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Rats optimize reward rate & learning speed in a 2-AFC

•Here we present evidence showing that rats resemble human performance (Zacksen-
house et al., 2010) in a free response two-alternative forced choice task:
    -a subset of the animals lies on or near the optimal performance curve (OPC)
    -most bias above the curve, rather than below it
    -the lower their error rate, the more likely the animals are near the OPC

Rats resemble human performance in a two-alternative forced choice (2-AFC) task
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What is the drift difussion model?
•Drift diffusion is a model developed by Roger Ratcliff (1978) used to explain behavior in 
free response two-choice decision tasks. It correctly predicts accuracy and reaction time 
(RT) distributions in these experimental tasks in humans.
•Assumptions:
    -noisy process that accumulates evidence over time
    -fast decisions, made as soon as a certain threshold is crossed

•How it works:
-An agent sees a stimulus and begins accumulating evidence about that stimulus.
-The rate of evidence accumulation is called the drift rate (v) (the easier the stimulus is to 
classify, the larger the drift rate).
-If the drift rate is positive, the agent will diffuse towards a positive decision boundary, and 
vice versa.
-However, there is noise involved in this process, so a positive drift rate could end up at 
the negative decision boundary, producing an error.
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Adapted from Ratcliff & Mckoon, 2008

What is the optimal performance curve (OPC)?
•It is possible to determine an optimal performance curve for free response two-choice 
decision tasks based on the drift diffusion model (Bogacz et al., 2006).
•Assumptions:
    -agent is optimizing reward rate over anything else
    -experimental time is fixed and trials begin immediately after the last
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•How it works:
-The OPC predicts an optimal decision time for error rates from 0 to 0.5.
-This is based on the fact that there is a speed-accuracy trade-off.
-The decision time is scaled by the time cost of an error trial, so if getting a trial wrong 
means a long timeout, then the agent would benefit from going more slowly, in order to 
avoid making an error as much as possible.

SNR in stimulus is low:
when the task is really hard, the optimal 
strategy is to guess as fast as possible

SNR in stimulus is high:
when the task is really easy, the optimal 
strategy is to go as fast as possible

SNR

•We found that during learning the rats followed a non-optimal path, signaling their policy 
must include more than greedy optimization of reward rate.
•Our preliminary model is that the rats optimize both reward rate and learning speed, be-
having sub-optimally in order to learn faster and optimize future rewards.

Rats optimize more than just reward rate during learning

•Our study aims to answer the question of how agents become optimal.
•We present a theoretical model showing that going slower in early trials can increase 
learning speed and allow an agent to become optimal faster compared to greedily optimiz-
ing reward rate from the start. 

Slowing down at the beginning may make it easier to become optimal later

Speed-accuracy & exploration-exploitation trade-offs
•The drift diffusion model assumes evidence accumulation over time, which means there 
is a trade-off between how fast an agent goes and how right it is.
•There is also a trade-off between exploiting a current policy (such as guessing) and ex-
ploring new policies, which would mean forfeiting present rewards, but potentially learning 
policies that would yield a higher reward rate in the future.

•We trained rats on an established high-throughput visual object recognition task 
(Zoccolan et al., 2009).
•Rats are placed in behavior boxes where there are three capacitive lick ports and a screen 
for object presentation.
•The animals lick the center port to initiate a trial, an object is presented, and the rats 
choose whether to lick the right or left port depending on the object identity.
•Rats perform very well on this visual object recognition task.

Rats participate in a free response visual object recognition 2-AFC
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Zoccolan et al., 2009

•Rats initiate trials at their own leisure.

Task can be modeled using drift diffusion
•We first verified whether the task could be modeled with drift diffusion. RTs were distrib-
uted exponentially and there was a relationship between RT and performance:
    (a) reaction time histogram for 10 latest sessions of 26 trained animals
    (b) reaction time binned by task performance from one example animal

•The OPC assumes trials are started one immediately after the other. Our task naturalisti-
cally allows the animals to initiate at leisure. Nonetheless, animals initiate trials at a consis-
tent pace and work in bouts, and start most trials as soon as they can.
    (a) histogram of trials per minute for one session from one example animal
    (b) inter-trial interval distribution for one session from one example animal

Free trial initiation can be approximated as forced trial initiation

Results
•Rat performance resembles human performance (Zacksenhouse et al., 2010) in a free re-
sponse two-alternative forced choice task:
    -a subset lies on or near the OPC
    -most are above the OPC
    -the lower the error rate, the more likely they are near the OPC

•We plotted the performance of 26 trained rats spanning two training cohorts  and com-
pared their performance to human performance:
    (a) last ten sessions of 26 trained animals in speed-accuracy space
    (b) human performance on drifiting dots experiment in speed-accuracy space

Trained rats behave optimally & resemble human performance patterns

•There is a minimum RT to ensure sensory processing.
•Penalty is in the form of a forced timeout. Theories for suboptimal performance

•As with humans, most of our animals lay above the OPC. This is classified as sub-optimal, 
as subjects are taking too long to decide for a given error rate.

•There are two main hypotheses for why only a subset of humans behave optimally,
and why most lie above the OPC (Bogacz et al., 2006, Zacksenhouse et al., 2010):
    -there is an accuracy bias (beyond just optimizing reward rate)
    -there is substantial timing uncertainty, and biasing to longer decision times is 
     advantageous to maximixing reward rate when there is timing uncertainty

•However these theories assume a fixed performance, and do not account for learning.

•Once we saw rats could behave near optimality, we asked how it is they got there.
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•We sought to understand the rats’ learning trajectory to near-optimality and devised 3 
models to simulate performance using a deep linear neural network.

•Model description: nosiy perceptual inputs pass through two layers of tunable synaptic 
connections (W1, W2) representing the perceptual processing hierarchy, which then feeds 
into a perfect neural integrator representing decision-making structures. A decision is 
made when this activity crosses a threshold z. Because of the linearity of the system, this 
reduces to a drift diffusion model with an effective SNR determined by the synaptic 
weights. We derived a reduction of the learning dynamics in this setting when the percep-
tual network is trained using error-corrective gradient descent learning:

•The OPC requires normalization of decision time (DT) (Holmes & Cohen, 2014) according

‹RT› :   mean RT‹RT› - T0 
T0 + DRSI

mean normalized ‹DT›   = ‹DT›   
DTOT           

= 
‹DT› :   mean DT

DRSI  :  response-to-stim interval 

T0  :  non-decision time

DTOT :  all “other” time 

•Models:
    RR threshold: greedily optimize instantaneous reward rate (RR) 
    LS threshold: adopt threshold that maximizes learning speed (LS)
    Fixed threshold: adopt threshold that is optimal for performance expected after learning
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•LS & Fixed threshold yield less reward at the start but reach optimality in fewer timesteps:
    (a) graphical representation of the deep linear neural network 
    (b) model performance in speed-accuracy space
    (c) model performance in training time versus reward rate
    (d) model performance in training time versus decision time

   where a1, a2 are scalars encoding the perceptual sensitivity in each layer, ER, RR  are 
error and reward rate, and A, ci

2, co
2 are input mean, input noise variance and output noise 

variance respectively.

Rats appear to maximize reward rate and learning speed during learning
•We plotted the learning trajectories of 26 rats in two separate cohorts in speed-accuracy 
space and found that:
    (1) rats have high RTs for high ERs, in contrast to the OPC that predicts low RTs
       for high ERs
    (2) RT decreased as ERs decreased (signaling learning), although the rate of decrease
       in mean normalized DT was much slower than that of ER decrease.

•This trajectory best matches our Fixed threshold hypothesis, predicting that the rats are 
slow at the beginning with the expectation of improving future reward rate.
    (a) learning trajectory of 6 example animals from both cohorts. Sessions are plotted
       from dark (early) to light (late) and have bootstrapped error bars
    (b) average learning trajectory of both trained cohorts. We scaled session number for
       every animal because sessions till full training varied. We then ran a Gaussian 
       Process to visualize the average learning trajectory for each cohort.

http://coxlab.org
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Find out more about the Cox Lab:
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to the formula below, where we measured or knew ‹RT› and DRSI and assumed an aver-
age T0 (non-decision component of reaction time) of 150 ms.
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Null hypothesis: rats optimize reward rate during learning
•The null hypothesis in this case is to assume that the rats, like an optimal agent, are maxi-
mizing reward rate.

•To this end, we plotted iso-reward rate contours in speed-accuracy space:
    (a) reward rate as a function of decision time and error rate
    (b) iso-reward rate contours potted in speed-accuracy space; black arrows indicate
       movement maximizing the reward rate gradient

•If an agent must have fast RTs, then we predict learning speed (LS) would decrease. This 
can be tested by training animals with a max enforced RT.

•Model requires a prediction from the agent of how much there is to learn. Thus, if we con-
duct an experiment where we verbally alter expectations about how much information 
there is in the stimulus, we may observe predictable changes in speed-accuracy space.

•When subjects end up above OPC, are they stuck or still learning? We can alter the task 
parameters, such as difficulty, and penalty and observe changes in speed-accuracy space.
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•If an agent moves perpendicular to the iso-reward rate contours (largest gradient) in 
speed-accuracy space, the trajectory seems to move towards the OPC. However, this 
would be the case anywhere in the space, such as near ER = 0.5, and mean normalized DT 
= 0.0. If we consider this extreme case we realize that an agent cannot move freely in this 
space.

•If ER = 0.5, that means that the SNR is very low (the stimuli are indistinguishable). If the 
agent is responding very quickly, then there is little chance for evidence accumulation, and 
thus the SNR (as a stand-in for learning) should not change very much, in effect creating an 
area of speed-accuracy space where the agent is “stuck.”

Rats may be optimizing reward rate gradient
•To formalize our intuition that an agent cannot move freely in this space, we plotted a per-
formance frontier for a particular SNR. What the performance frontier means is that for a 
given SNR, an agent can only act somewhere along that curve.

•Where along that curve an agent chooses to act (effectively choosing a mean decision 
time for the task) will depend on the agent’s learning strategy. For example, if the agent 
chose to maximize reward rate, then the agent would act where the performance frontier 
and the OPC intersect.

•Given we were curious about whether the rats may be optimizing the reward rate gradi-
ent, we calculated the value of the reward rate and the value of the reward rate gradient 
versus decision time:
    (a) performance frontier in speed accuracy space
    (b) value of RR and RR gradient according to mean normalized decision time for the
       performance frontier plotted in a

•Intriguingly, if an agent is optimizing RR gradient, the predicted DT is much higher than if 
optimizing RR. If an agent has a slower DT, this would also arguably enable faster learning.

•Thus, the prediction is that for a time early in learning, optimizing RR is at odds with opti-
mizing learning speed. We next simulated the full dynamics to verify this prediction.

Model hypotheses for trajectory to near-optimal behavior

Preliminary conclusions 
•Rats decidedly choose large decision times compared to the OPC when they begin learn-
ing (and error rate is near 0.5).

•Our modeling indicates there is an advantage to starting with large decision times, as 
learning speed is much faster, and near-optimal performance may be reached sooner.

•We are continuing to explore this phenomenon and will incorporate several experimental 
manipulations, such as training rats with a different error penalty, and manipulating the SNR 
of the stimulus in order to observe their movements in speed-accuracy space.
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