the paper introducing this method (Zaremba
et al., 2014).

B STRAYING FROM THE PATH

We have shown that, for seven different models of practical interest, there exists a straight path from
initialization to solution along which the objective function decreases smoothly and monotonically,
at least up to the resolution that our experiments investigated.

9

http://arxiv.org/abs/1409.2329
https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/papers/maxout/mnist_pi.yaml
https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/papers/maxout/mnist_pi.yaml
https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/papers/dropout/mnist_valid.yaml
https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/papers/dropout/mnist_valid.yaml
https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/papers/maxout/cifar10_no_aug_valid.yaml
https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/papers/maxout/cifar10_no_aug_valid.yaml

Under review as a conference paper at ICLR 2015

10 0 10 20 30 40 50 60 70
Distance along main ray

0

5

10

15

20

25

L
2

 n
or

m
 o

f r
es

id
ua

l

Divergence of random walk from the main ray (2 dimensional)

20 0 20 40 60 80 100 120 140
Distance along main ray

0

10

20

30

40

50

L
2

 n
or

m
 o

f r
es

id
ua

l

Divergence of random walk from the main ray (10 dimensional)

0 200 400 600 800 1000
Distance along main ray

0

100

200

300

400

500

L
2

 n
or

m
 o

f r
es

id
ua

l

Divergence of random walk from the main ray (1000 dimensional)

0 2000 4000 6000 8000 10000
Distance along main ray

0

1000

2000

3000

4000

5000

L
2

 n
or

m
 o

f r
es

id
ua

l

Divergence of random walk from the main ray (100000 dimensional)

Figure 11: Plots of the projection along the axis from initialization to solution versus the norm
of the residual of this projection for random walks of varying dimension. Each plot is formed by
using 1,000 steps. We designate step 900 as being the “solution” and continue to plot 100 more
steps, in order to simulate the way neural network training trajectories continue past the point that
early stopping on a validation set criterion chooses as being the solution. Each step is made by
incrementing the current coordinate by a sample from a Gaussian distribution with zero mean and
unit covariance. Because the dimensionality of the space forces most trajectories to have this highly
regular shape, this kind of plot is not a meaningful way of investigating how SGD behaves as it
moves away from the 1-D subspace we study in this paper.

Stochastic gradient descent does not actually follow this path. We know that SGD matches this path
at the beginning and at the end.

One might naturally want to plot the norm of the residual of the parameter value after projecting
the parameters at each point in time into the 1-D subspace we have identified. However, it turns
out that in high dimensional spaces, the shape of this curve does not convey very much information.
See Fig. 11 for a demonstration of how this plot converges to a simple geometric shape as the
dimensionality of a random walk increases.

Plots of the residual norm of the projection for SGD trajectories converge to a very similar geometric
shape in high dimensional spaces. See Fig. 12 for an example of several different runs of SGD on
the same problem. However, we can still glean some information from this kind of plot by looking
at the maximum norm of the residual and comparing this to the maximum norm of the parameter
vector as a whole.

We show this same kind of plot for a maxout network in Fig. 13. Keep in mind that the shape of the
trajectory is not interesting, but the ratio of the norm of the residual to the total norm of the parameter
vector at each point does give us some idea of how much information the 1-D projection discards.
We see from this plot that our linear subspace captures at least 2/3 the norm of the parameter vector
at all points in time.

10

Under review as a conference paper at ICLR 2015

0 100 200 300 400 500 600
Distance along main ray

0

5

10

15

L
2

 n
or

m
 o

f r
es

id
ua

l

Divergence of SGD from the main ray

ε=0.0001,µ=0.

ε=0.0001,µ=0.5

ε=0.0001,µ=0.9

ε=0.0005,µ=0.

ε=0.0005,µ=0.5

ε=0.0005,µ=0.9

ε=0.001,µ=0.

ε=0.001,µ=0.5

ε=0.001,µ=0.9

Figure 12: To show the effect of different learning rates ε and momentum coefficients µ, we plot
the projection and residual norm of gradient descent with several different hyperparameters. In this
case, to make the plots comparable, we use the true solution to a synthetic, convex problem as the
endpoint for all trajectories. (In the non-convex case, different trajectories could go to different
solutions, and this would confound our interpretation of the differences between them) Because this
problem is 100,000 dimensional, the curves all have a very simple shape, and the primary quantity
distinguishing them is the maximum norm of the residual.

10 0 10 20 30 40 50 60
Distance along main ray

0

5

10

15

20

L
2

 n
or

m
 o

f r
es

id
ua

l

Divergence of SGD path from the main ray

Figure 13: This plot examines how far off the linear path SGD strays when training a maxout
network on MNIST. The x axis is the projection along the linear path from initialization to solution.
The y axis is the norm of the residual. The plot uses the Lp norm with p = 2, also known as the
Euclidean norm. It is not the squared norm.

11

	1 Introduction
	2 Linear path experiments
	3 Feed-forward fully connected networks
	4 Advanced networks
	5 Deep linear networks
	6 Discussion
	A Experiment details
	B Straying from the path

