
Replay in nonlinear networks on real-world data

Offline replay-based learning

Online learning

Conclusions

Results

• A replay-based memory system can attain superior generalization performance 
compared to an online learner with no ability to store training examples.

• The advantage of replay is largest for small datasets (! ≤ 1) with accurate 
labels (%&' → ∞), a plausible regime for many ecological tasks.

• Replay must be discontinued at some point to guard against overfitting, and 
the optimal amount of replay is predicted to scale with the SNR of the task.

• Our results suggest a normative preference for a dual system architecture even 
without multiple training phases or tasks that catastrophically interfere, and for 
a basic classification/regression setting rather than a RL setting
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In online learning, weights are updated after each example and then 
the example is discarded and cannot be visited again:

A theory of memory replay and 
generalization performance in neural networks
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Background

Catastrophic interference
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Striking findings of retrograde amnesia from lesions to hippocampus have 
long suggested that multiple subsystems interact in the formation of long 
term memories. 

The Complementary Learning Systems Theory holds that hippocampus is 
specialized to rapidly store the specifics of an experience, while neocortex is 
specialized to slowly learn about general structure across many experiences. 

Student-Teacher Model in the High-Dimensional Regime 
Linear student-teacher formalism

Optimal replay vs optimal online learning

High-dimensional regime

These results show that replay confers a decisive advantage when

• Training data is scarce: ! ≤ 1
• The rule to be learned is reliable: %&' → ∞

Hence replay can yield better generalization from limited data. 

A ‘teacher’ network generates labeled data examples which are 
fed to a ‘student’ network for learning (Seung, Sompolinsky, & 
Tishby, 1992; Amari et al., 1995; Advani & Saxe, 2017)

Why might memories be stored in hippocampus and replayed into neocortex? 
The Complementary Learning Systems Theory (McClelland, McNaughton, O'Reilly, 
1995) holds that this two stage process allows new information to be gradually 
incorporated without catastrophically interfering with prior knowledge. Yet 
fundamental questions remain: is replay always beneficial? how much replay is 
optimal? and how much benefit can replay confer? 

We develop a theory of the impact of experience replay on generalization 
performance based on an average analysis of simple neural networks. We derive 
exact solutions to the learning dynamics resulting from two learning strategies: 
online learning, in which each example is used once and discarded; and batch 
learning, in which all examples are stored (for instance, in hippocampus) and 
replayed repeatedly (for instance, during sleep).

We find that replay can be decisively better when training experience is scarce. 
Further, too much replay can lead to overfitting. There is therefore an optimal 
amount of replay that depends on the signal-to-noise ratio of the task to be 
learned. Our theory makes predictions about how the amount of replay should 
depend on task parameters if the brain is optimally managing learning; and more 
broadly, our results suggest a normative explanation for a two-stage memory 
system: replay enables better generalization from limited training experience.
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such data, as well as the optimal statistical inference
procedures to follow in order to achieve these limits.
In contrast to this classical scenario, our technological

capacity for high-throughput measurements has led to a
dramatic cultural shift in modern experimental design
across many fields. We now often simultaneously measure
many variables at once in advance of choosing any specific
hypothesis to test. However, we may have limited time or
resources to conduct such experiments, so we can only
make a limited number of such simultaneous measure-
ments. For example, through multielectrode recordings, we
can simultaneously measure the activity P ¼ 1000 neurons
in mammalian circuits but only for N ¼ Oð100Þ trials of
any given trial type. Through microarrays, we can simulta-
neously measure the expression levels of P ¼ Oð6000Þ
genes in yeast but again in a limited number of N ¼
Oð100Þ experimental conditions. Thus, while both N and P
are large, the measurement density α is finite. Such data sets
are high dimensional, in that they consist of a small number
of points in a high-dimensional space [Fig. 1(b)], and it
can be extremely challenging to detect regularities in such
data [10]. Moreover, classical statistical theory gives no
prescriptions for how to optimally analyze such data.
In our work, we focus on one of the most ubiquitous

statistical inference procedures: regression, which attempts
to find a linear relationship between a cloud of data points
and another variable of interest. In order to study regression
in the high-dimensional regime, we apply the technique of
replica theory [11] from statistical physics. Indeed, replica
theory has long played an important role in the analysis of
high-dimensional statistical inference problems where the
number of measurements or constraints is proportional to
the number of unknowns, for example, in neural network
memory capacity [12], perceptron learning theory [13,14],
communication theory [15], compressed sensing [16–19],
and most recently matrix factorization [20]. See also
[10,21] for general reviews on replica theory in high-
dimensional inference problems.
By applying replica theory to the central problem

of high-dimensional regression, we obtain fundamental

generalizations of statistical theorems dating back to the
1940s [22,23]. These theorems (reviewed below) place
general limits on the accuracy of statistical inference through
a set of procedures known as M-estimators (defined below,
and see Refs. [24,25] for reviews) in a low-dimensional
setting and reveal the optimal M-estimator (maximum
likelihood estimation). We generalize these results to the
high-dimensional setting with prior information, by (1)
characterizing the performance of any convex regularized
M-estimator on any high-dimensional regression problem,
(2) finding the optimal convex M-estimator that achieves
the best performance amongst all M-estimators, under the
condition of log-concave signal and noise distributions, and
(3) demonstrating that no inference algorithm whatsoever
can outperform our optimal M-estimator in the setting where
the prior distribution over parameters is known. Overall, our
results reveal new optimal regression algorithms and quan-
titative insights into how the predictive power, or generali-
zation capability, of a regression algorithm is related to its
accuracy in separating signal from noise.Moreover, a variety
of topics—including random matrix theory, compressed
sensing, and fundamental objects in convex optimization
theory, such as proximal mappings andMoreau envelopes—
emerge naturally through our analysis. We give an intuitive
summary of our results in the discussion section.

A. Statistical inference framework

To more concretely introduce this work, we give a
precise definition of the inference problem we are studying.
Formally, let s0 be an unknown P-dimensional vector
governing the linear response of a system’s scalar output
y to a P-dimensional input x through the relation
y ¼ x · s0 þ ϵ, where ϵ denotes noise originating either
from unobserved inputs or imperfect measurements. For
example, in sensory neuroscience, y could reflect a linear
approximation of the response of a single neuron to a
sensory stimulus x, so s0 is the neuron’s receptive field.
Alternatively, in genetic networks, y could reflect the linear
response of one gene to the expression levels x of a set of P
genes. Suppose we perform N measurements, indexed by
μ ¼ 1;…; N, in which we probe the system with an input
xμ and record the resulting output yμ. This yields a set of
noisy measurements constraining the linear response vector
s0 through the N equations yμ ¼ xμ · s0 þ ϵμ.
We assume the noise ϵμ and components s0i are each

drawn independently and identically distributed (i.i.d.)
from a zero mean noise density PϵðϵÞ and a prior
distribution PsðsÞ. For convenience, below we define signal
and noise energies in terms of the minus log probability
of their respective distributions: Eϵ ¼ − logPϵ and Es ¼
− logPs. We further assume the experimental design of
inputs is random: Input components xμ

i are drawn i.i.d.
from a zero mean Gaussian with variance 1=P, yielding
inputs of expected norm 1. In many systems-identification
applications, including, for example, in sensory

FIG. 1. A cartoon view of low-dimensional (a) versus high-
dimensional (b) data. In the latter scenario, a finite measurement
density, or ratio between data points and dimensions, leads to
errors in inference.
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Goal: understand how we learn from limited data.
Contrast performance of online learning with replay learning.

Seung, Sompolinsky, & Tishby, 1992; Amari et al., 1995; LeCun, Kanter, Solla, 
1991; Baldi & Chauvin, 1991; Advani & Ganguli, 2016; Advani & Saxe, 2017 

*Correspondence:
dkumaran@google.com (D. Kumaran),
demishassabis@google.com
(D. Hassabis), mcclelland@stanford.edu
(J.L. McClelland).

Summary of the Theory
CLS theory [1] provided a framework within which to characterize the organization of learning in
the brain (Figure 1, Key Figure). Drawing on earlier ideas by David Marr [9], it offered a synthesis
of the computational functions and characteristics of the hippocampus and neocortex that not
only accounted for a wealth of empirical data (Box 1) but resonated with rational perspectives on
the challenges faced by intelligent agents.

Structured Knowledge Representation System in Neocortex
A central tenet of the theory is that the neocortex houses a structured knowledge representation,
stored in the connections among the neurons in the neocortex. This tenet arose from the
observation that multi-layered neural networks (Figure 2 ) gradually learn to extract structure
when trained by adjusting connection weights to minimize error in the network outputs [10]. Early

Key Figure

Complementary Learning Systems (CLS) and their Interactions.

Bidirec!onal connec!ons (blue)
link neocor!cal representa!ons
to the hippocampus/MTL for
storage, retrieval, and replay

Rapid learning in connec!ons within
hippocampus (red) supports ini!al
learning of arbitrary new informa!on

Connec!ons within and
among neocor!cal areas
(green) support gradual

acquisi!on of structured
knowledge through
interleaved learning

Figure 1. Lateral view of one hemisphere of the brain, where broken lines indicate regions deep inside the brain or on the
medial surface. Primary sensory and motor cortices are shown in darker yellow. Medial temporal lobe (MTL) surrounded by
broken lines, with hippocampus in dark grey and surrounding MTL cortices in light grey (size and location are approximate).
Green arrows represent bidirectional connections within and between integrative neocortical association areas, and
between these areas and modality specific areas (the integrative areas and their connections are more dispersed than
the figure suggests). Blue arrows denote bidirectional connections between neocortical areas and the MTL. Both blue and
green connections are part of the structure-sensitive neocortical learning system in the CLS theory. Red arrows within the
MTL denote connections within the hippocampus, and lighter-red arrows indicate connections between the hippocampus
and surrounding MTL cortices: these connections exhibit rapid synaptic plasticity (red greater than light-red arrows) crucial
for the rapid binding of the elements of an event into an integrated hippocampal representation. Systems-level consolidation
involves hippocampal activity during replay spreading to neocortical association areas via pathways indicated with blue
arrows, thereby supporting learning within intra-neocortical connections (green arrows). Systems-level consolidation is
considered complete when memory retrieval – reactivation of the relevant set of neocortical representations – can occur
without the hippocampus.

Trends in Cognitive Sciences, July 2016, Vol. 20, No. 7  513

Kumaran, Hassabis, & McClelland, 2017

• Rapid storage of experiences in hippocampus
• Replay from hippocampus to neocortex
• Slow learning in cortex that integrates over many experiences

Simulations have shown that these dual systems can prevent catastrophic 
interference between previously stored knowledge and new experience. 
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Figure 11. Effects of focused and interleaved learning on the acquisition of new knowledge and on inter-
ference with existing knowledge. Simulations were carried out with Rumelhart's (1990) network; the con-
nection weights resulting from the initial 500 epochs of training with the base corpus were used. The per-
formance measure, absolute error, is denned as the sum across output units of the absolute value of the
difference between the correct response for each pattern and the actual response. The measure reaches its
optimal value of 0 when the output exactly matches the target. Better performance corresponds to lower
error, and the axis is inverted for better visual correspondence to standard memory performance curves. In
the analysis of interference with other memories, the performance measure is the average of the absolute
error over all 15 of the cases in the initial training corpus involving the can relation. The scales of each graph
are different and are set to encompass the range of values spanned in each case. The interference is much
greater for some items than for others and falls predominantly on those output units in which the correct
answer for the preexisting memory differs from the correct answer for the penguin.

unconsolidated information through remodeling the neural cir-
cuitry underlying the original representation. (p. 205)

Three Principles of Connectionist Learning
The simulations presented earlier suggest three principles of

learning in connectionist systems.

1. The discovery of a set of connection weights that cap-
tures the structure of a domain and places specific facts
within that structure occurs from a gradual, interleaved
learning process.

2. Attempts to learn new information rapidly in a net-
work that has previously learned a subset of some domain
lead to catastrophic interference.

3. Incorporation of new material without interference can
occur if new material is incorporated gradually, in-
terleaved with ongoing exposure to examples of the do-
main embodying the content already learned.

Answers to the Key Questions
These principles allow us to formulate answers to the key

questions about the organization of memory raised earlier.

1. Why is a hippocampal system necessary, if ultimately
performance in all sorts of memory tasks depends on
changes in connections within the neocortical system?
Why are the changes not made directly in the neocorti-
cal system in the first place?

The principles indicate that the hippocampus is there to pro-
vide a medium for the initial storage of memories in a form that
avoids interference with the knowledge already acquired in the
neocortical system.

2. Why does incorporation of new material into the neo-
cortical system take such a long time? Why are the
changes to neocortical connections not made more
rapidly, shortly after initial storage in the hippocampal
system?

Incorporation takes a long time to allow new knowledge to be
interleaved with ongoing exposure to exemplars of the existing
knowledge structure, so that eventually the new knowledge may
be incorporated into the structured system already contained
in the neocortex. If the changes were made rapidly, they would
interfere with the system of structured knowledge built up from
prior experience with other related material.

• Phase 1: Train NN on many examples
• Phase 2: Train NN on one new example

• Catastrophic interference: Phase 2 
substantially disrupts knowledge 
acquired during phase 1

• Replay beneficial for these supervised
learning (not reinforcement learning) 
tasks McClelland, McNaughton, O'Reilly, 1995

Prior results focus on training error, i.e., mistakes on the exact examples experienced during training.
How does this impact generalization error to unseen examples? 

Generalization error dynamics
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Figure 4: Comparison of early stopping to optimal quadratic (L2) regularization in shallow
networks. In (A) we see that the optimal early stopping prediction (red stars)
achieves a generalization error near that of optimal quadratic regularization (blue
line). In this example there is no more than 3 percent relative error between
the two, which peaks near � = 1 when the spectrum of non-zero eigenvalues is
broader. Here we have fixed SNR = 5 and �2

w = 1 which implies that even at large
measurement density � the generalization error asymptotes to a non-zero value
due to noise 0.2 = 1

SNR . (B) The approximation for optimal stopping time in (19)
correctly predicts the scaling of optimal stopping time with SNR. � moderates
the slope of the e�ect of SNR on the optimal stopping time by shifting where the
bulk of the eigenvalues rest. Note that the case of � = 1 has a large spread of
eigenvalues so that the assumptions we make to derive the scaling are weakest in
this limit leading to a slightly worse fit. (C) Generalization error vs � for di�erent
initial weight norms. In the limited data regime, small initial weights are crucial
for good generalization.
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Figure 3: Generalization and training error dynamics compared with simulations. Here we
demonstrate that our theoretical predictions for generalization and training error
dynamics (dashed lines) at di�erent measurement densities (� = 1/2, � = 1, and
� = 2) match with simulations. The simulations for generalization (blue) and
training (green) errors have a width of ±2 standard deviations generated from 20
trials using N = 300, P = �N and Gaussian input, noise, and parameters with
�w = 1, �0

w = 0, and SNR = 5. The simulations show excellent agreement with
our theoretical predictions for generalization and training error provided in (15)
and (27).

performances: here the relative error between the two is under 3 percent and is the largest
around � = 1. Hence early stopping can be a highly e�ective remedy against overtraining.
Further, we can exploit the similar performance of these two algorithms to make analytic
predictions for how the optimal stopping time depends on other parameters, namely the
measurement density and SNR.

2.3 Optimal stopping time vs SNR

As discussed earlier, training to convergence requires training for time proportional to
1/�min, the smallest eigenvalue. The optimal stopping time, however, can be substan-
tially shorter. In this section we estimate its dependence on the parameters of the problem.
If we initialize with w(0) = 0, the expression for Eg(t) reduces to

Eg(t)

�2
w

=

Z
�MP(�)


e� 2�t

⌧ +
1

� · SNR
(1 � e� �t

⌧ )2
�

d� +
1

SNR
. (17)

To solve for the optimal stopping time numerically, we can di�erentiate the above equation
with respect to t and set the result equal to zero. However, to gain insight into how the
optimal stopping time depends on measurement density and SNR, it is helpful to compare it
to L2-regularized regression where the generalization error (see Advani and Ganguli, 2016b)
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Figure 1: The generalization benefit of memory replay. (A) Learning setup. A teacher network (left)
generates examples for a student network. (B) Average dynamics of online learning. (C) Average dynamics
of replay-based batch learning. Generalization performance initially improves but eventually worsens,
indicating overfitting to noise in the specific examples being replayed. (D,H) Generalization performance
of optimal replay vs optimal online learning. When noise is high (panel D), optimal replay yields a
consistent but small advantage. However when noise is low (panel H), replay yields decisively better
generalization from few examples. (E) Minibatch replay. Examples arrive in blocks, with replay after each.
(F) Performance of optimal minibatch replay. Breaking experience into more blocks interpolates between
batch and online learning. (G) Optimal amount of replay as a function of task SNR.

network, which produces a label via its synaptic weights W̄ and adding Gaussian noise. P examples are
drawn in this way, and the student then learns via gradient descent on the mean squared error.

Due to space constraints we omit full derivations, but state results on generalization error dynamics
in the online learning and batch settings and how the optimal stopping time varies with SNR. These
predictions and others are validated by numerical simulations, as shown in Fig. 1. For online learning
without replay, the resulting learning curve is

Eg(↵)

�2
w̄

= (1 + INR + 1/SNR)e�↵⌘(2�⌘) +
1

SNR

1

1 � ⌘/2

⇥
1 � e�↵⌘(2�⌘)

⇤
. (1)

where ⌘ is the learning rate, ↵ = P/N is the amount of experience relative to the number of parameters
in the student, and �2

w̄, �
2
w, �

2
e are the variances of the teacher weights, initial student weights, and output

noise respectively. The average generalization error for batch learning with replay is substantially more
complicated and has the form

hEg(t) i
�2

w̄
=

Z
⇢MP(�)


(1 + INR) e� 2�t

⌧ +
1

� · SNR(1 � e� �t
⌧ )2

�
d�+

1

SNR
, (2)

where ⇢MP(�) is the Marchenko-Pasteur distribution describing the eigenvalue distribution of high-dimensional
Gaussian covariance matrices and ⌧ is the learning rate. As shown in Fig. 1C, these dynamics can result in
overfitting if replay is continued too long. We derive the approximate dependence of the optimal stopping
time on SNR, as topt = ⌧

� log(SNR · � + 1) (see Fig. 1G). Our results show that replay attains a decisive
advantage when data is scarce (↵ < 1) and the task to be learned is low noise (SNR � 1) (see Fig.1G).
Finally, to test the generality of these findings, we trained nonlinear ReLU networks on the MNIST digit
recognition task. Compared to online learning, replay yielded better generalization from limited data.

Our findings provide a tractable quantitative model to study the impact of experience replay on gener-
alization performance, and make testable predictions for the amount of replay in di↵erent task scenarios.
They also suggest that replay may serve to improve generalization from limited data.
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eigenvalues so that the assumptions we make to derive the scaling are weakest in
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demonstrate that our theoretical predictions for generalization and training error
dynamics (dashed lines) at di�erent measurement densities (� = 1/2, � = 1, and
� = 2) match with simulations. The simulations for generalization (blue) and
training (green) errors have a width of ±2 standard deviations generated from 20
trials using N = 300, P = �N and Gaussian input, noise, and parameters with
�w = 1, �0

w = 0, and SNR = 5. The simulations show excellent agreement with
our theoretical predictions for generalization and training error provided in (15)
and (27).

performances: here the relative error between the two is under 3 percent and is the largest
around � = 1. Hence early stopping can be a highly e�ective remedy against overtraining.
Further, we can exploit the similar performance of these two algorithms to make analytic
predictions for how the optimal stopping time depends on other parameters, namely the
measurement density and SNR.

2.3 Optimal stopping time vs SNR

As discussed earlier, training to convergence requires training for time proportional to
1/�min, the smallest eigenvalue. The optimal stopping time, however, can be substan-
tially shorter. In this section we estimate its dependence on the parameters of the problem.
If we initialize with w(0) = 0, the expression for Eg(t) reduces to

Eg(t)

�2
w

=

Z
�MP(�)


e� 2�t

⌧ +
1

� · SNR
(1 � e� �t

⌧ )2
�

d� +
1

SNR
. (17)

To solve for the optimal stopping time numerically, we can di�erentiate the above equation
with respect to t and set the result equal to zero. However, to gain insight into how the
optimal stopping time depends on measurement density and SNR, it is helpful to compare it
to L2-regularized regression where the generalization error (see Advani and Ganguli, 2016b)
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Figure 1: The generalization benefit of memory replay. (A) Learning setup. A teacher network (left)
generates examples for a student network. (B) Average dynamics of online learning. (C) Average dynamics
of replay-based batch learning. Generalization performance initially improves but eventually worsens,
indicating overfitting to noise in the specific examples being replayed. (D,H) Generalization performance
of optimal replay vs optimal online learning. When noise is high (panel D), optimal replay yields a
consistent but small advantage. However when noise is low (panel H), replay yields decisively better
generalization from few examples. (E) Minibatch replay. Examples arrive in blocks, with replay after each.
(F) Performance of optimal minibatch replay. Breaking experience into more blocks interpolates between
batch and online learning. (G) Optimal amount of replay as a function of task SNR.

network, which produces a label via its synaptic weights W̄ and adding Gaussian noise. P examples are
drawn in this way, and the student then learns via gradient descent on the mean squared error.

Due to space constraints we omit full derivations, but state results on generalization error dynamics
in the online learning and batch settings and how the optimal stopping time varies with SNR. These
predictions and others are validated by numerical simulations, as shown in Fig. 1. For online learning
without replay, the resulting learning curve is

hEg(↵) i
�2

w̄
= (1 + INR + 1/SNR)e�↵⌘(2�⌘) +

1

SNR

1

1 � ⌘/2

⇥
1 � e�↵⌘(2�⌘)

⇤
. (1)

where ⌘ is the learning rate, ↵ = P/N is the amount of experience relative to the number of parameters
in the student, and �2

w̄, �
2
w, �

2
e are the variances of the teacher weights, initial student weights, and output

noise respectively. The average generalization error for batch learning with replay is substantially more
complicated and has the form

hEg(t) i
�2

w̄
=

Z
⇢MP(�)


(1 + INR) e� 2�t

⌧ +
1

� · SNR(1 � e� �t
⌧ )2

�
d�+

1

SNR
, (2)

where ⇢MP(�) is the Marchenko-Pasteur distribution describing the eigenvalue distribution of high-dimensional
Gaussian covariance matrices and ⌧ is the learning rate. As shown in Fig. 1C, these dynamics can result in
overfitting if replay is continued too long. We derive the approximate dependence of the optimal stopping
time on SNR, as topt = ⌧

� log(SNR · � + 1) (see Fig. 1G). Our results show that replay attains a decisive
advantage when data is scarce (↵ < 1) and the task to be learned is low noise (SNR � 1) (see Fig.1G).
Finally, to test the generality of these findings, we trained nonlinear ReLU networks on the MNIST digit
recognition task. Compared to online learning, replay yielded better generalization from limited data.

Our findings provide a tractable quantitative model to study the impact of experience replay on gener-
alization performance, and make testable predictions for the amount of replay in di↵erent task scenarios.
They also suggest that replay may serve to improve generalization from limited data.
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Dynamics of stochastic gradient descent in linear
neural networks

November 20, 2017

Abstract

In this paper, we perform an average case analysis of the generalization dynam-
ics of neural networks solving large inference problems. We study the practically-
relevant “high-dimensional” regime where the size of the network is on the order of
or even larger than the number of examples in the dataset. Using random matrix
theory and exact solutions in linear models, we show that the dynamics of gradient
descent learning naturally protect against overtraining and overfitting. Overtraining
is worst at intermediate model sizes, and surprisingly can be reduced by making
a model smaller or larger. In the high-dimensional regime, we find a strong role
for early stopping and show that low generalization error requires starting with
small initial weights. We then develop and test predictions in non-linear neural
networks inspired by these findings, and demonstrate that naive application of worst-
case theories such as VC dimension and Rademacher complexity are inaccurate in
predicting the generalization performance of deep neural networks.

1 Introduction
We now study the dynamics of online learning. In particular, suppose that upon receiving
each example, we update weights according to

wp+1 = wp + ⌘epx
T
p (1)

where xp is the pth input example and ep = yp � ŷp is the error between the network’s
output and the target output for this example. Using the model yp = w̄xp + ✏, we have

wp+1 = wp + ⌘ (w̄xp + ✏� wpxp)x
T
p (2)

= wp + ⌘ (w̄ � wp)xpx
T
p + ⌘✏xT

p . (3)
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In offline learning, all examples are stored and repeatedly used to 
update the weights, either using batch gradient descent or SGD 
with small learning rate

Results

Generalization error dynamics

scalar outputs y 2 R1⇥P ,
y = w̄X + ✏. (1)

In the equation above, ✏ 2 R1⇥P denotes noise in the teacher’s output. We will model
both the noise ✏ and the teacher weights w̄ as drawn i.i.d. from a random Gaussian distri-
bution with zero mean and variance �2

✏ and �2
w respectively. In this setting, the function to

be learned (w̄) is a randomly drawn mapping from input to output; this is a simple stand
in for learning some task of interest. The signal-to-noise ratio SNR ⌘ �2

w/�
2
✏ parametrizes

the strength of the rule underlying the dataset relative to the noise in the teacher’s output.
In our solutions, we will compute the generalization dynamics averaged over all possible
realizations of w̄ to access the general features of the learning dynamics independent of
the specific problems encountered. Finally, we assume that the inputs Xµj are drawn i.i.d.

from a Gaussian with mean zero and variance 1
N

so that each example will have an expected
norm of one:

⌦
kxµk22

↵
= 1.

The student network is trained using the dataset {y,X} to accurately predict outputs
for novel inputs x 2 RN . The student is a shallow linear network, such that the student’s
prediction ŷ 2 R is simply ŷµ = w(t)xµ. To learn its parameters, the student network
will attempt to minimize the mean squared error on the P training samples using gradient
descent. The training error is

Et(w(t)) =
1

P

PX

µ=1

kyµ � ŷµk22, (2)

and full-batch continuous-time gradient descent on this error function (a good approxima-
tion to backpropagation with small step size) yields the dynamical equations

⌧ ẇ(t) = yXT � wXXT . (3)

where ⌧ is a time constant inversely proportional to the learning rate. Here the time variable
t tracks the number of epochs, such that as t goes from 0 to 1, for example, the student
network has seen all P examples once. Our primary goal is to understand the evolving
generalization performance of the network over the course of training. That is, we wish to
understand the generalization error on a new, unseen example,

Eg(w(t)) =
⌦
(y � ŷ)2

↵
x,✏

(4)

as training proceeds. Here the average h·ix,✏ is over potential inputs x and noise ✏.
We emphasize that we are analyzing the batch setting, in which a fixed set of P examples

is used again and again throughout training. This contrasts with the online setting, where
each example is used only once. In the online setting, overtraining is impossible as each
new example yields an unbiased sample from the true generalization error gradient (see e.g.,
Fig. 11 of Erhan et al., 2010 for an empirical demonstration in a deep neural network).
Overtraining, thus, is a phenomenon of batch learning. In practice, neural networks are
typically trained with stochastic gradient descent (SGD) such that weight updates are
applied after each example, which may seem closer to the online setting. However, typical
training procedures based on SGD make multiple passes through the same fixed dataset,
and this is the essential feature of batch learning: repeatedly training on the same examples

5

Inverse learning rate: \
Time in epochs (passes through entire dataset): ]

Average generalization error depends on correlations within finite 
dataset and can be derived with random matrix theory in the high-
dimensional limit (Advani & Saxe, 2017):

Marchenko-Pasteur distribution:     

It follows from the definition of z that the generalization error as a function of training time
is

Eg(t) =
1

N

X

i

⌦
(z̄i � zi)

2
↵
+ �2

✏ (12)

=
1

N

X

i


(�2

w + (�0
w)

2)e�
2�it
⌧ +

�2
✏

�i

(1� e�
�it
⌧ )2

�
+ �2

✏ , (13)

where the second equality follows from the assumption that the teacher weights w̄ and initial
student weights w(0) are drawn i.i.d. from Gaussian distributions with standard deviation
�w and �0

w respectively. The generalization error expression contains two time-dependent
terms. The first term exponentially decays to zero, and encodes the distance between the
weight initialization and the final weights to be learned. The second term begins at zero and

exponentially approaches its asymptote of �
2
✏

�i
. This term corresponds to overfitting the noise

present in the particular batch of samples. We note two important points: first, eigenvalues
which are exactly zero (�i = 0) correspond to directions with no learning dynamics so that
the parameters zi will remain at zi(0) indefinitely. These directions form a frozen subspace

in which no learning occurs. Hence, if there are zero eigenvalues, weight initializations can
have a lasting impact on generalization performance even after arbitrarily long training.

Second, smaller eigenvalues lead to the most serious over-fitting due to the �
2
✏

�i
factor in the

second term of the generalization error expression. Hence a large eigengap between zero
and the smallest nonzero eigenvalue can naturally protect against overfitting. Moreover,
smaller eigenvalues are also the slowest to learn, suggesting that early stopping can be an
e↵ective strategy, as we demonstrate in more detail subsequently. Finally, the expression
provides insight into the time required for convergence. Non-zero but small eigenvalues
of the sample covariance lead to very slow dynamics, so that it will take on the order of
t = ⌧

�min
for gradient descent to minimize the training error.

The result in (13) reveals the critical role played by the eigenvalue spectrum of the sample
input covariance matrix. If there are many small eigenvalues generalization performance will
be poor, while if there are only large eigenvalues generalization performance will be strong.
What is the distribution of this spectrum as a function of the signal-to-noise ratio and size
of the dataset? To understand this, we pass to the high-dimensional limit where the input
dimension N and number of examples P jointly go to infinity, while their ratio ↵ = P/N
remains finite. Then the eigenvalue distribution ofXXT approaches the Marchenko-Pasteur
distribution (Marchenko and Pasteur, 1967; LeCun, Kanter, and Solla, 1991),

⇢MP(�) =
1

2⇡

p
(�+ � �)(�� ��)

�
+ 1↵<1(1� ↵)�(�), (14)

for � = 0 or � 2 [��,�+], and the distribution is zero elsewhere. Here the edges of the
distribution take the values �± = (

p
↵± 1)2 and hence depend on the number of examples

relative to the input dimension. Figure 2A depicts this distribution for three di↵erent
values of the load ↵. In the undersampled regime when ↵ < 1, there are fewer examples
than input dimensions and many eigenvalues are exactly zero, yielding the delta function
at the origin. This corresponds to a regime where data is scarce relative to the size of the
model. In the critically sampled regime ↵ = 1, there are exactly as many parameters as
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input covariance matrix. If there are many small eigenvalues generalization performance will
be poor, while if there are only large eigenvalues generalization performance will be strong.
What is the distribution of this spectrum as a function of the signal-to-noise ratio and size
of the dataset? To understand this, we pass to the high-dimensional limit where the input
dimension N and number of examples P jointly go to infinity, while their ratio ↵ = P/N
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Figure 4: Comparison of early stopping to optimal quadratic (L2) regularization in shallow
networks. In (A) we see that the optimal early stopping prediction (red stars)
achieves a generalization error near that of optimal quadratic regularization (blue
line). In this example there is no more than 3 percent relative error between
the two, which peaks near � = 1 when the spectrum of non-zero eigenvalues is
broader. Here we have fixed SNR = 5 and �2

w = 1 which implies that even at large
measurement density � the generalization error asymptotes to a non-zero value
due to noise 0.2 = 1

SNR . (B) The approximation for optimal stopping time in (19)
correctly predicts the scaling of optimal stopping time with SNR. � moderates
the slope of the e�ect of SNR on the optimal stopping time by shifting where the
bulk of the eigenvalues rest. Note that the case of � = 1 has a large spread of
eigenvalues so that the assumptions we make to derive the scaling are weakest in
this limit leading to a slightly worse fit. (C) Generalization error vs � for di�erent
initial weight norms. In the limited data regime, small initial weights are crucial
for good generalization.
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Figure 3: Generalization and training error dynamics compared with simulations. Here we
demonstrate that our theoretical predictions for generalization and training error
dynamics (dashed lines) at di�erent measurement densities (� = 1/2, � = 1, and
� = 2) match with simulations. The simulations for generalization (blue) and
training (green) errors have a width of ±2 standard deviations generated from 20
trials using N = 300, P = �N and Gaussian input, noise, and parameters with
�w = 1, �0

w = 0, and SNR = 5. The simulations show excellent agreement with
our theoretical predictions for generalization and training error provided in (15)
and (27).

performances: here the relative error between the two is under 3 percent and is the largest
around � = 1. Hence early stopping can be a highly e�ective remedy against overtraining.
Further, we can exploit the similar performance of these two algorithms to make analytic
predictions for how the optimal stopping time depends on other parameters, namely the
measurement density and SNR.

2.3 Optimal stopping time vs SNR

As discussed earlier, training to convergence requires training for time proportional to
1/�min, the smallest eigenvalue. The optimal stopping time, however, can be substan-
tially shorter. In this section we estimate its dependence on the parameters of the problem.
If we initialize with w(0) = 0, the expression for Eg(t) reduces to

Eg(t)

�2
w

=

Z
�MP(�)


e� 2�t

⌧ +
1

� · SNR
(1 � e� �t

⌧ )2
�

d� +
1

SNR
. (17)

To solve for the optimal stopping time numerically, we can di�erentiate the above equation
with respect to t and set the result equal to zero. However, to gain insight into how the
optimal stopping time depends on measurement density and SNR, it is helpful to compare it
to L2-regularized regression where the generalization error (see Advani and Ganguli, 2016b)
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Figure 1: The generalization benefit of memory replay. (A) Learning setup. A teacher network (left)
generates examples for a student network. (B) Average dynamics of online learning. (C) Average dynamics
of replay-based batch learning. Generalization performance initially improves but eventually worsens,
indicating overfitting to noise in the specific examples being replayed. (D,H) Generalization performance
of optimal replay vs optimal online learning. When noise is high (panel D), optimal replay yields a
consistent but small advantage. However when noise is low (panel H), replay yields decisively better
generalization from few examples. (E) Minibatch replay. Examples arrive in blocks, with replay after each.
(F) Performance of optimal minibatch replay. Breaking experience into more blocks interpolates between
batch and online learning. (G) Optimal amount of replay as a function of task SNR.

network, which produces a label via its synaptic weights W̄ and adding Gaussian noise. P examples are
drawn in this way, and the student then learns via gradient descent on the mean squared error.

Due to space constraints we omit full derivations, but state results on generalization error dynamics
in the online learning and batch settings and how the optimal stopping time varies with SNR. These
predictions and others are validated by numerical simulations, as shown in Fig. 1. For online learning
without replay, the resulting learning curve is

hEg(↵) i
�2

w̄
= (1 + INR + 1/SNR)e�↵⌘(2�⌘) +

1

SNR

1

1 � ⌘/2

⇥
1 � e�↵⌘(2�⌘)

⇤
. (1)

where ⌘ is the learning rate, ↵ = P/N is the amount of experience relative to the number of parameters
in the student, and �2

w̄, �
2
w, �

2
e are the variances of the teacher weights, initial student weights, and output

noise respectively. The average generalization error for batch learning with replay is substantially more
complicated and has the form

hEg(t) i
�2

w̄
=

Z
⇢MP(�)


(1 + INR) e� 2�t

⌧ +
1

� · SNR(1 � e� �t
⌧ )2

�
d�+

1

SNR
, (2)

where ⇢MP(�) is the Marchenko-Pasteur distribution describing the eigenvalue distribution of high-dimensional
Gaussian covariance matrices and ⌧ is the learning rate. As shown in Fig. 1C, these dynamics can result in
overfitting if replay is continued too long. We derive the approximate dependence of the optimal stopping
time on SNR, as topt = ⌧

� log(SNR · � + 1) (see Fig. 1G). Our results show that replay attains a decisive
advantage when data is scarce (↵ < 1) and the task to be learned is low noise (SNR � 1) (see Fig.1G).
Finally, to test the generality of these findings, we trained nonlinear ReLU networks on the MNIST digit
recognition task. Compared to online learning, replay yielded better generalization from limited data.

Our findings provide a tractable quantitative model to study the impact of experience replay on gener-
alization performance, and make testable predictions for the amount of replay in di↵erent task scenarios.
They also suggest that replay may serve to improve generalization from limited data.
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Figure 4: Comparison of early stopping to optimal quadratic (L2) regularization in shallow
networks. In (A) we see that the optimal early stopping prediction (red stars)
achieves a generalization error near that of optimal quadratic regularization (blue
line). In this example there is no more than 3 percent relative error between
the two, which peaks near � = 1 when the spectrum of non-zero eigenvalues is
broader. Here we have fixed SNR = 5 and �2

w = 1 which implies that even at large
measurement density � the generalization error asymptotes to a non-zero value
due to noise 0.2 = 1

SNR . (B) The approximation for optimal stopping time in (19)
correctly predicts the scaling of optimal stopping time with SNR. � moderates
the slope of the e�ect of SNR on the optimal stopping time by shifting where the
bulk of the eigenvalues rest. Note that the case of � = 1 has a large spread of
eigenvalues so that the assumptions we make to derive the scaling are weakest in
this limit leading to a slightly worse fit. (C) Generalization error vs � for di�erent
initial weight norms. In the limited data regime, small initial weights are crucial
for good generalization.
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Figure 3: Generalization and training error dynamics compared with simulations. Here we
demonstrate that our theoretical predictions for generalization and training error
dynamics (dashed lines) at di�erent measurement densities (� = 1/2, � = 1, and
� = 2) match with simulations. The simulations for generalization (blue) and
training (green) errors have a width of ±2 standard deviations generated from 20
trials using N = 300, P = �N and Gaussian input, noise, and parameters with
�w = 1, �0

w = 0, and SNR = 5. The simulations show excellent agreement with
our theoretical predictions for generalization and training error provided in (15)
and (27).

performances: here the relative error between the two is under 3 percent and is the largest
around � = 1. Hence early stopping can be a highly e�ective remedy against overtraining.
Further, we can exploit the similar performance of these two algorithms to make analytic
predictions for how the optimal stopping time depends on other parameters, namely the
measurement density and SNR.

2.3 Optimal stopping time vs SNR

As discussed earlier, training to convergence requires training for time proportional to
1/�min, the smallest eigenvalue. The optimal stopping time, however, can be substan-
tially shorter. In this section we estimate its dependence on the parameters of the problem.
If we initialize with w(0) = 0, the expression for Eg(t) reduces to

Eg(t)

�2
w

=

Z
�MP(�)


e� 2�t

⌧ +
1

� · SNR
(1 � e� �t

⌧ )2
�

d� +
1

SNR
. (17)

To solve for the optimal stopping time numerically, we can di�erentiate the above equation
with respect to t and set the result equal to zero. However, to gain insight into how the
optimal stopping time depends on measurement density and SNR, it is helpful to compare it
to L2-regularized regression where the generalization error (see Advani and Ganguli, 2016b)
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Figure 1: The generalization benefit of memory replay. (A) Learning setup. A teacher network (left)
generates examples for a student network. (B) Average dynamics of online learning. (C) Average dynamics
of replay-based batch learning. Generalization performance initially improves but eventually worsens,
indicating overfitting to noise in the specific examples being replayed. (D,H) Generalization performance
of optimal replay vs optimal online learning. When noise is high (panel D), optimal replay yields a
consistent but small advantage. However when noise is low (panel H), replay yields decisively better
generalization from few examples. (E) Minibatch replay. Examples arrive in blocks, with replay after each.
(F) Performance of optimal minibatch replay. Breaking experience into more blocks interpolates between
batch and online learning. (G) Optimal amount of replay as a function of task SNR.

network, which produces a label via its synaptic weights W̄ and adding Gaussian noise. P examples are
drawn in this way, and the student then learns via gradient descent on the mean squared error.

Due to space constraints we omit full derivations, but state results on generalization error dynamics
in the online learning and batch settings and how the optimal stopping time varies with SNR. These
predictions and others are validated by numerical simulations, as shown in Fig. 1. For online learning
without replay, the resulting learning curve is

hEg(↵) i
�2

w̄
= (1 + INR + 1/SNR)e�↵⌘(2�⌘) +

1

SNR

1

1 � ⌘/2

⇥
1 � e�↵⌘(2�⌘)

⇤
. (1)

where ⌘ is the learning rate, ↵ = P/N is the amount of experience relative to the number of parameters
in the student, and �2

w̄, �
2
w, �

2
e are the variances of the teacher weights, initial student weights, and output

noise respectively. The average generalization error for batch learning with replay is substantially more
complicated and has the form

hEg(t) i
�2

w̄
=

Z
⇢MP(�)


(1 + INR) e� 2�t

⌧ +
1

� · SNR(1 � e� �t
⌧ )2

�
d�+

1

SNR
, (2)

where ⇢MP(�) is the Marchenko-Pasteur distribution describing the eigenvalue distribution of high-dimensional
Gaussian covariance matrices and ⌧ is the learning rate. As shown in Fig. 1C, these dynamics can result in
overfitting if replay is continued too long. We derive the approximate dependence of the optimal stopping
time on SNR, as topt = ⌧

� log(SNR · � + 1) (see Fig. 1G). Our results show that replay attains a decisive
advantage when data is scarce (↵ < 1) and the task to be learned is low noise (SNR � 1) (see Fig.1G).
Finally, to test the generality of these findings, we trained nonlinear ReLU networks on the MNIST digit
recognition task. Compared to online learning, replay yielded better generalization from limited data.

Our findings provide a tractable quantitative model to study the impact of experience replay on gener-
alization performance, and make testable predictions for the amount of replay in di↵erent task scenarios.
They also suggest that replay may serve to improve generalization from limited data.
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Figure 2: The Marchenko-Pastur distribution and high-dimensional learning dynamics. A) Different
ratios of training samples to network parameters (↵) yield different eigenvalue density in the input
correlation matrix. For large N , this density is described by the MP distribution (13), which consists
of a ‘bulk’ lying between [��, �+], and, when ↵ < 1, an additional delta function spike at zero.
When there are fewer samples than parameters (↵ < 1, left column), some fraction of eigenvalues are
exactly zero (delta-function arrow at origin), and the rest are appreciably greater than zero. When
the number of samples is on the order of the parameters (↵ = 1, center column), the distribution
diverges near the origin and there are many nonzero but arbitrarily small eigenvalues. When there
are more samples than parameters (↵ > 1, right column), the smallest eigenvalues are appreciably
greater than zero. B) Dynamics of learning. From Eqn. 12, the generalization error is harmed
most by small eigenvalues; and these are the slowest to learn. Hence for ↵ = 1/2 and ↵ = 2, the
gap in the spectrum near zero protects the dynamics from overtraining substantially (eigenvalues
which are exactly zero for ↵ = 1/2 are never learned, and hence contribute a finite error but no
overtraining). For ↵ = 1, there are arbitrarily small eigenvalues, and overtraining is substantial. C)
Plot of generalization error versus ↵ for several training times, revealing a clear spike near ↵ = 1.
Other parameters: N = 100, D = 1, SNR = 5. As the colors vary from red to black the training
time increases t

⌧ = [5, 20, 50, 100, 1000].

The second inequality follows from the assumption that the teacher weights w̄ and initial weights97

w(0) are drawn iid from gaussian distributions with standard devation �w and �
0
w respectively. This98

form demonstrates two important points, first that for eigenvalues which are exactly zero �i = 0,99

there are no dynamics, and the parameters zi will remain at zi(0) indefinitely. Non-zero but small100

eigenvalues of the sample covariance lead to very slow dynamics, so that it will take on the order of101

t = ⌧
�min

for gradient descent to minimize the training error. The second point is that small eigenvalues102

lead to serious over-fitting and poor generalization performance due to the �2
✏

�i
factor in the second103

term of the MSE expression.104

We will discuss how the optimal stopping time may be influenced by these factors and how over-105

training can lead to complete failure of generalization performance when the measurement density106

↵ = P
N is close to 1. In order to analytically predict this behavior we study the limit of large numbers107

of input parameters N and data samples P , when the eigenvalue distribution of XX
T will approach108

the Marchenko-Pasteur distribution [23]:109

⇢
MP(�) =

1

2⇡

p
(�+ � �)(� � ��)

�
+ 1↵<1(1 � ↵)�(�), (13)

for � = 0 or � 2 [��, �+], and the distribution is zero elsewhere. Here the edges of the distribution110

take the values �± = (
p

↵ ± 1)2.111

Early stopping comparison with L2 regularization. It is instructive to compare early stopping of112

gradient descent with L2 regularization, which corresponds to solving the optimization problem:113

ŵL2 = arg min
w

1

2

h
ky � Xwk22 +

�

2
kwk22

i
. (14)

The optimal performance of this algorithm occurs in this setting when we tune the regularization114

strength to be inversely proportional to the signal-to-noise ratio: � = 1
SNR = �2

✏
�2
w

. Under the115

assumptions we make of Gaussian noise and parameter distributions, no algorithm will out-perform116
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Figure 4: Comparison of early stopping to optimal quadratic (L2) regularization in shallow
networks. In (A) we see that the optimal early stopping prediction (red stars)
achieves a generalization error near that of optimal quadratic regularization (blue
line). In this example there is no more than 3 percent relative error between
the two, which peaks near � = 1 when the spectrum of non-zero eigenvalues is
broader. Here we have fixed SNR = 5 and �2

w = 1 which implies that even at large
measurement density � the generalization error asymptotes to a non-zero value
due to noise 0.2 = 1

SNR . (B) The approximation for optimal stopping time in (19)
correctly predicts the scaling of optimal stopping time with SNR. � moderates
the slope of the e�ect of SNR on the optimal stopping time by shifting where the
bulk of the eigenvalues rest. Note that the case of � = 1 has a large spread of
eigenvalues so that the assumptions we make to derive the scaling are weakest in
this limit leading to a slightly worse fit. (C) Generalization error vs � for di�erent
initial weight norms. In the limited data regime, small initial weights are crucial
for good generalization.
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Figure 3: Generalization and training error dynamics compared with simulations. Here we
demonstrate that our theoretical predictions for generalization and training error
dynamics (dashed lines) at di�erent measurement densities (� = 1/2, � = 1, and
� = 2) match with simulations. The simulations for generalization (blue) and
training (green) errors have a width of ±2 standard deviations generated from 20
trials using N = 300, P = �N and Gaussian input, noise, and parameters with
�w = 1, �0

w = 0, and SNR = 5. The simulations show excellent agreement with
our theoretical predictions for generalization and training error provided in (15)
and (27).

performances: here the relative error between the two is under 3 percent and is the largest
around � = 1. Hence early stopping can be a highly e�ective remedy against overtraining.
Further, we can exploit the similar performance of these two algorithms to make analytic
predictions for how the optimal stopping time depends on other parameters, namely the
measurement density and SNR.

2.3 Optimal stopping time vs SNR

As discussed earlier, training to convergence requires training for time proportional to
1/�min, the smallest eigenvalue. The optimal stopping time, however, can be substan-
tially shorter. In this section we estimate its dependence on the parameters of the problem.
If we initialize with w(0) = 0, the expression for Eg(t) reduces to

Eg(t)

�2
w

=

Z
�MP(�)


e� 2�t

⌧ +
1

� · SNR
(1 � e� �t

⌧ )2
�

d� +
1

SNR
. (17)

To solve for the optimal stopping time numerically, we can di�erentiate the above equation
with respect to t and set the result equal to zero. However, to gain insight into how the
optimal stopping time depends on measurement density and SNR, it is helpful to compare it
to L2-regularized regression where the generalization error (see Advani and Ganguli, 2016b)
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Figure 1: The generalization benefit of memory replay. (A) Learning setup. A teacher network (left)
generates examples for a student network. (B) Average dynamics of online learning. (C) Average dynamics
of replay-based batch learning. Generalization performance initially improves but eventually worsens,
indicating overfitting to noise in the specific examples being replayed. (D,H) Generalization performance
of optimal replay vs optimal online learning. When noise is high (panel D), optimal replay yields a
consistent but small advantage. However when noise is low (panel H), replay yields decisively better
generalization from few examples. (E) Minibatch replay. Examples arrive in blocks, with replay after each.
(F) Performance of optimal minibatch replay. Breaking experience into more blocks interpolates between
batch and online learning. (G) Optimal amount of replay as a function of task SNR.

network, which produces a label via its synaptic weights W̄ and adding Gaussian noise. P examples are
drawn in this way, and the student then learns via gradient descent on the mean squared error.

Due to space constraints we omit full derivations, but state results on generalization error dynamics
in the online learning and batch settings and how the optimal stopping time varies with SNR. These
predictions and others are validated by numerical simulations, as shown in Fig. 1. For online learning
without replay, the resulting learning curve is

hEg(↵) i
�2

w̄
= (1 + INR + 1/SNR)e�↵⌘(2�⌘) +

1

SNR

1

1 � ⌘/2

⇥
1 � e�↵⌘(2�⌘)

⇤
. (1)

where ⌘ is the learning rate, ↵ = P/N is the amount of experience relative to the number of parameters
in the student, and �2

w̄, �
2
w, �

2
e are the variances of the teacher weights, initial student weights, and output

noise respectively. The average generalization error for batch learning with replay is substantially more
complicated and has the form

hEg(t) i
�2

w̄
=

Z
⇢MP(�)


(1 + INR) e� 2�t

⌧ +
1

� · SNR(1 � e� �t
⌧ )2

�
d�+

1

SNR
, (2)

where ⇢MP(�) is the Marchenko-Pasteur distribution describing the eigenvalue distribution of high-dimensional
Gaussian covariance matrices and ⌧ is the learning rate. As shown in Fig. 1C, these dynamics can result in
overfitting if replay is continued too long. We derive the approximate dependence of the optimal stopping
time on SNR, as topt = ⌧

� log(SNR · � + 1) (see Fig. 1G). Our results show that replay attains a decisive
advantage when data is scarce (↵ < 1) and the task to be learned is low noise (SNR � 1) (see Fig.1G).
Finally, to test the generality of these findings, we trained nonlinear ReLU networks on the MNIST digit
recognition task. Compared to online learning, replay yielded better generalization from limited data.

Our findings provide a tractable quantitative model to study the impact of experience replay on gener-
alization performance, and make testable predictions for the amount of replay in di↵erent task scenarios.
They also suggest that replay may serve to improve generalization from limited data.

2

Examples arrive in blocks with replay after each.
• A model for replay of a day’s training experiences during sleep
• Performance interpolates between online and batch 

To see if our results hold in more realistic 
settings, we trained nonlinear ReLU
networks on the MNIST handwritten 
digit dataset.
• Architecture: 1 hidden layer, 100 

hidden units, softmax output
• Binary classification: 7s vs 9s
• Online learning rates: optimized over 

15 log-spaced values

Optimal replay yields ~10% accuracy improvement for few training samples. 


