
On Random Weights and Unsupervised Feature Learning

Andrew M. Saxe asaxe@cs.stanford.edu
Pang Wei Koh pangwei@cs.stanford.edu
Zhenghao Chen zhenghao@cs.stanford.edu
Maneesh Bhand mbhand@cs.stanford.edu
Bipin Suresh bipins@cs.stanford.edu
Andrew Y. Ng ang@cs.stanford.edu

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Abstract

Recently two anomalous results in the litera-
ture have shown that certain feature learn-
ing architectures can yield useful features
for object recognition tasks even with un-
trained, random weights. In this paper we
pose the question: why do random weights
sometimes do so well? Our answer is that cer-
tain convolutional pooling architectures can
be inherently frequency selective and trans-
lation invariant, even with random weights.
Based on this we demonstrate the viability
of extremely fast architecture search by us-
ing random weights to evaluate candidate ar-
chitectures, thereby sidestepping the time-
consuming learning process. We then show
that a surprising fraction of the performance
of certain state-of-the-art methods can be at-
tributed to the architecture alone.

1. Introduction

Recently two anomalous results in the literature have
shown that certain feature learning architectures with
random, untrained weights can do very well on ob-
ject recognition tasks. In particular, Jarrett et al.
(2009) found that features from a one-layer convolu-
tional pooling architecture with completely random fil-
ters, when passed to a linear classifier, could achieve an
average recognition rate of 53% on Caltech101, while
unsupervised pretraining and discriminative finetun-
ing of the filters improved performance only modestly
to 54.2%. This surprising finding has also been noted
by Pinto et al. (2009), who evaluated thousands of

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

convolutional pooling architectures on a number of ob-
ject recognition tasks and again found that random
weights performed only slightly worse than pretrained
weights (James DiCarlo, personal communication; also
see Pinto & Cox, 2011).

This leads us to two questions: (1) Why do random
weights sometimes do so well? and (2) Given the re-
markable performance of architectures with random
weights, what is the contribution of unsupervised pre-
training and discriminative finetuning?

We start by studying the basis of the good perfor-
mance of these convolutional pooling object recogni-
tion systems. Section 2 gives two theorems which
show that convolutional pooling architectures can be
inherently frequency selective and translation invari-
ant, even when initialized with random weights. We
argue that these properties underlie their performance.

In answer to the second question, we show in Section 3
that, for a fixed architecture, unsupervised pretraining
and discriminative finetuning improve classification
performance relative to untrained random weights.
However, the performance improvement can be mod-
est and sometimes smaller than the performance differ-
ences due to architectural parameters. These results
highlight the importance of searching for the most suit-
able architecture for a given classification task, an ap-
proach taken in, for example, (Jarrett et al., 2009).
Our work thus motivates a fast heuristic for architec-
ture search given in Section 4, based on our observed
empirical correlation between the random-weight per-
formance and the pretrained/finetuned performance
of any given network architecture. This method al-
lows us to sidestep the time-consuming learning pro-
cess by evaluating candidate architectures using ran-
dom weights as a proxy for learned weights, yielding
an order-of-magnitude speed-up.

On Random Weights and Unsupervised Feature Learning

f

Convolution layer

Input layer

Pooling layer

x
n

𝑓𝑇(⋅)

⋅ 2

k

f

n

k

Valid

Circular

Figure 1. Left: Convolutional square pooling architecture. In our notation x is the portion of the input layer seen by a
particular pooling unit (shown in red), and f is the convolutional filter applied in the first layer (shown in green). Right:
Valid convolution applies the filter only at locations where f fits entirely; circular convolution applies f at every position,
and permits f to wrap around.

We conclude by showing that a surprising fraction
of performance can be contributed by the architec-
ture alone. In particular, we present a single-layer
convolutional square-pooling architecture with ran-
dom weights that achieves competitive results on the
NORB dataset, without any feature learning. This
demonstrates that a sizeable component of a system’s
performance can come from the intrinsic properties of
the architecture, and not from the unsupervised learn-
ing algorithm. We suggest distinguishing the contri-
butions of architectures from those of learning systems
by reporting random weight performance.

2. Analytical Characterization of the
Optimal Input

Why might random weights perform so well? As only
some architectures yield good performance with ran-
dom weights, a reasonable hypothesis is that particu-
lar architectures can naturally compute features well-
suited to object recognition tasks. Indeed, Jarrett
et al. (2009) numerically computed the optimal in-
put to each neuron using gradient descent in the input
space, and found that the optimal inputs were often
sinusoidal and insensitive to translations. To formalize
this important intuition about what features of the in-
put these random-weight architectures might compute,
we analytically characterize the optimal input to each
neuron for the case of convolutional square-pooling ar-
chitectures. The convolutional square-pooling archi-
tecture can be envisioned as a two layer neural net-
work (Fig. 1). In the first “convolution” layer, a bank
of filters is applied at each position in the input im-
age. In the second “pooling” layer, neighboring filter
responses are combined together by squaring and then

summing them. Intuitively, this architecture incorpo-
rates both selectivity for a specific feature of the input
due to the convolution stage, and robustness to small
translations of the input due to the pooling stage.

In response to a single image I ∈ Rl×l, the con-
volutional square-pooling architecture will generate
many pooling unit outputs. Here we consider a sin-
gle pooling unit which views a restricted subregion
x ∈ Rn×n, n ≤ l of the original input image, as shown
in Fig. 1. The activation of this pooling unit pv(x) is
calculated by convolving a filter f ∈ Rk×k, k ≤ n with
x using “valid” convolution. Valid convolution means
that f is applied only at each position inside x such
that f lies entirely within x (Fig. 1, top right). This
produces a convolution layer of size n−k+1×n−k+1
which feeds into the pooling layer. The final activation
of the pooling unit is the sum of the squares of the el-
ements in the convolution layer. This transformation
from the input x to the activation can be written as
pv(x) =

∑n−k+1
i=1

∑n−k+1
j=1 (f ∗v x)2

ij where ∗v denotes
the “valid” convolution operation.

To understand the sort of input features preferred by
this architecture, it would be useful to know the set
of inputs that maximally activate the pooling unit.
For example, intuitively, this architecture should ex-
hibit some translation invariance due to the pooling
operation. This would reveal itself as a family of opti-
mal inputs, each differing only by a translation. While
the translation invariance of this architecture is simple
enough to grasp intuitively, one might also expect that
the selectivity of the architecture will be approximately
similar to that of the filter f used in the convolution.
That is, if the filter f is highly frequency selective, we
might expect that the optimal input would be close to

On Random Weights and Unsupervised Feature Learning

Figure 2. Six random filters and associated optimal inputs. Top: Randomly sampled 6 × 6 filter used in the convolution.
Middle: Optimal 20 × 20 input for circular convolution. Bottom: Optimal 20 × 20 input for valid convolution.

a sinusoid at the maximal frequency in f , and if the
filter f were diffuse or random, we might think that
the optimal input would be diffuse or random. Our
analysis shows that this latter intuition is in fact false;
regardless of the filter f, a near optimal input will be a
sinusoid at the maximal frequency present in the filter.

To achieve this result, we first make one modifica-
tion to the convolutional square-pooling architecture
to permit an analytical solution: rather than treat-
ing the case of “valid” convolution, we will instead
consider “circular” convolution. Circular convolution
applies the filter at every position in x, and allows the
filter to “wrap around” in cases where it does not lie
entirely within x, as depicted in Fig. 1, bottom right.
Both valid and circular convolution produce identical
responses in the interior of the input region but differ
at the edges, where circular convolution is clearly less
natural; however with it we will be able to compute
the optimal input exactly, and subsequently show that
the optimal input for the case of circular convolution
is near-optimal for the case of valid convolution.

Theorem 2.1 Let f ∈ Rk×k and an input dimension
n ≥ k be given, and assume the technical condition
that the zero frequency (DC) component of f is not
the maximal frequency in f .1 Then there exists vertical
and horizontal frequencies v and h such that a norm-
one input that maximally activates a circular convolu-
tion square-pooling unit pc is a simple sinusoid,

xopt[m, s] =

√
2

n
cos

(
2πmv

n
+

2πsh

n
+ φ

)
, (1)

1For notational simplicity we omit the case where the
zero frequency component is maximal, for which the result
holds with a slightly different leading factor. In this case
the optimal input has v = h = 0 which yields a constant
input across space.

where φ is an unspecified phase. In particular, let f̃
be formed by zero-padding f to size n×n. Then (v, h)
is the frequency pair with amplitude equal to the max-
imum amplitude of any frequency in f̃ .

This result reveals two key features of the circular con-
volution, square-pooling architecture.

1. The frequency of the optimal input is the fre-
quency of maximum magnitude in the filter f .
Hence the architecture is frequency selective.

2. The phase φ is unspecified, and hence the archi-
tecture is translation invariant.

Even if the filter f contains a number of frequencies of
moderate magnitude, such as might occur in a random
filter, the best input will still come from the maximum
magnitude frequency. Example filters and associated
optimal inputs are shown in Fig. 2.

Informally, Theorem 2.1 is proved as follows. The
maximization problem is converted to the Fourier do-
main, where the convolution operation becomes mul-
tiplication with the spectrum of the filter. Squaring
the spectrum of the filter boosts higher amplitude fre-
quencies more than lower amplitude frequencies, and
hence the optimal input places all of its energy in the
largest amplitude frequency present in the original fil-
ter. Inverting this optimal input amplitude from the
Fourier domain back to the spatial domain yields a sin-
gle sinusoid at this maximal frequency of unspecified
phase. Full proof details are given in Appendix A.

2.1. Sinusoids are Near-Optimal for Valid
Convolution

The above analysis computes the optimal input for
circular convolution; object recognition systems, how-

On Random Weights and Unsupervised Feature Learning

ever, typically use valid convolution. Because circular
convolution and valid convolution differ only near the
edge of the input region (see Fig. 2), we might expect
that the optimal input for one would be quite good for
the other. We make this rigorous below.

Theorem 2.2 Let pv(x) be the activation of a single
pooling unit in a valid convolution square-pooling ar-
chitecture, in response to an input x ∈ Rn×n, and sup-
pose that the zero frequency (DC) component of f is
not maximal. Then there exists a sinusoidal input xsin

that is near optimal for pv(x). More formally, there
exist v, h, and φ such that if

xsin[m, s] =

√
2

n
cos

(
2πmv

n
+

2πsh

n
+ φ

)
, (2)

then for all x (||x|| = 1), we have that

pv
(
xsin

)
≥ pv (x)−Kn−1, (3)

where K = 4k3||f ||2 does not depend on n.

Theorem 2.2 is proved by showing that the circular
and valid convolutions are good approximations for
each other. Thus, an optimal input for the circular
convolution, specifically a single sinusoid (from Theo-
rem 2.1), is also near-optimal for the valid convolution.
The full proof is given in Appendix B.

This result shows that valid convolutional square-
pooling architectures will respond near-optimally to
sinusoids at the maximum frequency present in the fil-
ter. These results hold for arbitrary filters, and hence
they hold for random filters. We suggest that this
frequency selectivity and translation invariance con-
tributes to the good performance reported by Jar-
rett et al. (2009) and Pinto et al. (2009), as these
two properties are ingredients well-known to produce
high-performing object recognition systems. Although
many systems attain frequency selectivity via oriented,
band-pass convolutional filters such as Gabor filters,
this is not necessary for convolutional square-pooling
architectures; even with random weights, these archi-
tectures are sensitive to Gabor-like input features.

2.2. Evaluation of the Effect of Convolution

To empirically test the link between the preceding
analysis and performance, we disrupt a key feature
of the architecture and evaluate the resulting impact
on classification accuracy. In particular, the convolu-
tion operation features centrally in the analysis, and
we therefore tested the classification performance of
square-pooling architectures with and without convo-
lution. The non-convolutional networks were identical

Figure 3. Classification performance of convolutional
square-pooling architectures vs non-convolutional square-
pooling architectures. Red squares indicate mean
performance of a single architecture averaged across
random seeds. Error bars represent a 95% confidence
interval.

to their convolutional counterparts except that a dif-
ferent random filter was applied at each location in
the input. We tested the classification performance
of these networks across a variety of architectural pa-
rameters on variants of the NORB (LeCun et al.,
2004) and CIFAR-10 (Krizhevsky, 2009) datasets. For
NORB, we took the left side of the stereo images in
the normalized-uniform set and downsized them to
32x32, and for CIFAR-10, we converted each 32x32
image from RGB to grayscale. We term these modi-
fied datasets NORB-mono and CIFAR-10-mono.

Classification experiments were run on 11 randomly
chosen architectures with filter sizes in {4x4, 8x8,
12x12, 16x16}, pooling sizes in {3x3, 5x5, 9x9} and
filter strides in {1, 2}. Only 11 of the 24 parame-
ter combinations were evaluated due to computational
expense.2 On NORB-mono, we used 10 unique sets
each of convolutional and non-convolutional random
weights3 for each architecture, giving a total of 220
networks, while we used 5/5 sets on CIFAR-10-mono,
for a total of 110 networks. The classification accu-
racies of the sets of random weights were averaged
to give a final score for the convolutional and non-
convolutional versions of each architecture. We used
a linear SVM (liblinear) for classification, with regu-
larization parameter C determined by cross-validation
over {10−3, 10−1, 101}.

As expected, the convolutional random-weight net-
works outperformed the non-convolutional random-

2Exact parameters used and code for reproducing the
experiments are available at http://www.stanford.edu/

~asaxe/random_weights.html.
3We found that the distribution the random weights

were drawn from (e.g. uniform, Laplacian, Gaussian) did
not affect their classification performance, so long as the
distribution was centered about zero.

http://www.stanford.edu/~asaxe/random_weights.html
http://www.stanford.edu/~asaxe/random_weights.html

On Random Weights and Unsupervised Feature Learning

Figure 4. Classification performance of convolutional square-pooling networks with random weights vs with pretrained
and finetuned weights. Left: NORB-mono. Right: CIFAR-10-mono. (Error bars represent a 95% confidence interval)

weight networks by an average of 3.8 ± 0.29% on
NORB-mono (Fig. 3) and 1.5 ± 0.93% on CIFAR-10-
mono. We note, however, that non-convolutional net-
works still performed significantly better than an SVM
learned on raw pixels, which gives 72.6% on NORB-
mono and 28.2% on CIFAR-10-mono.

3. What is the Contribution of
Pretraining and Fine tuning?

The unexpectedly high performance of random-weight
networks on NORB-mono leads us to a central ques-
tion: is unsupervised pretraining and discriminative
finetuning necessary, or do random weights in the right
architecture perform just as well?

We investigate this by comparing the performance of
pretrained and finetuned convolutional networks with
random-weight convolutional networks on the NORB
and CIFAR-10 datasets for the same 11 architectures
evaluated in Section 2.2. Our convolutional networks
were pretrained in an unsupervised fashion through
local receptive field Topographic Independent Compo-
nents Analysis (TICA), a feature-learning algorithm
introduced by Le et al. (2010) that was shown to
achieve high performance on both NORB and CIFAR-
10. Importantly, this algorithm operates on the same
class of square-pooling architectures as our networks.
Finetuning was carried out by backpropagating soft-
max error signals. For speed, we terminate after just
80 iterations of L-BFGS (Schmidt, 2005).

The results are summarized in Fig. 4. As one would
expect, the top-performing networks had trained
weights, and pretraining and finetuning invariably in-
creased the performance of a given architecture. This
was especially true for CIFAR-10, where the top archi-
tecture using trained weights achieved an accuracy of
59.5 ±0.3%, while the top architecture using random
weights only achieved 53.2 ±0.3%. Within our range

of parameters, at least, pretraining and finetuning was
necessary to attain near-top classification performance
on CIFAR-10.

More surprising, however, is the finding that many
trained networks lose out in terms of performance to
random-weight networks with different architectural
parameters. We conclude, similarly to Jarrett et al.
(2009), that a search over a range of architectural pa-
rameters may be as beneficial to performance as pre-
training and fine-tuning, especially since we often only
have a broad architectural prior to work with. An im-
portant consideration, then, is to be able to perform
this search efficiently. In the next section, we present
and justify a heuristic for doing so.

4. Fast Architecture Selection

A computationally expensive component of feature
learning systems is architecture selection, which typi-
cally involves large grid searches through the space of
architecture parameters. Each architecture to be eval-
uated requires substantial time to pretrain due to the
large amounts of data used and the complexity of the
learning algorithms. These computational challenges,
already considerable for single-layer architectures, are
exacerbated in deeper networks due to the exponential
increase in the number of possible architectures.

Evaluating architectures with random weights pro-
vides one means of greatly speeding this architecture
selection process. Crucially, we note that Fig. 4 shows
a robust correlation between random-weight perfor-
mance and the corresponding trained-weight perfor-
mance. Hence large-scale searches of the space of net-
work architectures can be carried out by using random-
weight performance as a proxy for trained-weight per-

On Random Weights and Unsupervised Feature Learning

Table 1. Time comparison between normal architecture search and random weight architecture search.

NORB-mono CIFAR-10-mono
TICA Random Weights TICA Random Weights

Pretraining 2.9h - 26.1h -
Finetuning 0.6h - 1.0h -
Classification 0.1h 0.1h 1.0h 1.0h
Total 3.6h 0.1h (36×) 28.1h 1.0h (28×)

Table 2. Classification results for various methods on NORB

Algorithm Accuracy (NORB)
Random Weights 95.2%
K-means + Soft Activation Fn. 97.2% (Coates et al., 2011)
Tiled Convolutional Neural Nets 96.1% (Le et al., 2010)
Convolutional Neural Nets 94.4% (Jarrett et al., 2009)
3D DBNs 93.5% (Nair & Hinton, 2009)
DBMs 92.8% (Salakhutdinov & Larochelle, 2010)
SVMs 88.4% (Bengio & LeCun, 2007)

formance.4

This removes the need to pretrain and finetune candi-
date architectures, providing an approximately order-
of-magnitude speedup over the normal approach of
evaluating each pretrained and finetuned network, as
shown in Table 1.5

As a concrete example, we see from Fig. 4 that if
we had performed this random-weight architectural
search and selected the top three architectures ac-
cording to their random-weight performance, we would
have found the top-performing overall trained-weight
architecture for both NORB-mono and CIFAR-10-
mono.

To demonstrate the effectiveness of our method in
a more realistic setting, we consider the “stacked”
convolutional-square poooling architecture (Le et al.,
2010), in which the pooling unit activities from one
convolutional square-pooling architecture are provided
as inputs to a second convolutional square-pooling ar-
chitecture. Because each layer’s architectural param-
eters can vary independently, the space of architec-
tures is very large and evaluating every architectural
combination, even with random weights search, is ex-
pensive. We therefore used random weights to search
through the first layer’s parameters on the CIFAR-10
dataset, holding the parameters of the second layer

4The mean random-weight performance over several
random initializations should be used to evaluate an archi-
tecture because performance differences between random
initializations can be large (note error bars in Fig. 4).

5Different architectures take different amounts of time
to train. Here we report the speedup with one representa-
tive architecture.

fixed. Top random-weights architectures were pre-
trained and finetuned, and evaluated on a hold out
validation set. This search improved results from
70.6% with our initial parameters (hand-chosen based
on prior experience), to 73.1% (as reported in Le et al.,
2010). By doing random-weights search, we were able
to evaluate a much broader range of parameters than
would have been feasible with training. We note that
even though random-weights performance was far be-
low pretrained, finetuned performance, the correlation
between the two was strong enough to enable this
search.

5. Distinguishing the Contributions of
Architecture and Learning

Finally, we provide evidence that current state-of-the-
art feature detection systems may derive a surprising
amount of performance from their architecture alone.
In particular, we focus once again on local receptive
field TICA (Le et al., 2010), which has achieved clas-
sification performance superior to many other meth-
ods reported in the literature. As TICA involves a
square-pooling architecture with sparsity-maximizing
pretraining, we investigate how well a simple convolu-
tional square-pooling architecture can perform with-
out any learning. We find that a convolutional ver-
sion6 of Le et al.’s top-performing architecture with
48 filters still obtains highly competitive results on
NORB, as shown in Table 2.

With such results, it may be useful to distinguish the
contributions of architectures from those of learning
algorithms by reporting the performance of random
weights. Recognizing these distinct contributions to

On Random Weights and Unsupervised Feature Learning

performance may help identify good learning algo-
rithms, which might not always give the best reported
performances if they are paired with bad architectures;
similarly, we will be better able to sift out the good
architectures independently from particular learning
algorithms.

6. Conclusion

The performance of convolutional square-pooling ar-
chitectures with random weights demonstrates the im-
portant role architecture plays in feature learning sys-
tems for object recognition. We find that features
generated by random-weight networks reflect intrin-
sic properties of their architecture; for instance, con-
volutional pooling architectures enable even random-
weight networks to be frequency selective, and we
prove this in the case of square pooling.

One practical result from this study is a new method
for fast architecture selection. Our experimental re-
sults show that the performance of single layer convo-
lutional square pooling networks with random weights
is significantly correlated with the performance of such
architectures after pretraining and finetuning. How-
ever the degree to which this correlation still persists
in deeper networks with more varied nonlinearities re-
mains to be seen. If it is strong, we hope the use of
random weights for architecture search will improve
the performance of state-of-the-art systems.

Acknowledgments We give warm thanks to Quoc
Le and Jiquan Ngiam for code and ideas. We thank
Accelereyes for help with their Jacket computing plat-
form. This work is supported by the DARPA Deep
Learning program under contract number FA8650-10-
C-7020. Andrew Saxe is supported by a NDSEG and
Stanford Graduate Fellowship.

A. Proof of Theorem 2.1

The activation of a single pooling unit is determined by
first convolving a filter f̃ ∈ Rn×n with a portion of the
input image x ∈ Rn×n, and then computing the sum of
the squares of the convolution coefficients. Since con-
volution is a linear operator, we can recast the above
problem as a matrix norm problem maxx∈<N2 ‖Cx̂‖22
subject to ||x̂||2 = 1. where the matrix C implements
the two-dimensional circular convolution convolution
of f̂ and x̂, where f̂ and x̂ are formed by flattening f̃
and x, respectively, into a column vector.

6The architectural parameters of this network are the
same as that of the 96.1%-scoring architecture in (Le et al.,
2010), with the exception that ours is convolutional and has
48 maps instead of 16.

The matrix C is doubly block circulant (see Gray, 2006;
Tee, 2007, for overviews), i.e., each row of blocks is a
circular shift of the previous row,

C =

C1 C2 · · · Cn−1 Cn
Cn C1 · · · Cn−2 Cn−1

...
...

. . .
...

...
C2 C3 · · · Cn C1

 ,
and each block Cn is itself circulant, such that each
row (which contains a subset of the filter coefficients
used in the convolution) is a circular shift of the pre-
vious row. Hence we obtain the optimization problem
maxx∈Rn2 ,x 6=0

x∗C∗Cx
x∗x . This is a positive semidefinite

quadratic form, for which the solution is the eigenvec-
tor associated with the maximal eigenvalue of C∗C.
To obtain an analytical solution we reparametrize the
optimization to diagonalize C∗C so that the eigenval-
ues and eigenvectors may be read off the diagonal. We
change variables to z = Fx where F is the unitary 2D
discrete Fourier transform matrix. The objective then
becomes

x∗C∗Cx

x∗x
=

z∗FC∗CF ∗z

z∗FF ∗z
(4)

=
z∗FC∗F ∗FCF ∗z

z∗z
=
z∗Λ∗Λz

z∗z
(5)

where from (4) to (5) we have twice used the fact
that the Fourier transform is unitary (F ∗F = I), and
we have used the fact that the 2D Fourier transform
diagonalizes doubly block circulant matrices (which
corresponds to the convolution theorem F {f ∗ x} =
FfFx), that is, FCF ∗ = Λ. The matrix Λ is diagonal,
with coefficients Λii = n(Ff)i, equal to the Fourier
coefficients of the convolution filter f scaled by n.
Hence we obtain the equivalent optimization problem

maxz∈Cn2 ,z 6=0
z∗|Λ|2z
z∗z subject to F ∗z ∈ R where the

matrix |Λ|2 is diagonal with entries |Λ|2ii = n2|(Ff)i|2,
the square of the magnitude of the Fourier coefficients
of f scaled by n2. The constraint F ∗z ∈ R ensures
that x is real, despite z being complex. Because the
coefficient matrix is diagonal, we can read off the eigen-
values as λi = n2|Λ|2ii with corresponding eigenvector
ei, the ith unit vector. The global solution to the opti-
mization problem, setting aside the reality condition,
is any mixture of eigenvectors corresponding to maxi-
mal eigenvalues, scaled to have unit norm.

To establish the optimal input taking account of the
reality constraint, we must ensure that Fourier coeffi-
cients corresponding to negative frequencies are their
complex conjugate, that is, the solution must satisfy
the reality condition z−i = zi. One choice for satisfying

On Random Weights and Unsupervised Feature Learning

the reality condition is to take

zj =

a|j|√

2
eisgn(j)φ|j| λj ∈ maxλ

0 otherwise

where a, φ ∈ Rq are vectors of arbitrary coefficients,
one for each maximal frequency in Ff , and ||a|| =
1. Then, for nonzero zj , z−j =

a|j|√
2
eisgn(−j)φ|j| =

a|j|√
2
eisgn(j)φ|j| = zj so the reality condition holds. Since

this attains the maximum for the problem without the
reality constraint, it must also be the maximum for
the complete problem. Converting z back to the spa-
tial domain proves the result. �

B. Proof of Theorem 2.2

Let Vn and Cn denote matrices performing valid and
circular convolution, respectively, of a filter f ∈ Rk×k
with an input of size n × n. Hence we have pv(x) =

‖Vnx̂‖2 and pc(x) = ‖Cnx̂‖2 where x̂ ∈ Rn2

is formed
by flattening x into a column vector. We first note
that both circular and valid convolution compute the
same n−k+1×n−k+1 filter responses in the interior
of the input. Hence we can order the rows of Cn so
that the first (n − k + 1)2 are exactly Vn, and the
remaining n2− (n−k+1)2 = 2(k−1)n− (k−1)2 ≡ m
differ. Forming the rows that differ into the matrix
Dn ∈ Rm×n2

,

pc(x)− pv(x) = ‖Cnx̂‖2 − ‖Vnx̂‖2 , (6)

= ‖Dnx̂‖2 ≥ 0, (7)

and so pv(x) ≤ pc(x) for any x. Therefore,

pv(xv) ≤ pc(xv) ≤ pc(xsin), (8)

= pv(x
sin) +

∥∥Dnx̂
sin
∥∥2
. (9)

Finally we bound
∥∥Dnx̂

sin
∥∥2

. Because xsin is a sinu-
soid that spans the entire input and the total norm is
constrained, the individual elements diminish with n

like
∣∣xsin[j, l]

∣∣ ≤ √
2
n (see Eqn. 2). Next we note that∥∥Dnx̂

sin
∥∥2

=
∑m
i=1(dTi x̂

sin)2, where dTi is the ith row
of Dn, and m = 2(k − 1)n − (k − 1)2 is the number
of rows in Dn. The vector dTi contains the filter co-
efficients f and is otherwise zero; hence it has only
k2 nonzero entries. We can therefore form the vector
x̃i ∈ Rk2 from just those elements of x̂sin which will
be involved in computing the dot product, such that
dTi x̂

sin = fT x̃i. Then we have

m∑
i=1

(
dTi x

)2
=

m∑
i=1

(
fT x̃i

)2 ≤ ||f ||2 m∑
i=1

||x̃i||2, (10)

≤ ||f ||2
m∑
i=1

2k2

n2
≤ 4k3||f ||2n−1. (11)

Hence returning to (9) and inserting (11),

pv (xv)− pv
(
xsin

)
≤ 4k3||f ||2n−1

which proves the result. �

References

Bengio, Y. and LeCun, Y. Scaling learning algorithms to-
wards A.I. In Bottou, L., Chapelle, O., and Weston, J.
(eds.), Large-Scale Kernel Machines, pp. 321–360. MIT
Press, 2007.

Coates, A., Lee, H., and Ng, A. Y. An analysis of single-
layer networks in unsupervised feature learning. In Inter-
national Conference on Artificial Intelligence and Statis-
tics, 2011.

Gray, R. M. Toeplitz and Circulant Matrices: A review.
Foundations and Trends in Communications and Infor-
mation Theory, 2(3):155–239, 2006.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun,
Y. What is the best multi-stage architecture for object
recognition? In IEEE 12th International Conference on
Computer Vision, pp. 2146–2153, 2009.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Master’s thesis, University of Toronto,
2009.

Le, Q.V., Ngiam, J., Chen, Z., Koh, P., Chia, D., and Ng,
A. Tiled convolutional neural networks. In Advances in
Neural Information Processing Systems 23, 2010.

LeCun, Y., Huang, F.J., and Bottou, L. Learning methods
for generic object recognition with invariance to pose
and lighting. In Conference on Computer Vision and
Pattern Recognition, 2004.

Nair, V. and Hinton, G. 3D Object Recognition with Deep
Belief Nets. In Advances in Neural Information Process-
ing Systems 22, 2009.

Pinto, N. and Cox, D.D. Beyond simple features: A
large-scale feature search approach to unconstrained face
recognition. In IEEE International Conference on Au-
tomatic Face and Gesture Recognition, 2011.

Pinto, N., Doukhan, D., DiCarlo, J. J., and Cox, D. D.
A high-throughput screening approach to discovering
good forms of biologically inspired visual representation.
PLoS Computational Biology, 5(11), 2009.

Salakhutdinov, R. and Larochelle, H. Efficient learning of
deep boltzmann machines. In International Conference
on Artificial Intelligence and Statistics, 2010.

Schmidt, M. minfunc. 2005. URL http://www.cs.ubc.
ca/~schmidtm/Software/minFunc.html.

Tee, G. J. Eigenvectors of block circulant and alternating
circulant matrices. New Zealand Journal of Mathemat-
ics, 36:195–211, 2007.

http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

	Introduction
	Analytical Characterization of the Optimal Input
	Sinusoids are Near-Optimal for Valid Convolution
	Evaluation of the Effect of Convolution

	What is the Contribution of Pretraining and Fine tuning?
	Fast Architecture Selection
	Distinguishing the Contributions of Architecture and Learning
	Conclusion
	Proof of Theorem 2.1
	Proof of Theorem 2.2

