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e  Ghose et al. (2002) found substantial

| 1°
Trained -
Fig 1: Set up for Monkey’s task!!]

1: How can we capture our v
paradigms?

e  The neural mechanisms of visual perceptual learning remain unclear. Even focusing on orientation
discrimination tasks alone, empirical studies have found widely different results, with some arguing that the
site of plasticity is in early cortical layers such as V1 and V4 and others arguing it is in later decision layers!1-©l,

e Here we consider two studies with nearly identical paradigms but widely divergent results: Schoups et al.
(2001), and Ghose et al. (2002) both recorded changes in V1 after Macague monkeys underwent extensive
training in orientation discrimination® 31, Both groups conducted follow-up studies in V4 using their respective

training stimuli while the other used randomized spatial frequency for training stimuli (Table 1).

Schoups et al. (2001) found the opposite. Explaining this sensitivity to task details is a key challenge for theory.

Monkey 1 (LVF)
Passive Task parameters Results
/-l 7, Location Choices Phase Precision Spatial V1 \Z! Transfer

Nai<e /// frequency

o Schoups Fixed CW/CCW  Random Higher Fixed Change Change No

.“\ :': " - .

T \\ Ghose Fixed Same/ Random Lower Random No Change Yes
\ ' Different Change

Table 1: Summary of differences between the two experimental paradigms.

In summary, we aim to answer these questions:

INTRODUCTION h

he most significant difference is that one used fixed spatial frequency for

generalization to untrained positions, and no changes in V1; while

isual cortex’s marked sensitivity to the details of task

/

We develop a deep learning model of
perceptual learning in orientation
discrimination tasks. Our model has four
main components (Fig 2):

a. Deep, chain-like structure
b. Pooling over phases

c. Initial orientation tuning

We suggest that learning in a
deep, layered structure can be
highly nonlinear, amplifying
the effects of small task
differences.

DEEP LEARNING MODEL OF PERCEPTUAL LEARNING

K 2: Why do seemingly trivial task details lead to divergent results? /
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Fig 2: Deep Learning Model of Perceptual Learning with four main components
color-coded. Activation function for phase pooling layer is sum of squares, for
decision layer is softmax, and rectified firing otherwise. During learning, we allow
changes in all layers but phase pooling layer. Decision has two choices: Clockwise
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(CW) or Counter-clockwise (CCW). /

V1 Recordings (Experiment)

MODELING

V4 Recordings (Experiment)

V1/V4 OTC Slope (Our Model)

V1/V4 OTC A Amplitude
A Bandwidth (Our Model)

We run our model with identical parameters, except for those that differ in the two different paradigms: Spatial frequency (fixed vs randomized) and task precision (lower for Ghose et al).
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Fig 3: Modeling results. First two columns show empirical results from the four studies, latter two columns are results from our model.
Top Row (from left to right): Under Schoups paradigm: V1 OTC Slopell, V4 OTC Slope!?,, V1 and V4 OTC Slope, V1 and V4 OTC A Bandwidth and A Amplitude
K Bottom Row (from left to right): Under Ghose paradigm: A Bandwidth and A Amplitude in V1 OTC!], same for V4 OTC, V1 and V4 OTC Slope, V1 and V4 OTC A Bandwidth and A Amplitude /
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a THEORY

We now consider why these differences in experimental paradigms
lead to different results. In our model, we identify three factors:

1. High versus low precision task: Monkeys in the randomized

low precision discriminations. Low precision discriminations
change higher layers more.
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2. Larger changes downstream of pooling: When spatial frequency

is randomized, error can be decreased most quickly by changing
connections to neurons that pool over SF. V1 does not pool over
SF so weight changes target higher areas.
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more. These higher layers contain large spatial receptive fields
K and hence transfer better.

spatial frequency task improve more slowly and hence see more

3. Improved transfer: Points 1 and 2 result in higher layers changing

/

g DISCUSSION

small task differences can cause widely different behavior.

Tuning changes that follow the gradient direction in a deep network
model predict detailed changes in neural tuning in these tasks across
multiple cortical areas.

Pooling alters learning dynamics to favor changes downstream of
pooled representations.

Even in fine orientation discrimination tasks, “irrelevant” parameters
such as spatial frequency can massively affect learning (in this
instance, by forcing changes to higher levels that pool over SF.)

Our results highlight the intricate interplay between invariance,
hierarchy, task, and learning-induced changes in neural tuning—
factors that long have been the basis of experimental inferences
about the locus of changes in the visual hierarchy!>7:8l,

Gradient descent in deep networks is highly nonlinear, such that even

@epth may be a key factor in other domains and learning phenomena/
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