
Dynamics of learning in deep linear neural networks

Andrew M. Saxe (asaxe@stanford.edu)
Department of Electrical Engineering

James L. McClelland (mcclelland@stanford.edu)
Department of Psychology

Surya Ganguli (sganguli@stanford.edu)
Department of Applied Physics

Stanford University, Stanford, CA 94305 USA

Abstract

Despite the widespread practical success of deep learning methods, our theoretical under-
standing of the dynamics of learning in deep neural networks remains quite sparse. We
attempt to bridge the gap between the theory and practice of deep learning by systemati-
cally analyzing learning dynamics for the restricted case of deep linear neural networks.
Despite the linearity of their input-output map, such networks have nonlinear gradient de-
scent dynamics that change with the addition of each new hidden layer. We show that deep
linear networks exhibit nonlinear learning phenomena similar to those seen in simulations
of nonlinear networks, including long plateaus followed by rapid transitions to lower error
solutions, and faster convergence from greedy unsupervised pretraining initial conditions
than from random initial conditions. We provide an analytical description of these phe-
nomena by finding new exact solutions to the nonlinear dynamics of deep learning. Our
theoretical analysis also reveals the surprising finding that infinitely deep networks can be
learned in finite time: for a special class of initial conditions on the weights, very deep net-
works incur only a finite delay in learning speed relative to shallow networks. We further
show that, under certain conditions on the training data, unsupervised pre-training can find
this special class of initial conditions, thereby providing analytical insight into the success
of unsupervised pre-training in deep supervised learning tasks.

Deep learning methods have realized impressive performance in a range of applications, from visual object
classification [1, 2] to speech recognition [3] and natural language processing [4, 5]. These successes have
been achieved despite the noted difficulty of training such deep architectures [6, 7, 8, 9]. Indeed, many
explanations for the difficulty of deep learning have been advanced in the literature, including the presence of
many local minima, low curvature regions due to saturating nonlinearities, and exponential growth or decay
of back-propagated gradients [10, 11, 12, 13]. Furthermore, many neural network simulations have observed
strikingly nonlinear learning dynamics, including long plateaus of little apparent improvement followed by
almost stage-like transitions to better performance. However, a quantitative, analytical understanding of the
rich dynamics of deep learning remains elusive. For example, what determines the time scales over which
deep learning unfolds? How does training speed retard with depth? Under what conditions will greedy
unsupervised pretraining speed up learning? And how do the final learned internal representations depend
on the statistical regularities inherent in the training data?

1



Here we provide an exact analytical theory of learning in deep linear neural networks that quantitatively
answers these questions for this restricted setting. Because of its linearity, the input-output map of a deep
linear network can always be rewritten as a shallow network. In this sense, a linear network does not gain ex-
pressive power from depth, and hence will underfit and perform poorly on complex real world problems. But
while it lacks this important aspect of practical deep learning systems, a deep linear network can nonethe-
less exhibit highly nonlinear learning dynamics, and these dynamics change with increasing depth. Indeed,
the training error, as a function of the network weights, is non-convex, and gradient descent dynamics on
this non-convex error surface exhibits a subtle interplay between different weights across multiple layers of
the network. Hence deep linear networks provide a useful starting point for understanding deep learning
dynamics.

To answer these questions, we derive and analyze a set of nonlinear coupled differential equations describing
learning dynamics on weight space as a function of the statistical structure of the inputs and outputs. We
find exact time-dependent solutions to these nonlinear equations, as well as find conserved quantities in the
weight dynamics arising from symmetries in the error function. These solutions provide intuition into how
a deep network successively builds up information about the statistical structure of the training data and
embeds this information into its weights and internal representations. Moreover, we compare our analytical
solutions of learning dynamics in deep linear networks to numerical simulations of learning dynamics in
deep non-linear networks, and find that our analytical solutions provide a reasonable approximation. Our
solutions also reflect nonlinear phenomena seen in simulations, including alternating plateaus and sharp
periods of rapid improvement. Indeed, it has been shown previously [14] that this nonlinear learning dy-
namics in deep linear networks is sufficient to qualitatively capture aspects of the progressive, hierarchical
differentiation of conceptual structure seen in infant development. Finally, we apply these solutions to in-
vestigate the commonly used greedy layer-wise pretraining strategy for training deep networks [15, 16], and
recover conditions under which such pretraining speeds learning. We show that these conditions are approx-
imately satisfied for the MNIST dataset, and that unsupervised pretraining therefore confers an optimization
advantage for deep linear networks applied to MNIST.

1 General learning dynamics of gradient descent

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

Figure 1: The three layer network analyzed
in this section.

We begin by analyzing learning in a three layer network (in-
put, hidden, and output) with linear activation functions (Fig
1), for which some theory has been developed previously
[17, 18]. We let Ni be the number of neurons in layer i.
The input-output map of the network is y = W 32W 21x.
We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ, yµ} , µ =
1, . . . , P . Training is accomplished via gradient descent
on the squared error

∑P
µ=1

∥∥yµ −W 32W 21xµ
∥∥2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the batch learning
rule

∆W 21 = λ

P∑
µ=1

W 32T
(
yµxµT −W 32W 21xµxµT

)
, ∆W 32 = λ

P∑
µ=1

(
yµxµT −W 32W 21xµxµT

)
W 21T ,

(1)
where λ is a small learning rate. As long as λ is sufficiently small, we can take a continuous time limit to
obtain the dynamics,

τ
d

dt
W 21 = W 32T

(
Σ31 −W 32W 21Σ11

)
, τ

d

dt
W 32 =

(
Σ31 −W 32W 21Σ11

)
W 21T , (2)

2



where Σ11 ≡
∑P
µ=1 x

µxµT is an N1 × N1 input correlation matrix, Σ31 ≡
∑P
µ=1 y

µxµT is an N3 × N1

input-output correlation matrix, and τ ≡ P
λ . Here t measures time in units of learning epochs; as t varies

from 0 to 1, the network has seen P examples corresponding to one learning epoch. Despite the linearity
of the network’s input-output map, the gradient descent learning dynamics given in Eqn (2) constitutes a
complex set of coupled nonlinear differential equations with up to cubic interactions in the weights.

1.1 Learning dynamics with orthogonal inputs

Our fundamental goal is to understand the dynamics of learning in (2) as a function of the input statistics
Σ11 and input-output statistics Σ31. In general, the outcome of learning will reflect an interplay between
input correlations, described by Σ11, and the input-output correlations described by Σ31. To begin, though,
we further simplify the analysis by focusing on the case of orthogonal input representations where Σ11 = I .
This assumption will hold exactly for whitened input data, a widely used preprocessing step. We further
focus on the case in which N3 > N1, so that there are more output units than input units.

Because we have assumed orthogonal input representations (Σ11 = I), the input-output correlation matrix
contains all of the information about the dataset used in learning, and it plays a pivotal role in the learning
dynamics. We consider its singular value decomposition (SVD)

Σ31 = U33S31V 11T =
∑N1

α=1 sαuαv
T
α , (3)

which will be central in our analysis. Here V 11 is an N1 × N1 orthogonal matrix whose columns contain
input-analyzing singular vectors vα that reflect independent modes of variation in the input, U33 is an N3 ×
N3 orthogonal matrix whose columns contain output-analyzing singular vectors uα that reflect independent
modes of variation in the output, and S31 is an N3 × N1 matrix whose only nonzero elements are on the
diagonal; these elements are the singular values sα, α = 1, . . . , N1 ordered so that s1 ≥ s2 ≥ · · · ≥ sN1 .

Now, performing the change of variables on synaptic weight space, W 21 = W
21
V 11T , W 32 = U33W

32
,

the dynamics in (2) simplify to

τ
d

dt
W

21
= W

32T
(S31 −W 32

W
21

), τ
d

dt
W

32
= (S31 −W 32

W
21

)W
21T

. (4)

To gain intuition for these equations, note that while the matrix elements ofW 21 andW 32 connected neurons
in one layer to neurons in the next layer, we can think of the matrix elementW

21
iα as connecting input mode

vα to hidden neuron i, and the matrix element W
32
αi as connecting hidden neuron i to output mode uα. Let

aα be the αth column of W 21, and let bαT be the αth row of W
32

. Intuitively, aα is a column vector of N2

synaptic weights presynaptic to the hidden layer coming from input mode α, and bα is a column vector of
N2 synaptic weights postsynaptic to the hidden layer going to output mode α. In terms of these variables,
or connectivity modes, the learning dynamics in (4) become

τ
d

dt
aα = (sα − aα · bα) bα −

∑
γ 6=α

bγ (aα · bγ), τ
d

dt
bα = (sα − aα · bα) aα −

∑
γ 6=α

aγ (bα · aγ). (5)

Note that sα = 0 for α > N1. These dynamics arise from gradient descent on the energy function

E =
1

2τ

∑
α

(sα − aα · bα)2 +
1

2τ

∑
α6=β

(aα · bβ)2, (6)

and display an interesting combination of cooperative and competitive interactions. Consider the first terms
in each equation. In these terms, the connectivity modes from the two layers, aα and bα associated with the
same input-output mode of strength sα, cooperate with each other to drive each other to larger magnitudes

3



as well as point in similar directions in the space of hidden units; in this fashion these terms drive the
product of connectivity modes aα · bα to reflect the input-output mode strength sα. The second terms
describe competition between the connectivity modes in the first (aα) and second (bβ) layers associated with
different input modes α and β. This yields a symmetric, pairwise repulsive force between all distinct pairs of
first and second layer connectivity modes, driving the network to a decoupled regime in which the different
connectivity modes become orthogonal.

1.2 The final outcome of learning

The fixed point structure of gradient descent learning was worked out in [17]. In the language of the connec-
tivity modes, a necessary condition for a fixed point is aα · bβ = sαδαβ , while aα and bα are zero whenever
sα = 0. To satisfy these relations, aα and bα can be nonzero for at most N2 values of α. Since there are

N1 nonzero values of sα, there are
(
N1

N2

)
families of fixed points. However, all of these fixed points are

unstable, except for the one in which only the first N2 strongest modes, i.e. aα and bα for α = 1, . . . , N2

are active. Thus remarkably, the dynamics in (5) has only saddle points and no non-global local minima. In
terms of the original synaptic variables W 21 and W 32, all globally stable fixed points satisfy

W 32W 21 =
∑N2

α=1 sαuαv
T
α . (7)

Hence when learning has converged, the network will represent the closest rank N2 approximation to the
true input-output correlation matrix. In this work, we are interested in understanding the dynamical weight
trajectories and learning time scales that lead to this final fixed point.

1.3 The time course of learning

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a

b

Figure 2: Vector field (blue), stable
manifold (red) and two solution tra-
jectories (green) for the two dimen-
sional dynamics of a and b in (8),
with τ = 1, s = 1.

It is difficult though to exactly solve (5) starting from arbitrary initial
conditions because of the competitive interactions between different
input-output modes. Therefore, to gain intuition for the general dy-
namics, we restrict our attention to a special class of initial conditions
of the form aα and bα ∝ rα for α = 1, . . . , N2, where rα · rβ = δαβ ,
with all other connectivity modes aα and bα set to zero (see [18]
for solutions to a partially overlapping but distinct set of initial con-
ditions). Here rα is a fixed collection of N2 vectors that form an
orthonormal basis for synaptic connections from an input or output
mode onto the set of hidden units. Thus for this set of initial condi-
tions, aα and bα point in the same direction for each alpha and differ
only in their scalar magnitudes, and are orthogonal to all other con-
nectivity modes. It is straightforward to verify that starting from these
initial conditions, aα and bα will remain parallel to rα for all future
time. Furthermore, because the different active modes are orthogonal
to each other, they do not compete, or even interact with each other
(all dot products in the second terms of (5)-(6) are 0). Thus this class
of conditions defines an invariant manifold in weight space where the
modes evolve independently of each other.

If we let a = aα · rα, b = bα · rα, and s = sα, then the dynamics of the scalar projections (a, b) obeys,

τ
d

dt
a = b (s− ab), τ

d

dt
b = a (s− ab). (8)

4



0 500 1000
0

20

40

60

80

t (Epochs)

m
o
d
e
 s

tr
e
n
g
th

 

 

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Input−output mode

(t
h

a
lf
−

t a
n

a
ly

)/
t a

n
a

ly

 

 

Linear

Tanh

Figure 3: Left: Dynamics of learning in a three layer neural network. Curves show the strength of the
network’s representation of seven modes of the input-output correlation matrix over the course of learning.
Red traces show analytical curves from Eqn. 12. Blue traces show simulation of full dynamics of a linear
network (Eqn. (2)) from small random initial conditions. Green traces show simulation of a nonlinear
three layer network with tanh activation functions. To generate mode strengths for the nonlinear network,
we computed the nonlinear network’s evolving input-output correlation matrix, and plotted the diagonal
elements of U33TΣ31

tanhV
11 over time. The training set consists of 32 orthogonal input patterns, each

associated with a 1000-dimensional feature vector generated by a hierarchical diffusion process described
in [14] with a five level binary tree and flip probability of 0.1. Modes 1, 2, 3, 5, 12, 18, and 31 are plotted
with the rest excluded for clarity. Network training parameters were λ = 0.5e−3, N2 = 32, u0 = 1e−6.
Right: Delay in learning due to competitive dynamics and sigmoidal nonlinearities. Vertical axis shows the
difference between simulated time of half learning and the analytical time of half learning, as a fraction of
the analytical time of half learning. Error bars show standard deviation from 100 simulations with random
initializations.

Thus our ability to decouple the connectivity modes yields a dramatically simplified two dimensional non-
linear system. These equations can by solved by noting that they arise from gradient descent on the error,

E(a, b) = 1
2τ (s− ab)2. (9)

This implies that the product ab monotonically approaches the fixed point s from its initial value. Moreover,
E(a, b) satisfies a symmetry under the one parameter family of scaling transformations a → λa, b → b

λ .
This symmetry implies, through Noether’s theorem, the existence of a conserved quantity, namely a2 − b2,
which is a constant of motion. Thus the dynamics simply follows hyperbolas of constant a2−b2 in the (a, b)
plane until it approaches the hyperbolic manifold of fixed points, ab = s. The origin a = 0, b = 0 is also a
fixed point, but is unstable. Fig. 2 shows a typical phase portrait for these dynamics.

As a measure of the timescale of learning, we are interested in how long it takes for ab to approach s from
any given initial condition. The case of unequal a and b is treated in the Supplementary Materials due to
space constraints. Here we pursue an explicit solution with the assumption that a = b, a reasonable limit
when starting with small random initial conditions. We can then track the dynamics of u ≡ ab, which from
(8) obeys

τ
d

dt
u = 2u(s− u). (10)

This equation is separable and can be integrated to yield

t = τ

∫ uf

u0

du

2u(s− u)
=

τ

2s
ln
uf (s− u0)

u0(s− uf )
. (11)

Here t is the time it takes for u to travel from u0 to uf . If we assume a small initial condition u0 = ε, and
ask when uf is within ε of the fixed point s, i.e. uf = s − ε, then the learning timescale in the limit ε → 0
is t = τ/s ln (s/ε) = O(τ/s) (with a weak logarithmic dependence on the cutoff). This yields a key result:
the timescale of learning of each input-output mode α of the correlation matrix Σ31 is inversely proportional

5



to the correlation strength sα of the mode. Thus the stronger an input-output relationship, the quicker it is
learned.

We can also find the entire time course of learning by inverting (11) to obtain

uf (t) =
se2st/τ

e2st/τ − 1 + s/u0
. (12)

This time course describes the temporal evolution of the product of the magnitudes of all weights from an
input mode (with correlation strength s) into the hidden layers, and from the hidden layers to the same output
mode. If this product starts at a small value u0 < s, then it displays a sigmoidal rise which asymptotes
to s as t → ∞. This sigmoid can exhibit sharp transitions from a state of no learning to full learning.
This analytical sigmoid learning curve is shown in Fig. 3 to yield a reasonable approximation to learning
curves in linear networks that start from random initial conditions that are not on the orthogonal, decoupled
invariant manifold–and that therefore exhibit competitive dynamics between connectivity modes–as well as
in nonlinear networks solving the same task. We note that though the nonlinear networks behaved similarly
to the linear case for this particular task, this is likely to be problem dependent.

2 Deeper multilayer dynamics

The network analyzed in Section 1 is the minimal example of a multilayer net, with just a single layer of
hidden units. How does gradient descent act in much deeper networks? We make an initial attempt in this
direction based on initial conditions that yield particularly simple gradient descent dynamics.

In a linear neural network withNl layers and henceNl−1 weight matrices indexed byW l, l = 1, · · · , Nl−1,
the gradient descent dynamics can be written as

τ
d

dt
W l =

(
Nl−1∏
i=l+1

W i

)T [
Σ31 −

(
Nl−1∏
i=1

W i

)
Σ11

](
l−1∏
i=1

W i

)T
, (13)

where
∏b
i=aW

i = W bW (b−1) · · ·W (a−1)W a with the caveat that
∏b
i=aW

i = I , the identity, if a > b.

To describe the initial conditions, we suppose that there are Nl orthogonal matrices Rl that diagonalize
the starting weight matrices, that is, RTl+1Wl(0)Rl = Dl for all l, with the caveat that R1 = V 11 and
RNl

= U33. This requirement essentially demands that the output singular vectors of layer l be the input
singular vectors of the next layer l + 1, so that a change in mode strength at any layer propagates to the
output without mixing into other modes. Making the change of variables Wl = Rl+1W lR

T
l along with the

assumption that Σ11 = I leads to a set of decoupled connectivity modes that evolve independently of each
other. In analogy to the simplification occurring in the three layer network from (2) to (8), each connectivity
mode in the Nl layered network can be described by Nl − 1 scalars a1, . . . , aNl−1, whose dynamics obeys
gradient descent on the energy function (the analog of (9)),

E(a1, · · · , aNl−1) =
1

2τ

(
s−

Nl−1∏
i=1

ai

)2

. (14)

This dynamics also has a set of conserved quantities a2i − a2j arising from the energetic symmetry w.r.t. the
transformation ai → λai, aj → aj

λ , and hence can be solved exactly. We focus on the invariant submanifold
in which ai(t = 0) = a0 for all i, and track the dynamics of u =

∏Nl−1
i=1 ai, the overall strength of this

mode, which obeys (i.e. the generalization of (10)),

τ
d

dt
u = (Nl − 1)u2−2/(Nl−1)(s− u). (15)

6



This can be integrated for any positive integer Nl, though the expression is complicated. Once the overall
strength increases sufficiently, learning explodes rapidly.

Eqn. (15) lets us study the dynamics of learning in an infinitely deep network. In particular, as Nl →∞ we
have the dynamics

τ
d

dt
u = Nlu

2(s− u) (16)

which can be integrated to obtain

t =
τ

Nl

[
1

s2
log

(
uf (u0 − s)
u0(uf − s)

)
+

1

su0
− 1

suf

]
. (17)

Remarkably this implies that, for a fixed learning rate, the learning time tends to zero as Nl goes to infinity.
This result depends on the continuous time formulation, however. Any implementation will operate in
discrete time and must choose a finite learning rate that yields stable dynamics. An estimate of the optimal
learning rate can be derived from the maximum eigenvalue of the Hessian over the region of interest. For
linear networks with ai = aj = a, this optimal learning rate αopt decays with depth as O

(
1

Nls2

)
for

large Nl (see supplementary material). Incorporating this dependence of the learning rate on depth, the
learning time in an infinitely deep network still surprisingly remains finite: with the optimal learning rate,
the difference between learning times for an Nl = 3 network and an Nl =∞ network is t∞− t3 ∼ O (s/ε)
for small ε (see supplementary material).

0 50 100
0

50

100

150

200

250

N
l
 (Number of layers)

Le
ar

ni
ng

 ti
m

e 
(E

po
ch

s)

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

O
pt

im
al

 le
ar

ni
ng

 r
at

e

N
l
 (Number of layers)

Figure 4: Left: Learning time as a function of depth on MNIST. Right:
Empirically optimal learning rates as a function of depth.

To verify these predictions,
we trained deep linear net-
works on the MNIST dataset
with depths ranging from
Nl = 3 to Nl = 100.
We used hidden layers of
size 1000, and calculated the
epoch at which training er-
ror fell below a fixed thresh-
old of 1.3 × 104 correspond-
ing to nearly complete learn-
ing. We optimized the learn-
ing rate separately for each
depth by training each network with twenty rates logarithmically spaced between 10−4 and 10−7 and pick-
ing the fastest. Networks were initialized with decoupled initial conditions and starting initial mode strength
u0 = 0.001. Fig. 4 shows the resulting learning times, which saturate, and the empirically optimal learning
rates, which scale like O(1/Nl) as predicted.

Thus learning times in deep linear networks that start with decoupled initial conditions are only a finite
amount slower than a shallow network regardless of depth. Moreover, the delay incurred by depth scales
inversely with the size of the initial strength of the association. Hence finding a way to initialize the mode
strengths to large values is crucial for fast deep learning.

3 Efficacy of greedy unsupervised pretraining

The breakthrough in training deep neural networks started with the discovery that greedy layer-wise unsu-
pervised pre-training could substantially speed up and improve the generalization performance of standard
gradient descent [15, 16]. Unsupervised pre-training has been shown to help with the optimization of deep
networks, and also to act as a special regularizer towards solutions with better generalization performance

7



0 100 200 300 400 500
1

1.5

2

2.5

3
x 10

4

Epoch

E
rr

or

 

 
Pretrain
Random

 

 

2000

4000

6000

8000

 

 

0

5

10

15

x 10
5

Figure 5: MNIST satisfies the consistency condition for greedy pretraining. Left: Submatrix from the raw
MNIST input correlation matrix Σ11. Center: Submatrix of V 11Σ11V 11T which is approximately diagonal
as required. Right: Learning curves on MNIST for a five layer linear network starting from random (black)
and pretrained (red) initial conditions. Pretrained curve starts with a delay due to pretraining time.

[16, 10, 11, 12]. Here we show analytically how unsupervised pre-training achieves an optimization advan-
tage, at least, in deep linear networks by finding the special class of orthogonalized initial conditions in the
previous section that allow for rapid supervised deep learning, for input-output tasks with a certain precise
structure.

In particular, we consider the effect of using autoencoders as the unsupervised pretraining module [16, 10],
for which the input-output correlation matrix Σ31 is simply the input correlation matrix Σ11. Hence the SVD
of Σ31 is PCA on the input correlation matrix, since Σ31 = Σ11 = QΛQT , where Q are eigenvectors of Σ11

and Λ is a diagonal matrix of variances. After pretraining, the weights thus converge toW 32W 21 = QΛQT .
Recall that aα denotes the strength of mode α in W 21, and bα denotes the strength in W 32. If we further
take the assumption that aα ≈ bα, as is typical when starting from small random weights, then the input-
to-hidden mapping will be W 21 = R2

√
ΛQT where R2 is an arbitrary orthogonal matrix. Now consider

fine-tuning on a task with input-output correlations Σ31 = U33S31V 11. The pretrained initial condition
W 21 = R2

√
ΛQT will be a decoupled initial condition for the task, W 21 = R2D1V

11T , provided

Q = V 11. (18)

Hence we can state the underlying condition required for successful greedy pretraining in deep linear net-
works: the right singular vectors of the ultimate input-ouput task of interest V 11 must be similar to the
principal components of the input data Q. This gives a simple empirical criterion that can be evaluated on
any new dataset: given Σ31 and Σ11, compute the right singular vectors V 11 and check that V 11Σ11V 11T

is approximately diagonal. If the condition in Eqn. (18) holds, autoencoder pretraining will have properly
set up decoupled initial conditions for W 21, with an appreciable initial association strength of

√
Λ. This

argument also goes through straightforwardly for layer-wise pretraining of deeper networks. Fig. 5 shows
that this consistency condition empirically holds on MNIST, and that a pretrained deep linear neural network
learns faster than one started from random initial conditions, even accounting for pretraining time.

4 Discussion

Despite the simplicity of their input-output map, the dynamics of learning in deep linear networks reveals
a surprising amount of rich mathematical structure, including nonlinear hyperbolic dynamics, plateaus and
sudden performance transitions, and most importantly, a sensitive but computable dependence of learning
time scales on input statistics, initial conditions, and network depth. With the right initial conditions, deep
linear networks can be only a finite amount slower than shallow networks, and unsupervised pretraining
can find these initial conditions for tasks with the right structure. At the cost of expressivity, deep linear
networks gain tractability and may prove fertile for addressing other phenomena in deep learning, such
as the impact of carefully scaled initializations [11, 19], momentum [19], dropout regularization [1], and
sparsity constraints [2]. Although extensions to deep nonlinear networks remain daunting, our work fulfills
an important pre-requisite for progress towards a more general quantitative theory of deep learning.

8



References

[1] A. Krizhevsky and G.E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks.
In Advances in Neural Information Processing Systems 25, 2012.

[2] Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado, J. Dean, and A.Y. Ng. Build-
ing high-level features using large scale unsupervised learning. In 29th International Conference on
Machine Learning, 2012.

[3] A. Mohamed, G.E. Dahl, and G. Hinton. Acoustic Modeling Using Deep Belief Networks. IEEE
Transactions on Audio, Speech, and Language Processing, 20(1):14–22, January 2012.

[4] R. Collobert and J. Weston. A Unified Architecture for Natural Language Processing: Deep Neural
Networks with Multitask Learning. In Proceedings of the 25th International Conference on Machine
Learning, 2008.

[5] R. Socher, J. Bauer, C.D. Manning, and A.Y. Ng. Parsing with Compositional Vector Grammars. In
Association for Computational Linguistics Conference, 2013.

[6] Y. Bengio, P. Simard, and P. Frasconi. Learning Long-Term Dependencies with Gradient Descent is
Difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[7] Y. LeCun, L. Bottou, G.B. Orr, and K.R. Müller. Efficient BackProp. Neural networks: Tricks of the
trade, 1998.

[8] Y. Bengio and Y. LeCun. Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle, D. De-
Coste, and J. Weston, editors, Large-Scale Kernel Machines, number 1, pages 1–41. MIT Press, 2007.

[9] D. Erhan, P.A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent. The Difficulty of Training Deep Ar-
chitectures and the Effect of Unsupervised Pre-Training. In 12th International Conference on Artificial
Intelligence and Statistics, volume 5, 2009.

[10] Y. Bengio. Learning Deep Architectures for AI. 2009.
[11] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.

13th International Conference on Artificial Intelligence and Statistics, 2010.
[12] D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol, and P. Vincent. Why does unsupervised pre-training

help deep learning? Journal of Machine Learning Research, 11:625–660, 2010.
[13] Y.N. Dauphin and Y. Bengio. Big Neural Networks Waste Capacity. In International Conference on

Learning Representations, 2013.
[14] A.M. Saxe, J.L. McClelland, and S. Ganguli. Learning hierarchical category structure in deep neural

networks. In Proceedings of the 35th Annual Conference of the Cognitive Science Society, 2013.
[15] G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Sci-

ence, 313(5786):504–7, July 2006.
[16] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy Layer-Wise Training of Deep Net-

works. Advances in Neural Information Processing Systems 20, 2007.
[17] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples

without local minima. Neural Networks, 2(1):53–58, January 1989.
[18] K. Fukumizu. Effect of Batch Learning In Multilayer Neural Networks. In Proceedings of the 5th

International Conference on Neural Information Processing, pages 67–70, 1998.
[19] I. Sutskever, J. Martens, G. Dahl, and G.E. Hinton. On the importance of initialization and momentum

in deep learning. In 30th International Conference on Machine Learning, 2013.

9


