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Overview Multitask Z'Iearnlng : Multitask Z-learning [ Limitations

Conventional model-free reinforcement learning algorithms are limited to performing only 4 . o ) _ . . . Multitask Z-learning is capable of instantaneous optimal adaptation
one task, such as navigating to a single goal location in a maze, or reaching one goal state in Linea rly-solva ble Markov Decision For LMDPs, optimal action directly computable from cost-to-go function v(x) to any novel task whose (exponentiated) boundary cost structure is a
the Tower of Hanoi block manipulation problem. Yet in ecological settings, our tasks change Processes Define exponentiated cost-to-go (desireability) function: 2(z) = exp(—v(z)) linear combination of previously learned component tasks

often and we respond flexibly—we may wish to navigate to some other point in the maze, or . ' _ Bellman equation linear in z:
reach some state other than the typical end goal in the Tower of Hano1 problem. It has been We use the first-exit LMDP formulation of Todorov, 2006. z(x) = eXP(_C](x))Epr(-p;) [2(y)] Yet it has serious limitations:

thought that in most cases, only model-based algorithms provide such flexibility. N o , * It can only adapt rapidly to changes in boundary rewards; changing
States: x, partitioned into interior states and absorbing or 7, = MZ,' + 7,  where z encodes desireability of interior states internal reward structure requires slower z-learning updates

We present a novel model-free algorithm, multitask Z-learning, capable of flexible boundary states

adaptation to new tasks without a forward search through future states. The algorithm learns Crucial property: Solutions for two different boundary reward structures linearly * It cannot adapt quickly to changes in the passive dynamics. The
about many different tasks simultaneously, and mixes these together to perform novel, Passive dynamics: p(y|z) = Prob( state(t+1)=y|state(t)=x) compose (Todorov, 2009) optimal action computation uses the passive dynamics, so
never-before-seen tasks. Crucially, it performs any linear blend of previously learned tasks ~v2 o~ ~2 +2 _ 1 2 changing this will immediately change behavior but not in an
optimally » P 4 P 4 Action: u, choose new transition probabilities p(y|z, u) = u(y|z) 4, =4aq,* bqb — g =dag + bZi optimal way until z-learning has time to act
Multitask Z-learning: Learn about a set of boundary reward structures g¢,.c=1,....m
The algorithm learns a distributed representation of tasks, thereby avoiding the curse of Cost: [(z,u) = q(z) + KL(u(-|2)||p(:|z)) = state cost + action cost * represent any new task as a linear combination of these e The LMDP formulation differs from the standard discrete action
dimensionality afflicting other hierarchical reinforcement learning approaches like the * q(x) specifies instantaneous rewards * optimal z(x) is linear combination of component tasks’ z¢(x) choice MDP formulation (though a traditional MDP can be
options framework that cannot blend subtasks. That is, while it is easy to learn a fixed set of * KL term penalizes deviation from passive dynamics embedded), and is more natural for quasi continuous motor
alternative tasks using an off-policy model-free algorithm, it has not previously been o Off-policy update: For eafh componentAtask at each timAe step, update: control style problems than discrete action selection problems
possible to perform an infinite set of tasks by blending a fixed set. We present applications \_@oal: Minimize total cost VN 2(ye) — (1 = n)2(ye) + nexp(—qe) 2(Ye+1) y \_ .
S N . NS /
to sequential choice, spatial navigation, and the Tower of Hanoi problem. The model has a
number of limitations, which make novel predictions about problem manipulations that 4 . . . . s \\
§h0uld show rapid adaptation, versus those that should require slow practice for O utco me reva I u at| 9 ) n’ Iate nt Iea 'ni ng an d S pecrh C Sah ety Tower of Hanoi
Qmprovement. / - ~ - ~
~ Outcome revaluation in sequential choice Latent learning in spatial navigation _ . - .
Applicable to goal-directed action in more complex domains (Diuk et
Be Ond model_free and model_based Humans and animals can rapidly adapt to changing rewards in . . _ . al., 2013)
y sequential choices (Daw et al., 2011) After. random explorahon of a maze environment, introduction (?f a reward at one
@ * mermn | Fig 1 Doll et al.. 2012 location leads to instant goal-directed behavior towards that point (Tolman, 1948)
1 &% K  Move blocks to peg 3; smaller blocks must always be stacked on

Model-free learning reinforces actions that lead to reward in the past

larger blocks

stay probability

l.ll * Covert multitask z-learning
Model-based learning uses a model of the world to perform a forward search, AT _ - _ - during exploration enables
chances or winning money rewarae unrewarae rewarae unrewarae

selecting actions that lead to reward Model-free “Model-based” immediate navigation to
rewarded locations when

reward structure becomes
known

* Model-free, thus, cannot rapidly adapt to changing reward structure

 Two stage choice task

* Model-based appears to require an explicit, sequential search through the

. e Multitask Z-learning
environment

behaves like model-
based methods

* Covert tasks need not include .
navigation to every point, but
must only provide a linear basis

* After exploration, multitask

Yet intuitively, Z-learning is capable of

e If you learn how to navigate to one spot in a maze, you should know something . Does not rely on in which each point can be navigating to arbitrary State graph with cost-to-go
about how to get to other spots torward model search o i represented configurations and optimal trajectory
* If you learn how to reach your arm to one point in space, you should know \k Multitask Z-learning -/ \_ - \ //
something about reaching other points
* If youlearn how to solve the Tower of Hanoi task, you should learn how to get to / \ / \
tates other than just th | 1 1 1 .
states other than just the goa Exploiting compositionality: Complex task blends Conclusions
Can we go beyond the model-free, model-based distinction? (Doll et al., 2012) g N R Multitask Z-learning is a new reinforcement learning algorithm with interesting
- / “Navigate to room A or B” “Place medium size block on middle peg” properties:
e ~ * Instantaneous optimal adaption to new absorbing boundary rewards
Can respond flexibly to a variety of navigation tasks SO : : * Relies on careful problem formulation to permit compositionalit
S ~ L = P : : Compositionality enables rapid response to complex queries P P P Y
N EEd Ed . CO m pOSItI ona I lty Find food or water (specific satiety experiments) « Stack small block on large block * Off-policy algorithm over states (not state/action pairs)

* Go to a point, while avoiding door #2 . . . . L
P 2 e Place medium block on peg 1, small block on peg 3 Compatible with function approximation

To perform novel tasks using knowledge from previously learned tasks, we must be

) e . It suggests that, with enough experience in a domain, complex new tasks can be
able to compose them, blending them together to perform an infinite variety of tasks

< optimally implemented without an explicit forward search process

 Composition is a key intuition underlying theories of perceptual systems

H " fer this intuition t N . Similar in spirit to the successor representation (Dayan, 1993), but generalizes this to
 How can we transfer this intuition to control systems:

off-policy, states-based, multitask rewards: a more powerful representation than

.. : . . successors is one that already accounts for possibly complicated internal reward
Compositionality does not come naturally in control because the Bellman equation is

. structure
nonlinear: \‘/
* Ifwehavean ophmal cost-to-go function for reward structure A and an optimal Compatible with model-based & model-free accounts, which are tractable in the LMDP
cost-to-go function for reward structure B,
. Dhoes not mean that the optimal cost-to-go for reward structure A + B is the sum of Instantaneous rewards Cost-to-go/trajectory Multitask z-learning introduces new potentially relevant distinctions:
these * Absorbing boundary reward change => instant adaptation
_ _ o _ o . : : : T - - * Internal reward change => slow adaptation
We use a careful problem formulation to restore this compositionality, and exploit it * Important note: Not the same as planning through arbitrary E/IOdsIS hlgthY p:jactfﬁd exdpelrtbqur:je fam|Ir|1ar with domain  Transition change => suboptimal instant adaptation, slow optimal adaptation
to permit flexible execution of a variety of tasks. \_ cost map because of boundary state formulation. Y, \_ an be combined WIth model-based searc /
- AN NG /
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