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SUMMARY
Human understanding of the world can change rapidly when new information comes to light, such as when a
plot twist occurs in a work of fiction. This flexible ‘‘knowledge assembly’’ requires few-shot reorganization of
neural codes for relations among objects and events. However, existing computational theories are largely
silent about how this could occur. Here, participants learned a transitive ordering among novel objects within
two distinct contexts before exposure to new knowledge that revealed how they were linked. Blood-oxygen-
level-dependent (BOLD) signals in dorsal frontoparietal cortical areas revealed that objects were rapidly and
dramatically rearranged on the neural manifold after minimal exposure to linking information. We then adapt
online stochastic gradient descent to permit similar rapid knowledge assembly in a neural network model.
INTRODUCTION

To make sense of the world, we need to know how objects, peo-

ple, and places relate to one another. Understanding how rela-

tional knowledge is acquired, organized, and used for inference

has become a frontier topic in both neuroscience and machine

learning research.1–7 Since Tolman, neuroscientists have pro-

posed that when ensembles of states are repeatedly co-experi-

enced, they are mentally organized into cognitive maps whose

geometry mirrors the external environment.8–12 Recently, brain

imaging has been used to study how representations change

over the course of learning, with a focus on the medial temporal

lobe (MTL).2,13 After learning, the associative distance between

objects or locations (i.e., how related they are in space or time)

has been found to covary with similarity (or dissimilarity) among

neural coding patterns. Some neural signals, especially in MTL

structures, may even explicitly encode relational information

about how space is structured or how knowledge hierarchies

are organized.14–19

A striking aspect of cognition is that these knowledge struc-

tures can be rapidly reconfigured when a single (or just a few)

samples of new information become available.20 For example,

a plot twist in a film might require the viewer to rapidly and

dramatically reconsider a protagonist’s motives, or an etymolog-

ical insight might allow a reader to suddenly understand the

connection between two words. Here, we dub this process

‘‘knowledge assembly’’ because it requires existing knowledge

to be rapidly (re-)assembled on the basis of minimal new infor-

mation. How do brains rapidly update knowledge structures,
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selectively adjusting certain relations while keeping others

intact? In machine learning research,21,22 solutions to the gen-

eral problem of building rich conceptual knowledge structures

include graph-based architectures,23 modular networks,24 prob-

abilistic programs,25 and deep generative models.26 However,

while these artificial tools can allow for expressive mental repre-

sentation or powerful inference, they tend to learn slowly and

require dense supervision, making them implausible models of

knowledge assembly and limiting their scope as theories of bio-

logical learning.

How, then, does rapid, ‘‘few-shot’’ knowledge assembly occur

in humans? Here, we designed a task to test this, based on a

paradigm in which participants first learn about two independent

ordered sets and are then provided with a small number of ‘‘list

linking’’ trials that reveal how the two sets are related. We study

human behavior and brain activity on this paradigm and offer a

theory of how knowledge can be rapidly assembled using a

version of an artificial neural network model, providing a compu-

tational account of the behavioral and neural results observed in

humans.

RESULTS

Human participants (n = 34) performed a computerized task that

involved making decisions about novel visual objects. Each

object i was randomly assigned a ground truth rank (i1–i12) on

the nonsense dimension of ‘‘brispiness’’ (Figure 1A; where i1 is

the most ‘‘brispy’’ and i12 is the least). During initial training (train

short), the 12 objects were split into two distinct sets (items i1–i6
–13, May 3, 2023 ª 2023 The Authors. Published by Elsevier Inc. 1
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Figure 1. Task and design

(A) Left: matrix illustrating training and testing con-

ditions for an example set of objects ordered by rank

(on the x and y axes). Each entry indicates a pair of

stimuli defined by their row and column. Colors

signal when the pair was trained or tested. Dark blue

and red squares are within-context pairs, shown

during train short. In addition to these, lighter blue

and red squares (non-adjacent) and gray (untrained)

are within-context pairs not seen during train short.

The black squares are the pairs shown during

boundary training (train long). All pairs are tested

during test short and test long. Right: schematic of

experimental sequence and legend. Although we

use the same set of objects in these figures for

display purposes, note that each participant viewed

a unique, randomly sampled set of novel objects.

The colored squares refer to the pairs trained or

tested in each phase, using color conventions from

the leftmost panel.

(B) Example trial sequence during training (upper)

and test (lower). Numbers below each example

screen show the frame duration in ms.

(C) Percentage accuracy during training for each

individual (black lines). Stopping criterion is shown

as an orange line. The excluded participant is shown

as a dashed trace. A training ‘‘cycle’’ (x axis) consists

of two blocks (one for each set of items).
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and i7–i12) and presented in alternating blocks of trials (contexts;

see STARMethods). Participants only made comparisons within

each context and were asked to indicate with a button press

which of two objects with adjacent rank (e.g., i3 and i4) was

more (or less) brispy, receiving fully informative feedback (Fig-

ure 1B, upper panel). Note that this training regime allowed par-

ticipants to infer ranks within a set (i.e., within i1–i6 and i7–i12) but

betrayed no information about the ground truth relation between

the two sets (e.g., i2 < i9). Participants were trained on adjacent

relations to a predetermined criterion, with final training accuracy

reaching 95.6% ± 2.9% (mean ± SD; Figure 1C; see STAR

Methods). The use of novel objects27 and a nonword label was

designed to minimize participants’ tendency to use prior infor-

mation when solving the task.

After training, participants entered the scanner and performed

a first test phase (test short) in which they viewed objects one

by one that were sampled randomly from across the full range

(i1–i12). The task required them to report the brispiness of each

object relative to its predecessor (i.e., a 1-back task) with a but-

ton press (Figure 1B, lower panel). Therefore, the test phase

involved comparisons of trained (adjacent) pairs within context

(e.g., i3 and i4), untrained (non-adjacent) pairs within context

(e.g., i3 and i6), and untrained pairs across contexts (e.g., i3
and i10). Importantly, participants did not receive trialwise feed-

back on their choices during the test phase.

Our first question was whether humans generalized knowl-

edge about object brispiness both within and between contexts

during the test short phase. We collapse across the two con-

texts, as there was no difference in either reaction times (RTs)

or accuracy (both p values > 0.3). Participants performed not

only above chance both on adjacent pairs on which they had

been trained (e.g., i3 and i4 or i9 and i10) (mean accuracy =
2 Neuron 111, 1–13, May 3, 2023
86.0 ± 10.4, t test against 50%, t33 = 20.5, p < 0.001) but also

on untrained, non-adjacent pairs for which transitive inference

was required (e.g., i3 and i6 or i7 and i10) (Figure 2A) (mean ac-

curacy 96.7 ± 19.2, t33 = 83.7, p < 0.001). In fact, participants

were faster and more accurate for comparisons between non-

adjacent than adjacent items (Figure 2B) (accuracy: t33 = 7.8,

p < 0.001; RT: t33 = 11.7, p < 0.001). This was driven by an in-

crease in accuracy (and decrease in RT) with growing distance

between comparanda (Figures 2A and 2B, right panels) (accu-

racy: b = 3.4% per rank; t33 = 7.7, p < 0.001. RT: b = 72 ms faster

per rank; t33 = �7.8, p < 0.001; bs obtained with a linear regres-

sion model), known as the ‘‘symbolic distance’’ effect.28,29

Moreover, behavior also indicated how participants compared

ranks between contexts before ground truth was revealed. For

example, they tended to infer i7 > i2 and i4 > i11 (Figure 2A).

This implies a natural tendency to match rank orderings between

contexts (e.g., that the 3rd item in one set was ranked higher than

the 4th in the other) in the absence of information about how ob-

jects were related. In line with this, we quantified between-

context accuracy relative to an agent that generalizes ranks

perfectly between contexts (see STARMethods and Figure S1A)

and found that between-context accuracy was above chance for

‘‘adjacent’’ (75.9 ± 20.9 mean ± SD; t33 = 7.3, p < 0.001) and

‘‘non-adjacent’’ (91.5 ± 9.3 mean ± SD; t33 = 14.2, p < 0.001)

trials.

We also observed a between-context symbolic distance effect

in RTs (Figure 2B) (accuracy: b = 4.9% per rank, t33 = 7.5,

p < 0.001. RT: b = 75 ms per rank; t33 = 7.8, p < 0.001). Partici-

pants were slowest when comparing items with equivalent

rank across contexts (e.g., i2 and i8), responding more slowly

than for adjacent items both within (t33 = 3.23, p < 0.004) and be-

tween (t33 = 3.66, p < 0.001) contexts. Overall, these results are



Figure 2. Behavior in humans and neural networks

(A) Left panel: human choice matrix. The color of each entry indicates the probability of responding ‘‘greater than’’ during test short for the pair of items defined by

the row and column. Color scale is shown below the plot. Object identities are shown for illustration only (and were in fact resampled for each participant). Right

panel: accuracy as a function of symbolic distance, shown separately for within-context (e.g., i3 and i5; gray dots) and between-context (e.g., i3 and i9; black dots)

judgments. For between-context judgments, accuracy data are with respect to a ground truth in which ranks are perfectly generalized across contexts (e.g., they

infer that i2 > i9). Errors bars are SEM.

(B) Equivalent data for reaction times. Note that a symbolic distance of zero was possible across contexts (e.g., i2 vs. i8) for which there was no ‘‘correct’’ answer,

but an RT was measurable. p value indicates significance from paired t tests of RT values.

(C) Left panel: neural network architecture and training scheme. Input nodes are colored red and blue to denote the relevant context. Filled blue dots illustrate an

example training trial in which objects i2 and i3 are shown. Right panel: example test trials both within and across context, with the symbolic distance

signaled below.

(D) Left panel: choice matrix for the neural network, in the same format as (A). Right panel: learning curves (showing accuracy over training epochs) for the neural

network, shown separately for trials with different levels of symbolic distance. Shading is 1 SEM over network replicants.
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consistent with previous findings in both humans and monkeys

and have been taken to imply that participants automatically

infer and represent the ordinal position of each item in the set.30

Next, to understand the computational underpinnings of this

behavior, we trained a neural network to solve an equivalent tran-

sitive inference problem. The network had a two-layer feedfor-

ward architecture with symmetric input weights and was trained

in a supervised fashion using online stochastic gradient descent

(SGD) (Figure 2C). For this modeling exercise, we replaced the

unrelated object images seen by participants with orthogonal

(one-hot) vector inputs. On each trial the network received two

inputs, denoting the images shown on the right and left of the

screen, and (just like participants) was required to output

whether one was ‘‘more’’ or ‘‘less.’’ At the point at which we

terminated training (960 total trials; see STAR Methods), the

network reached an average test accuracy of 97.74% on unseen

comparisons (between non-adjacent pairs) and 79.04% for adja-
cent (trained) pairs (Figure 2D, right panel). Choice matrices for

the humans and neural networks were highly correlated

(r = 0.98, p < 0.001 for averaged choice matrices; single partici-

pants r = 0.82 ± 0.13 mean ± SD; all p values < 0.001), and the

network showed a qualitatively identical pattern of generalization

within and between contexts, such that accuracy grew with rank

distance (Figure 2D, left panel).

After training, we examined neural geometry in the neural

network by probing it with each (single) item i1–i12 in turn and

calculating a representational dissimilarity matrix (RDM) from

resultant hidden layer activations (Figure 3A, top row). We then

used multidimensional scaling (MDS) to visualize the similarity

structure in just two dimensions (Figure 3A, bottom row). As

training progressed, the network learned to represent the items

in order of brispiness along two overlapping neural lines. We

know from recent work that a low-dimensional solution is only

guaranteed when the hidden layer weights are initialized from
Neuron 111, 1–13, May 3, 2023 3



Figure 3. Data from artificial networks and human BOLD signals

(A) Upper panels: RDM for the neural network. Each entry shows the distance between hidden unit activations evoked by a pair of stimuli, for three example time

points during training. Lower panels: MDS plot in 2D corresponding to the RDMabove. Each circle is a stimulus, colored by its context. Distances between circles

conserve similarities in the RDM. Note the emergence of two overlapping lines. p values indicate significance from t tests of Pearson correlation values

against zero.

(B) Model RDMs for magnitude (assumes linear spacing between ranks) and context (assumes a fixed distance between contexts).

(C) Upper panels: neural data RDMs from patterns of BOLD in the PPC (left) and dmPFC (right) regions of interest (ROIs). Lower panels: 2D MDS on BOLD data.

Red and blue lines denote the two contexts; numbered circles denote items, with their rank signaled by the inset number. p values indicate significance from t

tests of Pearson correlation values against zero.

(D) Voxels correlating reliably with the terminal RDM from the neural network (RDMNN, see right panel) rendered onto sagittal (upper) and coronal (lower) slices of

a standardized brain, at a threshold of FWE p < 0.01.

(E) Left panel: regions of interest (ROIs) in the posterior parietal cortex (PPC, yellow), dorsomedial prefrontal cortex (dmPFC, green), and a control region in the

visual cortex (EVC, purple). Right panel: frequencies of classification accuracies over participants for support vector machines (SVMs) trained to distinguish item

ranks in one context after training on the other. Three histograms are overlaid, one for each ROI; colors correspond to those in the left panel. Dashed line shows

chance (16.6%). Significance values in (C) and (E) correspond to FWEmultiple comparison correction (2 ROIs). p values indicate significance using paired t tests

of classification values against chance.
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very small values, sometimes known as the ‘‘rich’’ training

regime (see STAR Methods).31 After training in the rich regime,

the Pearson’s correlation between the data RDM from the hid-

den layer of the neural network (RDMNN) and an idealized dis-

tance matrix for parallel (and overlapping) lines (RDMmag_short;

Figure 3B, top panel) was > 0.99 for all networks trained
4 Neuron 111, 1–13, May 3, 2023
(p < 0.001 for each of 20 networks). However, we observed no

correlation between RDMNN and a model RDM coding for the

distance between contexts (RDMctx; Figure 3B, bottom panel)

(Pearson r% 0.1, p > 0.4 for all cases), consistent with the obser-

vation that the magnitude lines were not just adjacent but fully

overlapping by the end of training (Figure 3A).
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Next, we compared the representational geometry observed in

the neural network to that recorded in BOLD signals while human

participants judged the brispiness of successive items in the test

short phase. We initially focus on regions of interest (ROIs)

derived from an independent task in which participants judged

the magnitude of Arabic digits, localized to the posterior parietal

cortex (PPC) anddorsomedial prefrontal cortex (dmPFC; see Fig-

ure S1C) and later show the involvement of a larger frontoparietal

network using a whole-brain searchlight approach. In both ROIs,

we saw a strong correlation between the neural data RDM and

RDMmag_short (Figure 3C) (PPC: t33 = 4.2; dmPFC: t33 = 5.7; signif-

icant at familywise error [FWE] correction level of p<0.001) but no

effect of RDMctx (t33 < 1, p > 0.65 for both regions). This echoes

the data from the hidden layer of the neural network (see Fig-

ure 3A), and, accordingly, we observed a significant correlation

with RDMNN in both regions (PPC: t33 = 5.3; dmPFC: t33 = 7.2,

both p < 0.001). These effects all held when we defined similarity

across (rather than within) scanner runs, which each corre-

sponded to one block of trials (see STAR Methods), using a

cross-validated RSA approach (RDMmag_short: PPC: t33 = 4.8,

p < 0.001; dmPFC: t33 = 4.7, p < 0.001; RDMctx: PPC: t33 =

0.3, p = 0.78; dmPFC: t33 = 0.4, p = 0.69; RDMNN: PPC: t33 =

5.4, p < 0.001; dmPFC: t33 = 6.0, p < 0.001; see Figure S1D).

Finally, these results still held when we included RTs as a

nuisance covariate (RDMmag_short: PPC: t33 = 7.1, p < 0.001;

dmPFC t33 = 7.5, p < 0.001; competitive regression with average

RTs included in designmatrix alongside RDMmag_short). This sug-

gests that it is unlikely that the observedneural geometry is driven

by differences in choice latencies between stimuli (see also Fig-

ure S1E for further analysis).

We visualized the neural geometry of the BOLD signals in both

regions after reducing to two dimensions with MDS. In both

ROIs, this yielded overlapping neural lines that reflected the

rank-order of the novel objects (Figure 3C, bottom row). Restrict-

ing our analysis to distances between consecutive objects, we

found neural distances involving the end anchors (e.g., i1
and i6) tended to be larger than those involving intermediate

ranks (t33 = 4.8, p < 0.001; t33= 4.4, p < 0.001 in PPC and dmPFC,

respectively). Unlike in the neural network, manifolds (number

lines) obtained from BOLD data were curved. We note that the

curvature of these representational manifolds around their

midpoint yields approximately orthogonal axes for rank and un-

certainty, and that this phenomenon has been previously

observed in scalp EEG recordings32 and in multi-unit activity

from lateral intraparietal cortex (area LIP) of the macaque.33

This similarity between representations in the neural network

and human BOLD was confirmed by a whole-brain searchlight

approach for which we report only effects that pass an FWE

correction level of p < 0.01 with cluster size >10 voxels. This

approach revealed a frontoparietal network in which multivoxel

patterns resembled those for the trained neural network

(RDMNN; Figure 3D), with peaks in dmPFC (�33 �3 33; t33 =

9.3, puncorr < 0.001) and inferior parietal lobe (right: 51 �45 45;

t33 = 6.94, puncorr < 0.001; left: �39 �51 36; t33 = 6.93,

puncorr < 0.001). As expected, this was driven by an explicit rep-

resentation of magnitude distance, as correlations with

RDMmag_short (Figure 3B, top panel) peaked in the same regions

(dmPFC: �33 �3 33; t33 = 9.4, p < 0.001; inferior parietal lobe
right: 48 �45 42; t33 = 7.01, puncorr < 0.001; left: �39 �51 36;

t33 = 7.15, puncorr < 0.001). Notably, we did not observe an effect

of RDMctx (Figure 3B, bottom panel) (no clusters survived FWE

correction, t33 < 2.65, puncorr > 0.012), indicating that neural

representations for similarly ranked items within each of the

two contexts were effectively superimposed, as in the neural

network.

This representational format, whereby ranked items are repre-

sented on overlapping manifolds, lends itself to generalization

across contexts, i.e., between items with distinct identity but

equivalent brispiness.34,35 To test this, we trained a support vec-

tor machine (SVM) on binary classifications among ranks for

context A and evaluated it on the (physically dissimilar) objects

from context B. We found above-chance classification in PPC

and dmPFC (Figure 3E) (t33 = 4.39, p < 0.001; t33 = 4.01,

p < 0.001), but not in an extrastriate visual cortex (EVC) ROI

that also showed significant activation during the independent

localizer (t33 = 1.75, p > 0.08). These analyses not only cross-vali-

dated across runs but also counterbalanced response contin-

gencies and so are unlikely to be due to any spurious effect of

motor control. Together, these results show that neural patterns

indexed a concept of brispiness divorced from the physical

properties of the objects themselves.

Next, we turned to our central question of how neural repre-

sentations are reconfigured following a single piece of new infor-

mation about the overall knowledge structure. After test short,

participants performed a brief ‘‘boundary training’’ (train long)

phase in the scanner in which they learned that object i7 (the

most brispy object in context B) was less brispy then object i6
(the least brispy object in context A). This information was ac-

quired over just 20 trials in which participants repeatedly judged

whether item i6 or i7 was more or less brispy. Following this

boundary training, participants performed a new phase test

long which was identical in every respect to test short. Our

main question was whether and how the boundary training re-

shaped both behavior and neural coding for the full set of ob-

jects. The average choice and RT matrices observed during

test long are shown in Figure 4A. As can be seen, on aggregate

participants used knowledge of relations between items i6 and i7
to correctly infer that all objects lay on a single long axis of brispi-

ness (ranked 1–12). We confirmed this in two ways. First, unlike

in test short, items in context A (i1–i6) weremostly ranked asmore

brispy than items in context B (i7–i12), and the symbolic distance

effect now spanned the whole range of items 1–12 (with a ‘‘dip’’

near the boundary between contexts; Figure 4B, left panel) (ac-

curacy: b = 2.1% per rank; t33 = 7.8, p < 0.001. RT: b =

�29 ms per rank; t33 =�10.4, p < 0.001). Next, we directly quan-

tified the full pattern of responses seen in Figure 4A by construct-

ing idealized ground truth choice and RT matrices (Figure S1A).

Thesematrices reflected the assumption that the items either lay

on two parallel short axes (as most participants inferred in test

short) or a single long axis (as was correct in test long). Fitting

these to human behavioral matrices using competitive regres-

sions, we found that while the long axis matrix fits the test long

behavioral data (choice: t33 = 9.2, p < 0.001; RTs: t33 = 7.9,

p < 0.001) there remained a strong residual fit to the short axis

choice and RT patterns (choice: t33 = 5.0, p < 0.001; RTs: t33 =

3.5, p < 0.01).
Neuron 111, 1–13, May 3, 2023 5



Figure 4. Test long behavior

(A) Right panel: choice matrices from human participants after boundary training. Format as for Figure 2A. The white box highlights the two items viewed during

boundary training. Note that, on average, choices respect the ground truth rank (i1– i12). Left panel: same for RTs.

(B) Mean accuracy and response times as a function of ground truth symbolic distance, now defined in the long axis space (i1–i12). p values indicate the sig-

nificance of the symbolic distance effect as measured with a linear regression model, lines show means within the ‘‘lower’’ and ‘‘higher’’ performing participant

partitions.

(C) Accuracy and RT for each participant (gray dots) in test long (y axis) and test short (x axis). Diagonal dashed line is the identity line. Red cross is the mean in

each condition.

(D) Choice matrices (upper panels) and RTs (lower panels) separately for the two groups. The lower-performing group exhibits choice matrices that resemble

those observed after short axis training, as if they failed to update relational knowledge after boundary training.

(E) Left panel: regression coefficients (bs) obtained by fitting idealized the test short choice matrix to its corresponding human choice matrix, plotted against

coefficients obtained by fitting the idealized test longmatrix against human choices in test long, and the dashed lines indicate zero for either measure. Each dot is

a participant colored by their accuracy. Right panel: the same plot obtained regressing idealized RT against human RT matrices. P values indicate significance

using Pearson correlation between regression coefficients.
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There was substantial variability in performance among par-

ticipants on test long, and median accuracy dropped to 79.8%

compared with 88.3% in test short (Figure 4C, left panel). As

average RTs did not differ between test short (1,153 ± 41 ms)

and test long (1,166 ± 43 ms) (t33 = 0.49, p = 0.63), this differ-

ence was probably not attributable to a decrement in attention

between the two conditions (Figure 4C, right panel). Instead,

we reasoned that some participants might have failed to

restructure their knowledge of the transitive series, retaining

the belief that the two sets were still independent and treating

the relative brispiness of item i6 < i7 as an exception. Indeed,

participants who performed more poorly (defined by a median

split; Figure 4D, right panels) behaved as if they were still in test
6 Neuron 111, 1–13, May 3, 2023
short (Figure 4E, left panel), whereas those who performed bet-

ter generalized the few-shot information to correctly infer the

rank of all other items (Figure 4D, left panels). Moreover, there

was a negative correlation across the cohort between

the extent to which participant choices (r = �0.57) and RTs

(r = �0.56) were captured by the idealized test short and test

long matrices, implying that participants that performed poorly

on test long continued to exhibit behavior that was optimized

for test short (Figure 4E). We ruled out the possibility that these

participants simply failed to learn from the boundary training

phase, as they reported the newly trained object relation

(i6 < i7) on 86% ± 15% of test long trials, compared with

5.8% ± 19% in test short (mean ± SD; t33 = 18.0, p < 0.001;



Figure 5. Neural data from test long

(A) Schematic illustration of hypotheses about how the extant neural code (after test short, left panel) might be transformed in test long. The hierarchical hy-

pothesis (middle panel) proposes that magnitude and context are represented on factorized (orthogonal) neural axes. Under the elongation hypothesis

(right panel), the items are rearranged on a one-dimensional neural manifold (or magnitude line).

(B) Neural RDMs in the PPC and dMPFC after test long (upper panels), andMDS projection of each item in the two contexts (red and blue dots; lower panels), with

PPC (left) and dmPFC (right) ROIs inset. p values in all panels indicate significance from t tests of Pearson correlation values against zero.

(C) Model RDM for magnitude in test long, and regions correlating with this RDM in a searchlight analysis, rendered onto sagittal and coronal slices of a template

brain at a threshold of FWE p < 0.01.

(legend continued on next page)
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see Figure 4D). Thus, although average participant choices

suggested knowledge of a long axis, there was a sizable cohort

that only partially integrated the new relation into their knowl-

edge structure.

Next, we turned to the geometry of neural representations in

BOLD during the test long phase. We considered two hypothe-

ses for how neural representations might adjust following

boundary training to permit successful performance on test

long (Figure 5A). First, under a hierarchical coding scheme, the

parallel lines observed in test short (RDMmag_short) might sepa-

rate along a direction perpendicular to the within-context magni-

tude axis, so that one dimension codes for a ‘‘superordinate’’

rank given by context (i.e., [i1–i6] > [i7–i12]) and the other for

rank within each context (e.g., i2 > i3 and i9 > i10).
35 This effec-

tively implements a place-value (or ‘‘dimension-value’’) repre-

sentational scheme (akin to numbers in base 6; Figure 5A, central

panel). Note that this hierarchical coding scheme would not

require altering the learned neural representation of within-

context magnitude but would instead just incorporate contextual

information along a perpendicular dimension, thus predicting

increased coefficients for RDMctx. Alternatively, under the elon-

gation scheme, objects could be neurally rearranged on a single

line stretching from i1 to i12 to represent the objects on a single

dimension (RDMmag_long; Figure 5A, right panel). Such few-shot

knowledge assembly would alter the relative geometry of the

contexts along the dimension encoding magnitude. We thus

constructed a new RDMmag_long that encoded the predictions

of this elongation model (Figure 5C, bottom panel). We note

that nothing in our training protocol privileges one model over

the other; both schemes could allow learning from the boundary

training (for items i6 and i7) to be rapidly generalized to other

items in each context, by either shifting the context perpendicu-

larly to the magnitude line (hierarchical) or by sliding each

context along themagnitude line (elongation). We first compared

these schemes empirically by fitting model RDMs to multivoxel

pattern data in PPC and dmPFC (Figure 5B, top row). We

compared two regression models, one in which the model

RDM was generated under the elongation scheme and one

under the hierarchical scheme. We found that neural data were

better fit by the elongation model in both PPC and dmPFC

(t33 = 4.2; t33 = 5.2; paired t test on residual sum of squared error;

significant at FWE threshold p < 0.001). Indeed, in both PPC and

dmPFC, we observed positive correlations with RDMmag_long

(PPC: t33 = 4.3, p < 0.001; dmPFC: t33 = 6.0, p < 0.001) and

when we plotted the neural geometry it can be seen that they

lay on a single (curved) line, consistent with the elongation

scheme (Figure 5B, bottom row). The curvature of the line is

such that the manifolds for the two contexts lie almost perpen-

dicular to each other while still permitting a one-dimensional

readout (V test for nonuniformity of circular data with a known

mean direction of 1.57 radians [90�]: v = 33.65, p < 0.001 in
(D) Neural-behavioral correlations in PPC (left) and dmPFC (right) ROIs. The x and

neural fits (RDMmag_long�RDMmag_short). The axes display the relative RDMs (y ax

were calculated. Each dot is a participant, colored by their accuracy during test lon

values against zero.

(E) Voxels showing a significant neural-behavioral correlation. Significance valu

thresholds (2 ROIs and 2 behavioral metrics, respectively) at a threshold of FWE
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PPC; v = 33.89, p < 0.001 in dmPFC); the average angle between

the projections was 1.45 ± 0.08 radians in PPC and 1.51 ± 0.05

radians in dmPFC (mean ± SEM). By contrast, we found no evi-

dence for the hierarchical coding scheme, and in particular no ef-

fect of context in our ROIs (PPC: t33 = 0.2, dmPFC: t33 = 0.6, both

p values > 0.5). Finally, we confirmed the fit of the elongation

model in frontal regions using a searchlight approach (Figure 5C,

top panel) (peak in left frontal gyrus:�30 23 23, t33 = 6.60, signif-

icant at FWE threshold p < 0.01) and continue to see a better fit

for the elongation model when RTs were included as a nuisance

covariate (PPC: t33 = 3.5, p < 0.002; dmPFC: t33 = 5.3, p < 0.001;

paired t tests on residual sum of squared error; Figure S1D).

Interestingly, although neural codes in the dmPFC no longer

correlated with RDMmag_short at test long (t33 = 1.9, p = 0.06;

t test on Z scored Pearson correlations with RDMmag_short), the

PPC continued to residually code for two overlapping neural

lines (t33 = 3.1, p = 0.004; regression with design matrix

[RDMmag_short, RDMmag_long], t test on Z scored RDMmag_short

beta weights). We speculated that this residual coding for the

test short geometry (i.e., parallel lines) may predict the inability

of some participants to integrate new knowledge (see Figure 4E).

Indeed, we found that participants with a tendency to respond

with latencies expected in test short also displayed a neural ge-

ometry more reminiscent of test short in PPC (r = 0.50, p = 0.002;

Pearson correlation between behavioral fits to test short RT ma-

trix and neural fit to RDMmag_short). We summarized this relation-

ship by relating the degree of neural elongation (difference in fit

for RDMmag_long � RDMmag_short) to the degree of behavioral

integration (difference in the fit of idealized RT matrices, test

long � test short) (Figure 5D, left panel) (r = 0.49, p < 0.01). We

also saw this relationship in dmPFC (Figure 5D, right panel)

(r = 0.40, p < 0.05), but it did not reach the threshold in the visual

cortex (r = 0.33, p = 0.06). We note that this effect was not signif-

icant when choice was used as a measure of behavior rather

than RT (Figures S1F and S1G), which could be due to a correla-

tion between the idealized test long and test short accuracy

matrices (r = 0.48, p < 0.01). Using a searchlight approach within

the frontoparietal network that coded for RDMmag_short during

test short (see Figure 3D), we found that this neural-behavioral

relationship was expressed most strongly in the right superior

frontal gyrus (Figure 5E; significant at FWE threshold p < 0.05,

r R 0.55, puncorr < 0.001) (peak correlation: 17 34 54; r = 0.71,

puncorr < 0.001; significant at FWE threshold p < 0.01) along

with being evident in the left parietal cortex (Figure 5E) (peak cor-

relation: �48 45 42; r = 0.65, puncorr < 0.001; significant at FWE

threshold p < 0.05). Finally, we conducted extensive analyses

to explore the possibilities that neural results obtained in both

test short and test long could be driven by ‘‘difficulty’’ or that

they encode the extreme items (an ‘‘end-anchoring’’ effect)

(see Figure S2) and found that magnitude is expressed alongside

an end-anchoring effect such that unambiguous items are
y axis show relative behavioral model fits (test long� test short RTmatrices) vs.

is) and relative RTmatrices (x axis) fromwhich the neural and behavioral scores

g. p values in all panels indicate significance from t tests of Pearson correlation

es shown in (B) and (D) correspond to FWE multiple comparison correction

p < 0.01.



Figure 6. Knowledge assembly in artificial neural networks

(A–D) Fits of neural network to lower (top row) and higher (bottom row) human performance on test long. Fits were generated with g = 2e�3, which leads to SGD-

like training, and g = 0.11 for lower and higher performers, respectively. (A and B) show two-dimensional MDS of hidden layer representations after train short and

train long (boundary training) with accompanying certainty matrices (inset). Note the lack of certainty acquisition for the fit to lower performers (top row), sug-

gesting that there is no relational representation among items. After train short, embeddings for the two contexts (1–6 blue and 1–7 red) lie on two overlapping lines

for both fits. After train long, these lines are only slightly elongated (learning items 6 and 7 as an exception) for the fit to lower performers but show full elongation

for the fit to higher performers (separation between red and blue dots). Note that as fits were generatedwith g = 2e�3 and g = 0.11 for lower and higher performers,

respectively, this minimal change allows the network to behave like the best human performers. (C and D) RDMs of hidden layer representations and fitted

network choice matrix after train long. Equivalent matrices for humans are shown in Figure 4D.

(E) Schematic of the update rule. The network output is calculated for two input items (filled dots) and then compared with the target value to calculate the loss.

From the loss, the certainty is calculated and the corresponding entries in the certainty matrix updated (green squares). Then, for each of the two items, the

gradients are combinedwith the respective column of the certainty matrix to calculate mutual updates (see STARMethods). Note that only 3 items per context are

shown for simplicity, without the loss of generality.
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represented as more distal in neural space. This is also visible in

the MDS plots in Figures 3C and 5B.

How, then, might knowledge assembly occur on the computa-

tional level? Training the neural network with vanilla SGD (as in

Figures 2 and 3) allowed us to capture initial human learning

and the emergence of two overlapping neural magnitude lines

in the brain. However, it did not allow the rapid few-shot knowl-
edge assembly that is characteristic of human behavior. In fact,

even after prolonged boundary training on i6 < i7, the network

learns this comparison as an exception (Figures 6A–6D, top

row), thus failing to generalize the greater (lesser) brispiness to

other items in context A (B). One possibility is that human

participants store and mentally replay pairwise associations

learned during previous training, a contention we test in
Neuron 111, 1–13, May 3, 2023 9
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Figures S3A–S3D, finding results that are quite discrepant with

both the behavior and neural geometry seen in human data

(Figures S3F–S3H). Thus, in the final part of our report, we

describe an adaptation of SGD that can account for the behavior

and neural coding patterns exhibited by human participants,

including the rapid reassembly of knowledge and its expression

on a fast-changing neural manifold.

We reasoned that a simple computational innovation within

the neural network could account for the pattern of knowledge

assembly observed at test long (Figure 6E). We can think of a

neural network as learning to embed inputs on a manifold with

maximum potential dimensionality of d, equal to the number of

hidden units. As we have seen, during training, the network

learns to represent stimuli on amanifold with low intrinsic dimen-

sionality (a single neural axis) that represents the transitive series

from either context with overlapping embeddings (e.g., Fig-

ure 3A). The assumption wemake now is that the network retains

a certainty estimate regarding each relation in the embedding

space (we call this the certainty matrix A). For example, as the

relation between items i3 and i4 is acquired by the network and

the loss consequently decreases, the respective certainty value

A3,4 = A4,3 increases. With this assumption, new updates can

propagate to conserve more certain relations in embedding

space while allowing less certain relations to change (see

STAR Methods). This model generalizes vanilla SGD, which is

the special case where g, a free parameter that determines

how quickly the certainty matrix is updated, equals 0. When

training the neural network to solve the transitive inference

task, it is possible to recover both successful and less successful

knowledge assembly observed in humans by varying g

(Figures 6A–6D and S4).

We gave the network approximately the same number of

train short and train long trials as human participants had expe-

rienced (960 trials and 20 trials respectively). Over test short

training, the network learned to represent items on two magni-

tude lines, regardless of the value of gamma (Figure 6A).

Interestingly, performance and training dynamics were indistin-

guishable across g values after train short (Figure S4A). How-

ever, the values of the certainty matrix A for within-context

relations still depended on g (Figure 6A, inset). SGD-like

training dynamics (g z 0, Figures 6A and 6B upper panel) failed

to encode relations within-contexts, and so boundary items

were treated as an exception while magnitude lines for each

context continued to overlap. By contrast, networks with g z
0.1 (Figures 6A and 6B lower panel) learned with high certainty

that objects were related within contexts (i1–i6 and i7–i12). As a

result, this allowed mutual parameter updates to conserve

these relations even with the limited information provided dur-

ing boundary training (Figure 6B, lower panel). These updates

pushed the contexts in opposing directions, qualitatively

consistent with the elongation scheme observed in humans.

In fact, we found that we could capture both the high-perform-

ing human participants and the participants who learned i6 > i7
as an exception by varying g (Figure 6D). This exercise revealed

good fits for low performers at both g = 2e�3 and g = 0.87,

while only one minimum around g = 0.11 fit the participants

who correctly assembled the knowledge structures (see

STAR Methods).
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DISCUSSION

We report behavioral and neural evidence for rapid knowledge

assembly in human participants. Just 20 boundary training trials

were enough for most participants to learn how two sets of

related objects were linked. Strikingly, neural representations

in multivoxel BOLD patterns rapidly reconfigured into a novel ge-

ometry that reflects this knowledge, especially in dorsal stream

structures such as PPC and dmPFC. However, neural networks

fail at this few-shot knowledge assembly problem. Our main

questions thus concerned the mechanisms by which humans

achieve this and how they might bemodeled in a neural network.

List linking requires participants to make inferences that go

beyond the training data. In this case, after boundary training it

is parsimonious to assume that because item i6 > i7, then item

i7 < i1–6, and i6 > i7–12. How are these inferences made? Our sim-

ulations show that a vanilla neural network does not naturally

show this behavior, nor would we expect more advanced archi-

tectures for relational reasoning, which typically learn frommany

thousands of training examples, to show few-shot learning. One

possibility is that a dynamic process occurs at the time of infer-

ence, proposed by models of transitive inference based on the

hippocampus in which updates spread across items via online

recurrence.36 However, because it takes more cycles to bridge

the associative distance between disparate items (e.g., i1 and

i6), this scheme predicts that these comparisons would garner

longer RTs and lower accuracy rates—the opposite of the sym-

bolic distance effect we see here.

An alternative is that periods of sleep or quiet restingmay allow

for replay events, such as those associated with sharp wave rip-

ples in rodents and humans, which might facilitate planning and

inference,37 as well as spontaneous reorganization of mental

representations during statistical learning.38 We acknowledge

that it is possible that replay occurring during train long leads

to a readjustment of the item ranks and contributes to the few-

shot learning we measure. However, our paradigm allowed

very little time for rehearsal or replay—boundary training was

few-shot. Our neural network modeling approach allowed us to

estimate that prohibitively many full-batch replay events would

be required for replay to permit successful knowledge assembly.

Moreover, we failed to observe any increment in performance for

item pairs that should benefit from offline rehearsal (i.e., those

whose rank reversed), as predicted by replay models. Taken

together, we think that it is unlikely that replay is the main driver

of participants’ behavior on test long.

Instead, our model proposes that items are earmarked during

initial learning in a way that might help future knowledge restruc-

turing, by coding certainty about relations among items (here, a

trained transitive ordering). We describe such a mechanism and

show that it can account for our data. Our model is agnostic

about how precisely certainty is encoded, but one idea is that

in neural systems connections may become tagged in ways

that render them less labile. On a conceptual level, this resem-

bles previously proposed solutions to continual learning that

freeze synapses to protect existing knowledge from over-

writing.39,40 Thus, notwithstanding a recent interest in replay as

a basis for structure memory—including in humans41–43—our

model has implications for the understanding of other
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phenomena that involve retrospective revaluation or representa-

tional reorganization, such as sensory preconditioning.44

One curiosity of our findings is that unlike for the neural network

models, neural manifolds for the transitive series were not straight

but inflected around the midpoint (ranks 3/4 in test short or 6/7 in

test long), forming a horseshoe shape in low-dimensional space.

We have previously observed this pattern in geometric analysis

of whole-brain scalp EEG signals evoked by transitively ordered

images,32 and a recent report has emphasized a similar phenom-

enon in macaque PPC and medial PFC during discrimination of

both faces and dot motion patterns.33 The reasons for this form

ofmanifold shape is unclear. One possibility is that the axis coding

for choice certainty is driven by the engagement of additional con-

trol processesand that theseprocesses are currentlymissing from

our neural network model.45 Another possibility is that this geom-

etry conserves independencebetween contexts through orthogo-

nalization46 while aligning them along a single optimal readout

dimension. We further note that the curvature occurs naturally in

a model in which inputs are subject to Gaussian noise (rather

than one-hot, as in our neural network model; Figure S2A).

Resolving this issue is likely to be an important goal for future

studies.

Insum,weobserved rapid reorganizationofneural codes forob-

ject relations in dorsal stream structures, including the PPC and

dmPFC. This is consistent with a longstanding view that dorsal

structures, and especially the parietal cortex, encode an abstract

representation of magnitude or a mental ‘‘number line.’’7,47,48

Recently, many studies have emphasized instead that the MTL,

and especially the hippocampus and entorhinal cortex, may be

important for learning about the structure of the world.3,6,49,50

One important difference between our work and many studies re-

portingMTLstructures is thatour study involvedanactivedecision

task, whereas previous studies have used passive viewing or im-

plicit tasks to measure neural structure learning. We do not doubt

that both regions are important for coding relational knowledge,

but their precise contributions remain to be defined.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Stephanie Nelli

(nelli@oxy.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
De-identified human fMRI data for Figures 3 and 5 have been deposited at Open Science Foundation. They are publicly available as of

the date of publication. Accession numbers are listed in the key resources table.

All original code utilized for neural network simulations has been deposited at GitHub and is publicly available as of the date of

publication. DOIs are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Thirty-seven healthy adult participants were recruited for this study. One was excluded for failure to reach performance threshold

(see below), and two more for practical reasons (failure to show up for the experiment; discomfort in scanner leading to early termi-

nation of the experiment). This left n = 34 total (19 males, mean ± SD age: 23.3 ± 3.4 years). Participants reported no history of

psychiatric or neurological disorders, and gave informed consent prior to scanning. The study was approved by the ethics committee

of the University of Granada and informed consent was obtained from all participants. Participants’ base compensation was 35

Euros, and also could receive a performance-based bonus for an average payment of 40.93 ± 2.57 (mean ± SD) Euros. After the

experiment, participants were given a voluntary anonymous debrief concerning their insight into the test long phase, which we

display in Table S2.

METHOD DETAILS

Stimulus and task
Stimuli were novel objects drawn from the NOUN database.27 Out of the 60 possible images in this database, objects that were rated

asmost similar to the others (e.g., an average similarity ratingwithin 1 standard deviation of themaximum) and objects that were rated

as most familiar (e.g., scoring less than 50% on an inverse familiarity score) were excluded, leaving 41 possible objects. For each

participant, 12 of these 41 objects were randomly selected and arbitrarily assigned a rank from 1-12, with ranks 1-6 belonging to

context A and 7-12 to context B. We denote these i1–i12 in the text.

Before entering the scanner, participants performed a computerised training phase which we call train short. This training phase

consisted of between 3 and 10 cycles of 120 trials. Each cycle consisted of two blocks of 60 trials. On each block, objects

were sampled from a single context for 60 trials (A or B), and then the alternate context was presented for another block of 60 trials.
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Each trial began with the presentation of two objects drawn from adjacent ranks within a single context (e.g. i3 and i4 or i8 and i9).

These objects were shown either side of a central fixation point, and above the point the words ‘‘more brispy?’’ or ‘‘less brispy?’’

appeared in Spanish (i.e. ‘‘mas brispo?’’ or ‘‘menos brispo?’’). Participants were instructed to select the corresponding object

(i.e. that which was more or less brispy) using either the ‘‘F’’ (left object) or ‘‘J’’ (right object) keys. These objects remained on screen

for 5000 ms or until response, whichever was shorter. Once a response was recorded, a green (correct) or red (incorrect) box would

appear around the selected object to indicate whether it was the correct selection, and this response feedback box persisted for

475 ms. If participants did not respond within 5000 ms of stimulus presentation, the trial was considered incorrect and was not

repeated. After feedback there was a blank screen for a variable delay of up to 50 ms before the next trial. Critically, participants

were only trained to compare 5 object pairs from each context, e.g., i1–i2, i2–i3, i3–i4, i4–i5, and i5–i6, from context A and i7–i8, i8–i9,

i9–i10, i10–i11, and i11–i12, from context B.

Whether participants were asked to select the more or less brispy object, and hemifield presentation of the objects, were rando-

mised on each trial. Additionally, the trial-order of each object pair was randomly shuffled. Participants performed this task for a min-

imum of 3 cycles (3 blocks per context, for 6 total blocks), and were trained until they reached a criterion of at least 90% correct on

each block of the last cycle (e.g., more than 90% accurate on each of the two previously performed blocks, where one was from each

context). Additionally, participants had to select the correct answer on the final 20% of trials (12) within each context. On average, it

took participants 5 ± 2 cycles (mean ± SD) to learn the task, and one participant was excluded for failing to reach criterion after 10

cycles of training (see Figure 1C).

The format of the test phases test short and test long was identical (but different to train short). Test phases occurred in the

scanner, and consisted of 288 trials (4 blocks of 72 trials each) in which lone objects were presented in a random sequence,

with the constraint that each combination of 12 (current trial) x 12 (previous trial) ranked objects occurred exactly once in the first

half (144 trials) and once in the second half (144 trials) of the test phase. Each object was presented centrally for 750 ms, after

which participants had 2000 ms to respond whether it was more or less brispy than the previous object. Participants were in-

structed about the mapping from more/less to left/right buttons (held in either hand) before each block of trials, and this mapping

stayed consistent for 2 blocks, and then was switched midway through the test phase. After participants responded, there was a

pseudo-randomly jittered interval of 1500-5500 ms, during which the fixation dot turned blue if a response was recorded within this

deadline, while a red letter X appeared if the response was missed. Critically, participants did not receive trial-wise feedback and

instead were rewarded bonus points at the end of each block. These bonus points were proportional to their accuracy on that

block and were translated into additional monetary reward at the end of the experiment. Timings for test were chosen to assist

with BOLD modelling.

The boundary training phase (train long) occurred between test short and test long. It was similar to train short except that it lasted

just 20 trials, and the only items presented were the objects i6 and i7. These could occur on either side of the screen, with ‘‘more’’ or

‘‘less’’ randomised over trials as in train short. Participants viewed the objects for 3000 ms after which a feedback screen stayed up

for 1500ms, be it a green (correct) or red (incorrect) bounding box, or a red X at fixation if no responsewas recorded. There was then a

variable intertrial interval from 1400-5000 ms before the next trial.

Finally, after completing boundary training (train long) and test long, participants remained in the scanner and performed a

number localiser phase, which was identical to test short / test long with the exception that objects were replaced with Arabic

digits 1–6 and participants responded ‘‘more’’ or ‘‘less’’ according to whether each number was greater or less than the pre-

vious. Note that we compare the representations elicited by each phase of the experiment (test short, test long, and the number

localiser), and find evidence for a normalised coding scheme across the experimental phases in both PPC and dmPFC (Fig-

ure S6; Table S1).

fMRI data acquisition
MRI data were acquired on a 3T Siemens scanner. T1 weighted structural images were recorded directly prior to the task using an

MPRAGE sequence: 1x1x1 mm3 voxel resolution, 176x256x256 grid, TR = 2530 ms, TE = 2.36 ms, TI = 1100ms. Each fMRI image

contained 72 axial echo-planar images (EPI) acquired at a multiband acceleration factor of 4 in interleaved sequence. Voxel res-

olution was 2 mm3 isotropic, slice spacing of 1.6 mm, TR = 1355 ms, flip angle = 8, and TE of 32.4 ms. 560 EPI images were

recorded for the number localiser and 1220 EPI images for each of the test short and test long runs. This resulted in 3000 EPI

images per participant with a scanning time of about 100 min. Scans were realigned using an affine rigid body transformation mini-

mizing the sum of squared differences between each scan and the mean scan within each run. All images were resliced, including

the mean image. The anatomical scan was co-registered to the mean of all functional images using SPM’s default mutual infor-

mation matching criterion. Anatomical scans were normalized to the standard MNI152 template brain using SPM defaults and 2 x

2 x 2 mm3 voxel resolution. This entails first a linear transformation to account for major differences in head shape and position,

and then a non-linear warping transformation that uses deformations consisting of linear combinations of low frequency periodic

basis functions to account for smaller differences in anatomy. We did not correct for susceptibility artefacts, meaning signal

dropout could impact signal quality in areas like OFC. The functional EPI images were then normalized and smoothed with a

full width half maximum Gaussian kernel of 8mm. Images were then downsampled by reslicing to 3 x 3 x 3 mm3 voxel resolution

before performing analyses.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Idealised behavioural matrices
We analyse behavioural data by plotting accuracies and RTs for each combination of 12 objects shown at test, and/or as a function of

symbolic distance (i.e. the distance in rank between the current and previous item). We constructed idealised reaction time and

choice matrices (Figure S1A) under the assumption that choices were noiseless triangular matrices and that RTs depended linearly

on symbolic distance. Our accuracy matrices were created by setting the upper triangle of each quadrant (in test short) or the entire

matrix (in test long) to 1 and the lower triangle to zero. In test short, this model collapses across context, meaning between-context

comparisons are treated as if they came from the same context contexts (e.g. the 3rd item in one set should be ranked higher than the

4th in the other). Thus, this quantifies participant’s tendency to perfectly match rank orderings between contexts (Figure S1A, top left

panel). Specifically, our idealised RTmatrices were constructed as 1=ð1 +distðvT ; vÞÞwhere v = [1: 6 1: 6] for test short and [1:12] for

test_long, and vT is the transpose of v. Note that as participants did not compare objects to themselves, diagonal elements of our

design matrices were excluded from analyses.

fMRI data analysis
Scanner runs were concatenated and delta functions convolved with the canonical haemodynamic response function (HRF) and

time-locked to trial events. All GLMs included an intercept term for each scanner run to account for differences in mean activation,

and we also included the 6 head motion parameters derived from pre-processing as nuisance regressors [translation in x, y, z; yaw,

pitch, roll]. Additionally, we used the default SPM high pass filter setting of 128 seconds, meaning event related variance slower than

�0.008 Hz was removed from the data to account for scanner drift. Automatic orthogonalization was switched off. Data were

analyzed with SPM12 and in-house scripts. All contrasts were constructed as simple t-contrasts with first-level t-maps as input. Un-

less otherwise noted, we only report clusters that fell below an FWE-corrected p value of 0.01, which corresponded to a voxel-wise

uncorrected threshold of p < 0.001 (as in Niv et al.51). These clusters were determined using random field theory, as is default in SPM

12, with the minimum cluster extent set to 10 voxels.52 Data were visualized using the XjView toolbox (http://www.alivelearn.net/

xjview).

We fit our data with 4 different general linear models (GLMs). The first GLMwas used to define ROIs from the number localiser. The

design matrix for GLM1 included parametric modulators time-locked to stimulus onset for each number (1-6), as well as 6 nuisance

head motion regressors. We considered clusters of voxels that passed a FWE threshold of p < 0.01 in response to the stimulus re-

gressor. Although several regions passed this threshold, we focussed on ROIs in dmPFC and PPC, chosen on the basis of previously

stated predictions.7 We show searchlight results in addition to ROI analyses, which seem to justify this choice. The second and third

GLMs were used to estimate neural patterns associated with each object within test short and test long. The design matrix for these

models each included 12 regressors, one for each of the objects locked to stimulus onset, as well as 6 additional nuisance regressors

for headmotion. In one case (GLM2) we estimated this regression separately for each block of 72 trials, where there were n = 4 blocks

within both test short and test long. Notably, fMRI data corresponding to each experimental block of 72 trials was acquired within a

distinct scanner run, allowing us to conduct analyses that required between-run cross-validation (e.g. SVM analysis). In the other

case (GLM3) we simultaneously modelled all trials within test short or test long. This latter GLM was used for calculating RDMs in

ROI and searchlight analyses of fMRI data. In a fourth GLM, we additionally included either 11 (test short) or 22 (test long) regressors

coding for the distance from the current to previous image. Fits from GLM4 were used to generate data for multidimensional scaling

visualization aids.

Representational similarity analysis
BOLD RDMs were constructed by taking the correlation distance between multivoxel patterns elicited by each of the objects in test

short and test long, yielding a 12 x 12 RDM. For searchlight analyses, we used all voxels within a radius of 12mm of the center voxel.

For each searchlight sphere or ROI, we computed the neural RDMs from the condition-by-voxel matrix of estimated neural responses

using Pearson correlation distance between pairs of conditions.

These were compared to model RDMs which were created from linear distances between item ranks within context (1-6 and 7-12;

RDMmag_short), distances between ranks across contexts (1-12; RDMmag_long) and between contexts themselves (i.e. 0 within context,

1 between context). All model RDMs were standardised and comparisons to neural data were conducted with tests of correlation

(Pearson’s r), or regression. The additional RDM reported here (RDMNN) was obtained by taking the Euclidean distance between

the 12 hidden-unit activations elicited by probing the network with one-hot inputs corresponding to i1–i12). Z-scored neural RDMs

were regressed, or correlated, with z-scored (neural network) model RDMs. All statistics reported for RSA analyses were obtained

by evaluating RDMs at the single subject level and conducting group- level (random effects) inference on the resulting coefficients,

using FWE correction where appropriate. All reported probability values (p-values) are two-sided, and statistics reported at

uncorrected significance levels are denoted puncorr. No further methods were employed to determine if data met assumptions of

our statistical tests.

To visualise neural state spaces, we usedmultidimensional scaling with metric stress (equivalent to plotting the first principal com-

ponents of the data) in two dimensions, using GLM4 (see above).
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Support vector machine decoding
All classification analyses utilised a multiclass support vector machine model in MatLab. GLM2 generated 4 beta values for each ob-

ject (one for each run), and we trained binary SVM classifiers on this data from objects in context 1, and then tested the model on

objects in context 2. The classifier used a ‘‘one versus one’’ coding design, meaning that each learner l was trained on observations

in 2 classes, treating one as the positive class and the other as the negative class and ignoring the rest. To exhaust all combinations of

class-pair assignments, we fit K � K� 1
2 binary SVM models where k are the unique classes (ranks 1-6 here). Specifically, letM be the

ground truth coding design matrix with elements mkl, and sl be the predicted classification score for the positive class of learner l

(without loss of generality). Then, the algorithm assigns a new observation (from context 2) to the class bk that minimizes the aggregate

loss for the L binary learners.

bk = argmin
k

PL
l = 1

jmkljGðmkl; sl

�
PL
l� 1

jmklj

WeusedMatLab default settings for the learners in the SVMmodel. Thus, each of these binary learners used a linear kernel function

Gðmkl;slÞ = mkl
0sl, and learned according to the default ‘classiferror’ loss function, which is simply the rate of misclassification in

decimal format. We note that our SVM classification accuracy was not significantly higher in PPC [t33 = 1.48, p = 0.15] and dmPFC

[t33 = 0.97, p = 0.34] than in visual cortex (Figure 3).

Brain behavior correlations
We performed a correlation analysis to quantify the extent to which the elongation of neural representations predicted integrated be-

havioural responses. We analyzed human choice patterns by computing idealised choice matrices (described above) and inputting

both the test short and test long patterns into a competitive regression model. The degree of behavioural integration was defined as

the relative fit of each of thesematrices. Similarly, we constructed neural model RDMs describing the ground truth symbolic distance

between each pair of items in test short and test long (see above). We then defined the degree of neural elongation as the relative fit to

each of these RDMs in a competitive regression model. We then tested at the group level the extent to which the degree of neural

elongation predicted the degree of behavioural integration using Pearson correlation. All statistics involving these metrics control for

multiple comparisons using FWE correction.

Difficulty and end anchoring simulations
We also considered alternative explanations for the neural results obtained in both test short and test long. One possible concern is

that they are driven by ‘‘difficulty’’, that is, the computational demand incurred by comparing each item to its predecessor in the test

short and test long phases, whichmight vary with their rank distance. Another possibility is that PPC and dmPFC encode the extreme

items (for which comparisons are unambiguous) and middle items (for which they are not) with distinct neural codes (an ‘‘end-

anchoring’’ effect), but do not continuously represent rank or ‘‘magnitude’’ in either test short or test long, as implied by our analyses.

We conducted extensive analyses to explore these possibilities, by building plausible control RDMs for ‘‘difficulty’’ and ‘‘end-

anchoring’’ and using model comparison to arbitrate between them (Figure S2). We propose an account of our neural data based

on rank (or magnitude), i.e., that BOLD signals code for the abstract property for ‘‘more’’ or ‘‘less’’ on a one-dimensional continuum.

In Figure S2, we consider two competing accounts: that our BOLD data can be explained by ‘‘difficulty’’ (that is, the relative distance

between each rank and the previous rank towhich it was compared in the one-back task), and ‘‘end anchoring’’ (that is, that the BOLD

signal codes for whether each item was unambiguously less (e.g., rank 1 in test long), intermediate (e.g., ranks 2-11 in test long) or

unambiguously more (e.g., rank 12 in test long)).

To compare these accounts, we adopt a stylised ‘‘population coding’’ approach which assumes that the relevant input quan-

tities are processed by an encoding model consisting of neurons with (potentially noisy) Gaussian tuning curves that tile the space

of possible ranks (rank model) or difficulties (difficulty model) or end anchor status (end anchor model). Thus, in the rank (or magni-

tude) model there are neurons turned to various positions in rank space, and in the difficulty model these neurons are assumed to

be tuned to positions in difficulty space, and in the end anchor model neurons are tuned to whether the item is at end, intermediate,

or the other end of the ordinal scale. In Figure S2A (middle row) we show the relative RDMs for rank, difficulty, and end anchoring in

test short and test long. Some dots in the multidimensional scaling plots (Figure S2 bottom row) fall in the same location, obscuring

the pattern, so we describe it verbally here for test short, and note the same patterns hold for test long. In the rank plot (Figure S2A

far left column), the following ranks overlap: [1,7; 2,8; 3,9; 4,10; 5,11; 6,12]. In other words, the stimuli form two parallel (overlap-

ping) lines, organised by rank, very similar to the PPC and somewhat resembling the dmPFC in Figure 3C. By contrast, in the dif-

ficulty plot (Figure S2A 2nd column), there are only 3 levels of difficulty. This is because the difficulty is identical for items [1,6,7,12

(easiest); 2, 5, 8 11 (middle); 3 4 9 10 (hardest)]. The dots are not arranged in a line, or a curved line; rather, they are folded back on

themselves, so that the most extreme (e.g., both 1 and 6) occupy exactly the same location. For the end anchor RDM (Figure S2A

3rd column), there are just three locations, with the majority of points occupying an intermediate position between the two

extremes.
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We found that the effect of magnitude (or rank) remained strongly statistically significant in both PPC (test short: t33 = 3.77,

p < 0.001; test long: t33 = 4.21, p < 0.001) and dmPFC (test short: t33 = 3.34, p < 0.001; test long t33 = 6.17, p < 0.001) even when

both control RDMs were included. Overall, difficulty was a weak explanation for the neural data RDMs, except in PPC for test short

where it explained residual variance in neural signals (t33 = 2.09, p = 0.02); by contrast, a reliable effect of end-anchoring was

observed in both PPC (test short: t33 = 3.69, p < 0.001; test long: t33 = 4.54, p < 0.001) and dmPFC (test short: t33 = 4.60,

p < 0.001; test long: t33 = 4.73, p < 0.001, Figure S2B). Thus, it appears that the effect of magnitude is expressed alongside an

end-anchoring effect, such that unambiguous items are represented as more distal in neural space than would otherwise be ex-

pected. This is also visible in the MDS plots in Figures 3C and 5D.

Replay-based methods
An alternative hypothesis to our model, which employs mutual updates to neural representations of objects to preserve knowledge

during learning, is that previously knowledge is preserved by replaying previously learned input-output pairs as for example proposed

in variants of Complementary Learning Systems (CLS) theory.53,54 A replay-based account would require that participants store

instance-based memories for comparisons between adjacent items (e.g., item i3 and item i4) and their respective target values

(e.g. ‘‘less than’’) in a memory bank. Then, during training on the boundary condition, the network is also trained on the previously

learned relationships in the memory bank. We considered the possibility that human participants store and mentally replay pairwise

associations learned during previous training, intermingling these with instances of boundary training to avoid catastrophic interfer-

ence.54,53 However, our boundary training consisted of just 20 trials comparing i6 and i7 with no subsequent rest period; providing

very little time for replay to occur. To test this contention more formally, we used neural network simulations to calculate whether this

was sufficient time for replay to permit updating to occur in a way that would recreate human results. We considered full, random and

ordered replay as candidate mechanisms. The results, which we detail in Figures S3A and S3B, imply that participants would have

had to replay the full set (including the boundary condition) of 11 training pairs a total of 4 times per trial (44 training pairs/trial) to obtain

full accuracy within 20 train long trials. Whilst quantification is difficult here, this seems to speak against strategies that reorganize the

embedding space exclusively during the train long period. This analysis also seems to mitigate against potentially competing ac-

counts of transitive inference such as REMERGE36 which rely on offline replay to organize the embedding space even within a single

context. Thus, we provide some computational evidence that the short (20 trials) list linking boundary training block is unlikely to leave

sufficient time for replay.

As our neural network model fits the human data after being exposed to exactly as many train long trials as our participants, we

simulated how many ‘‘virtual replay trials’’ after each training step on the boundary condition would be required to fit the data using

four different replay curricula: (1) Ordered Replay: Replay samples from the memory buffer in an ordered fashion (e.g. 1<2, 2<3,

3<4...) (2) Random Full Replay: Randomly sample replay items from the memory buffer such that each memory is sampled exactly

once (e.g. 2<3, 5<6, 9<10...) (3) Random Replay: Randomly sample replay items from the memory buffer, allowing for multiple draws

of the same memory (e.g. 2<3, 5<6, 2<3...) (4) Highest Loss Replay: Sample the memory that currently leads to highest loss. We

further distinguished between amemory buffer that does not include the boundary condition and one that does include it (IB = Include

Boundary). Thus, the question becomes how many cycles (‘‘epochs’’) of replay from the memory buffer per training step on the

boundary condition are required to disentangle the overlapping representations. As for the original model reported in themanuscript,

each of these curricula were repeated for n=20 random seeds of the network to obtain measures of consistency. The simulations

revealed that replaying the full set at least 4 times per each boundary training step (44 training pairs/trial) is required to obtain full

accuracy within 20 boundary training trials (Figures S3A and S3B). This seems to be an implausible level of online replay required

to account for our effects. We also confirmed that convergence time when replaying the full set 4 times (44 training pairs/trial) could

not be reduced by adjusting the learning rate during replay (with respect to the learning rateh=0.05 during the boundary training trials,

Figures S3C and S3D).

REMERGE model
We also implemented REMERGE, a well-known computational account of transitive inference (Figure S3E).36We provide predictions

for REMERGE showing that they are quite discrepant with observed human data, including both behaviour and neural geometry

(Figures S3F–S3I). We also considered the possibility that any replay is not confined to the train long period but continues into the

subsequent test long epoch. Whilst this is possible, it would predict that over the course of test long, greater performance improve-

ments would be observed for those item pairs that benefit from replay, i.e., the item pairs whose rank is reversed during the train long

period. We saw no evidence for this (Figures S3J–S3M).

REMERGE is a two-layer neural network with recurrent connections from the hidden (i.e., conjunctive) to the feature layer and a

linear readout from the hidden to the output layer (Figure S3E). Network inputs u encode the two input items as a two-hot vector,

which is 0 everywhere except at the two positions of the inputs where it is set to 1. The neural dynamics for an input u evolve accord-

ing to the following set of coupled differential equations:

dx

dt
= � x +W1h+ u and

dh

dt
= � h+W1x;
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Where x and h denote the dynamic feature and conjunctive layer of the network and W1is the recurrent weight matrix which con-

nects the feature and the conjunctive layer with excitatory weights of size 0:5. The network’s output at time t is then calculated from

the hidden layer by a linear readout yt = W2ht. Excitatory and inhibitory readout weights are set to 1 and � an, respectively. For the

exact wiring diagram of the network please refer to Figure S3E. Please note that all synaptic weights are fixed and not optimised

during simulations.

Reaction times of the REMERGE model are calculated by means of a race condition to a fixed threshold between the two output

nodes that refer to the two currently active input nodes (Figure S3E). We note that the REMERGEmodel makes incorrect predictions

about the pattern of RTs that we see in human behaviour (Figure S3F cf. Figures 2B and 4A).

The choice matrix of the REMERGE model accurately predicts human behaviour during test short (Figure S3G). It is calculated by

applying a softmax to the two output nodes that refer to the two input items after the temporal dynamics have converged. This active

selection of output nodes is crucial for the REMERGE model to make accurate predictions, as other output nodes may dominate the

output otherwise. Further, during test short, the network’s temporal dynamics evolve in two disconnected subnetworks, indepen-

dently coding for the two contexts. Both the active selection and the independent network dynamics become apparent when calcu-

lating the MDS and RDM of the representations in the conjunctive layer: the two contexts are encoded in two orthogonal subspaces

and are not ordered according to their value (Figure S3H). Therefore, the REMERGEmodel’s coding scheme is substantially different

from the overlapping and elongated neural codes observed in BOLD during test short (cf. Figures 3B and 3C).

In order to switch the networks behaviour from test short to test long, an additional set of weights is introduced to the weight

matricesW1andW2, which is connecting the two subnetworks (Figure S3E). Again, the model accurately predicts the human choice

matrix (Figure S3G). However, analysing the MDS and RDM of the conjunctive layer reveals that the REMERGE model employs a

hierarchical code in contrast to the elongation code observed in BOLD (Figure S3H, cf. Figures 5A and 5B).

If embeddings are adjusted incrementally across the test long period bymentally replaying items not experienced during train long

(e.g. 8 and 6) and using the evoked error to learn offline. This model implies that performance will generically improve across the

course of test long, but it also makes a more specific prediction: that this improvement should be most pronounced for those

item pairs whose relative rank is changed by the information provided during train long (i.e., item pairs that cross contexts). We would

expect this benefit to be greater than (say) for those item pairs that have already been extensively trained during train short (those

within contexts), which will already be correct from the start of test long because inferences can be based on learning that occurred

during train short.

Fortunately, our design cycled through all 144 (12 x 12) item pairs twice during test long, allowing us to compare average perfor-

mance on the first and second presentation. We plot mean accuracy independently for each presentation of each item (Figures S3J

and S3K). The purple, blue and cyan boxes divide the item pairs into the within-context (cyan) and cross-context (purple) item pairs,

coding separately for the item pairs 6 and 7 that were trained during train long. We also show the mean accuracy for first and second

item. As can be seen, whilst there are increases from first to second presentation, these are of similar magnitude for the within-

context and between-context item pairs. Accordingly, there was a main effect of presentation (F1,33 = 5.04, p = 0.032) but no

interaction between presentation and item pair type (p = 0.233). The main effect of item pair type that is visible in the plot (different

intercept for each line) is driven by difference in the fraction of equal rank items (e.g. item 4 with item 4) for which there is no correct

answer.

Another way to conduct this analysis is to directly compare those cross-context item pairs for which the rank changes after train

long relative to those for which it does not (Figures S3L and S3M, compare the purple and cyan triangles). As would be expected,

items that change rank with train long elicit more errors overall. However, as can be seen from panel D, these item pairs improve

from first to second presentation at approximately the same rate, and once again there was a main effect of presentation type

(F1,33 = 15.9, p < 0.001) but no interaction with item pair type (p = 0.965).

One might question why there is improvement from first to second item in the first place, but it seems plausible that generic im-

provements in performance occur across the block as participants become more familiar with the task, as similar increases were

seen during test short.

Cross task normalization
Since an elongated brispiness axis was observed during both test short and test long in ROIs from our number localiser, we asked

about the relationship between these representations across tasks. To do this, we fit a GLM to data jointly across all three experiment

types. As with those reported in the main text, this GLM used delta functions convolved with the canonical haemodynamic response

function (HRF) and time-locked to trial events. The design matrix for this model included 30 regressors, one for each of the Arabic

digits or objects locked to stimulus onset, as well as 6 additional nuisance regressors for head motion. We then constructed

RDMs as in the main text to assess the similarity of evoked neural patterns, this time focusing on how patterns were related across

the experiments.

We hypothesized that neural populations could code for either ground truth magnitude, in which case we would expect the test

long axis to be twice as long as in test short and the number localiser (RDMnone, Figure S6B), or for relative magnitude, meaning

the axes in all three experiments should be compressed to the same length (RDMsub,div, Figure S6B). These were computed using

ground truth object ranks for test short and test long, call them ranktest short ([1:6]) and ranktest long ([1:12]). ‘‘None’’ was constructed

by computing the distances between raw, ground truth ranks, i.e. under the assumption that those ranks were not normalized. ‘‘Sub’’
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was constructed with the assumption that the vectors were normalized by subtracting by the mean element (e.g. ranktest short –

mean(ranktest short)) effectively centring them with respect to each other before computing the distances. Finally, ‘‘sub, div’’ was con-

structed by normalizing the vectors both subtractively and divisively (e.g. ranktest short – mean(ranktest short)/max(ranktest short)), which

centers the vectors and equalizes their length. We found evidence for this normalised coding scheme in both PPC and dmPFC (Fig-

ure S6B; one-sided t-tests on Pearson correlations: RDMsub,div t33 = 3.86, 6.29, p’s<0.001; RDMnone t33 = -3.07, -0.5, p’s>0.95;

RDMsub t33 = -1.8, 0.15, p’s > 0.6; PPC and dmPFC respectively).

Neural network simulations
We implemented a two-layer feedforward neural network in Python with coupled input weights to study the computational underpin-

nings of the task, its solutions and possible failure modes. All simulations were run for n = 20 random seeds and plots show averages

across seeds. The network received two one-hot vectors, coding respectively for the object on the left (xa) and right side (xb) of the

screen (a one-hot vector for object i has zeros everywhere except at the i-th position which is equal to one). The one-hot vectors were

then propagated forward by the coupled weights W1 and -W1 respectively, followed by a rectified linear unit (ReLU) to create the

hidden layer representation of 20 neurons. Finally, to mimic the binary output produced by humans responding more or less, the hid-

den layer representation was projected onto a single output value using the readout weights w2:

by = w2ReLU ðW1xa � W1xbÞ
We designed the model to produce a binary output to mirror how humans responded (‘‘more’’ or ‘‘less’’). The simplest way to do

this is to use a single output unit for which values by > 0 signal ‘‘more’’ and values by < 0 signal ‘‘less.’’ To assuage any concerns sur-

rounding this choice in architecture, we additionally ran all of our simulations using a model with 2 output nodes and found that this

choice had no impact on our simulation results (Figures S4D–S4G; See STAR Methods on Neural Network Representations). This

implies that the one-dimensional solution observed in the hidden layer is not due to our using a single readout neuron. Nor is it

the case that successful transitive-inference task performance necessitates the observed one-dimensional solutions. For example,

when neural networks were initialized with large starting weights (in the ‘‘lazy regime’’; see Figure S5) they solved the task using a

high-dimensional solution with quite different geometry. Indeed, behavioural changes do not need to be expressed in adjustments

to the geometry of neural representations,55 as an ordered transitive relation can be enacted by changes in the decoder alone

(Figures S5E and S5F).

By coupling the input weights, we ensured that the hidden layer representation of each object was independent from the position

on the screen. Note that due to objects being represented as one-hot vectors, hidden representations of objects are independent

from each other, i.e. the i-th column of the weight matrix W1. Further, due to the symmetry in the first-layer weights, if the two

one-hot vectors encode the same object the network’s output is zero.

The network was optimised using stochastic online gradient descent

DW = � h
vL
vW

on single pairs of objects, i.e. a batch size of 1, with learning rate h = 0:05 on the mean squared error (MSE; we used MSE loss

rather than cross-entropy to avoid problems associated with saturating outputs) between the network’s output by and the target

values y = 1 for ia > ib and otherwise y = � 1:

L =
1

2
ðby � yÞ2

Since inputs to the network were two one-hot vectors, in each training step only two columns of the first layer weight matrix W1

were updated, we denote these two column vectors by Dw1a and Dw1b.

Synaptic weights were initialised from a zero-centered Gaussian distribution with standard deviation s = g � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=fan in

p
where

g = 0:025 and g = 1 in hidden and readout layers respectively. The hidden layer weights were initalised to small values to

encourage a low- dimensional (‘‘rich’’) solution.31 We employed a training procedure very similar to that used for human sub-

jects. Networks were first trained for 8 cycles, where each cycle was comprised of 120 trials (or 8 blocks of 60 trials per each

per context) - leading to a total of 960 steps of gradient descent training. Subsequently, we performed 20 training steps on the

two objects of the boundary condition. Note that like humans, despite being trained exclusively on adjacent items, neural net-

works learned faster and performed better on non-adjacent items.

Learning relational certainty
In order to recover the rapid knowledge assembly observed in humans, we adapted vanilla SGD, by applying mutual updates on syn-

aptic weights W1 based on the pairwise certainty that two object representations bear an accurate relation to one another in
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embedding space, and in addition, correcting for potential drift in the readout weightsw2. For a given trial twith inputs xa;t and xb;t we

compute the certainty value as a sigmoidal function of the loss incurredLt, with the slope a and the bias b of the sigmoid as potentially

free parameters (here we set them to a = 1000 and b = 0:01)

FðLtÞ =
1

1+ expðaðLt � bÞÞ
Pairwise certainty values were then stored in the certainty matrix A as an exponential moving average

At + 1
ba = At + 1

ab = ð1 � gÞAt
ab +gFðLtÞ

where the free parameter g determined how quickly old values were discounted.

In addition, to infer certainty values for pairs of items that were not presented to the network, a fraction of the certainty values for

item ib were added to the certainty values of ia.

At + 1
a� = At + 1

�a = ð1 � gÞAt
a� +gFðLtÞAt

b�

and vice versa. Note that the certainty matrix is symmetric and therefore rows Aa* are identical to columns A*a. These row-wise

updates followed the heuristic: If item a is correctly related in embedding space to item c and item a is correctly related to item b, then

infer that item b is also correctly related to item c. While the discount factor gamma for the pairwise certainty values and to spread

certainty values across items could be assigned independent values to let them operate on two different time scales, we empirically

observed that a shared value is sufficient to model the observed phenomena.

Synaptic weights were then mutually updated by outer products:

Wt +1
1 = Wt

1 + Dw1a

�
At +1

a� ca

�T
+Dw1b

�
At + 1

b� cb

�T
where Aa* denotes the ath column of the certainty matrix. Note that ca and cb are vectors of scaling factors to correct for drift in the

readout weights as follows:

ca =
DwT

1aw2 +DwT
2 ðw1a +Dw1aÞ � WT

1Dw2

DwT
1aðw2 +Dw2Þ ;

In order to perform a SGD step on the items currently presented to the network (i.e. the a-th and b-th column of W1) the a-th and

b-th entry of Aa�, ca and Ab�, cb respectively are set to 1. Importantly, gradient updates to the representation of item b are mutually

applied to all other items ia s ib, but scaled by certainty Aa,b.

Fitting human choice matrices
To fit human choice matrices we applied a sigmoid function to the linear neural network output

sðbyÞ =
1

1+ expð� sbyÞ
We fit different parameterisations separately to choice matrices for high and low performers (defined by a median split, as in Fig-

ure 4). For each, we performed a grid search on combinations of g in range 0 to 1 and s in range 0.01 and 100 (both in log10 units) and

mapped the resulting deviation between predicted and observed choice matrices for that participant group (Figures S4A and S4B).

Because neural network models are stochastic, we repeated the simulations for 20 random initial seeds and averaged the resulting

deviance for fitting. Low performers were fit well with sz 1 and had a U-shaped relationship with accuracy for varying g, leading to

two local minima, such that values that were close to zero (vanilla SGD) and close to one both resulted in a failure to stitch information

appropriately (Figure S4B). For low g, the algorithm fails to acquire certainty and thus does not performmutual updates, behaving like

vanilla SGD. Similarly, for large g, the certainty matrix is rapidly updated, such that the boundary items form a high certainty cluster

separate from the rest of the items (Figure S4C). In this case, after few mutual update steps that partly disentangle the representa-

tions, the certainty matrix rapidly approaches zero for non-boundary items, again leading to SGD-like updates on boundary items

only. Behaviourally, these two failure modes can be interpreted as either failing to relate items in the two conditions during after

boundary training for low g or by relating the items of the boundary condition as independent group during train short for large g.

On the other hand, high performers had a single minimum for s > 2 and g z 0.1 (Figure S4B).

Neural network representations
To confirm that the one-dimensional solution our neural network simulations converged to cannot be attributed to our choice to use

one output node, we reran all of our simulations with a model with 2 output nodes. As long as training starts from small initial weights,

this architecture is formally equivalent to a network with a single readout, as the parameters of the readout layer converge to identical
Neuron 111, 1–13.e1–e9, May 3, 2023 e8
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values with inverted signs. Thus, using 2 output nodes has otherwise no impact on our simulation results, and results during test long

using a network trained with 2 output nodes fit to good and poor performers on test long (Figures S4D–S4G).

We also showed that the low dimensional representations found in the hidden layer of the neural network are not an inevitable

consequence of successful task performance (Figure S5). Using the architecture reported in the main text (Figure 2) when the test

short and test long neural network simulations are started from large initial weights (‘‘lazy’’ regime), the network converges to a so-

lution in which object representations are distributed over the high-dimensional neural manifold in an unstructured way that does not

align with the underlying hierarchy (Figures S5D and S5E).
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