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Overview	
  
Conventional model-free reinforcement learning algorithms are limited to performing only 
one task, such as navigating to a single goal location in a maze, or reaching one goal state in 
the Tower of Hanoi block manipulation problem. Yet in ecological settings, our tasks change 
often and we respond flexibly—we may wish to navigate to some other point in the maze, or 
reach some state other than the typical end goal in the Tower of Hanoi problem. It has been 
thought that in most cases, only model-based algorithms provide such flexibility. 
 
We present a novel model-free algorithm, multitask Z-learning, capable of flexible 
adaptation to new tasks without a forward search through future states. The algorithm learns 
about many different tasks simultaneously, and mixes these together to perform novel, 
never-before-seen tasks. Crucially, it performs any linear blend of previously learned tasks 
optimally. 
 
The algorithm learns a distributed representation of tasks, thereby avoiding the curse of 
dimensionality afflicting other hierarchical reinforcement learning approaches like the 
options framework that cannot blend subtasks. That is, while it is easy to learn a fixed set of 
alternative tasks using an off-policy model-free algorithm, it has not previously been 
possible to perform an infinite set of tasks by blending a fixed set. We present applications 
to sequential choice, spatial navigation, and the Tower of Hanoi problem. The model has a 
number of limitations, which make novel predictions about problem manipulations that 
should show rapid adaptation, versus those that should require slow practice for 
improvement. 
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  and	
  model-­‐based	
  

Mul-task	
  Z-­‐learning	
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Needed:	
  Composi-onality

Linearly-­‐solvable	
  Markov	
  Decision	
  
Processes	
  

	
  

Mul/task	
  Z-­‐learning	
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  University	
  

Outcome	
  revalua/on	
  in	
  sequen/al	
  choice	
  

Mul/task	
  Z-­‐learning	
  is	
  a	
  new	
  reinforcement	
  learning	
  algorithm	
  with	
  interes/ng	
  
proper/es:	
  
•  Instantaneous	
  op-mal	
  adap/on	
  to	
  new	
  absorbing	
  boundary	
  rewards	
  
•  Relies	
  on	
  careful	
  problem	
  formula/on	
  to	
  permit	
  composi/onality	
  
•  Off-­‐policy	
  algorithm	
  over	
  states	
  (not	
  state/ac/on	
  pairs)	
  
•  Compa/ble	
  with	
  func/on	
  approxima/on	
  

It	
  suggests	
  that,	
  with	
  enough	
  experience	
  in	
  a	
  domain,	
  complex	
  new	
  tasks	
  can	
  be	
  
op/mally	
  implemented	
  without	
  an	
  explicit	
  forward	
  search	
  process	
  
	
  
Similar	
  in	
  spirit	
  to	
  the	
  successor	
  representa/on	
  (Dayan,	
  1993),	
  but	
  generalizes	
  this	
  to	
  
off-­‐policy,	
  states-­‐based,	
  mul/task	
  rewards:	
  a	
  more	
  powerful	
  representa/on	
  than	
  
successors	
  is	
  one	
  that	
  already	
  accounts	
  for	
  possibly	
  complicated	
  internal	
  reward	
  
structure	
  
	
  
Compa/ble	
  with	
  model-­‐based	
  &	
  model-­‐free	
  accounts,	
  which	
  are	
  tractable	
  in	
  the	
  LMDP	
  
	
  
Mul/task	
  z-­‐learning	
  introduces	
  new	
  poten/ally	
  relevant	
  dis/nc/ons:	
  
•  Absorbing	
  boundary	
  reward	
  change	
  =>	
  instant	
  adapta/on	
  
•  Internal	
  reward	
  change	
  =>	
  slow	
  adapta/on	
  
•  Transi/on	
  change	
  =>	
  subop/mal	
  instant	
  adapta/on,	
  slow	
  op/mal	
  adapta/on	
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Student Version of MATLAB

Composi/onality	
  enables	
  rapid	
  response	
  to	
  complex	
  queries	
  
•  Stack	
  small	
  block	
  on	
  large	
  block	
  
•  Place	
  medium	
  block	
  on	
  peg	
  1,	
  small	
  block	
  on	
  peg	
  3	
  

	
  
•  Models	
  highly	
  prac/ced	
  expert	
  quite	
  familiar	
  with	
  domain	
  
•  Can	
  be	
  combined	
  with	
  model-­‐based	
  search	
  

Student Version of MATLAB

Student Version of MATLAB

Instantaneous	
  rewards	
   Cost-­‐to-­‐go/trajectory	
  

Can	
  respond	
  flexibly	
  to	
  a	
  variety	
  of	
  naviga/on	
  tasks	
  
•  Find	
  food	
  or	
  water	
  (specific	
  sa/ety	
  experiments)	
  
•  Go	
  to	
  a	
  point,	
  while	
  avoiding	
  door	
  #2	
  	
  

•  Important	
  note:	
  Not	
  the	
  same	
  as	
  planning	
  through	
  arbitrary	
  
cost	
  map	
  because	
  of	
  boundary	
  state	
  formula/on.	
  

We	
  use	
  the	
  first-­‐exit	
  LMDP	
  formula/on	
  of	
  Todorov,	
  2006.	
  
	
  
States:	
  x,	
  par//oned	
  into	
  interior	
  states	
  and	
  absorbing	
  
boundary	
  states	
  
	
  
Passive	
  dynamics:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  Prob(	
  state(t+1)=y|state(t)=x)	
  
	
  
Ac-on:	
  u,	
  choose	
  new	
  transi/on	
  probabili/es	
  	
  
	
  
Cost:	
  
•  q(x)	
  specifies	
  instantaneous	
  rewards	
  
•  KL	
  term	
  penalizes	
  devia/on	
  from	
  passive	
  dynamics	
  

Goal:	
  Minimize	
  total	
  cost	
  

	
  
	
  

New formulation: passive dynamics

• If the agent could choose u(y|x) without any restrictions, it could
transition straight to the goal state

• To prevent this, we introduce the passive dynamics p(y|x)

• The passive dynamics encode how the system would move without any
control

• e.g., for the walking example, the passive dynamics would encode how
states change without activating any muscles

• also, by requiring u(y|x) = 0 whenever p(y|x) = 0, we can disallow
certain transitions
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New formulation: immediate cost

• Finally, the new formulation requires the immediate cost to be of the
form

l(x, u) = q(x) + KL(u(·|x)||p(·|x)) = q(x) + E
y⇠u(·|x)


log

u(y|x)

p(y|x)

�

• This cost can be written in words as

l(x, u) = state cost + action cost

• The action cost penalizes large deviations from the passive dynamics

Andrew Saxe, Stanford University 23

New formulation: continuous actions

• To be able to explicitly minimize over the possible actions, they can’t be
discrete

• Instead of discrete actions, we will allow the agent to specify the
transition probabilities u(y|x) directly, i.e.

p(y|x, u) = u(y|x)
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New formulation: immediate cost

• Finally, the new formulation requires the immediate cost to be of the
form

l(x, u) = q(x) + KL(u(·|x)||p(·|x)) = q(x) + E
y⇠u(·|x)


log

u(y|x)

p(y|x)

�
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l(x, u) = state cost + action cost
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For	
  LMDPs,	
  op/mal	
  ac/on	
  directly	
  computable	
  from	
  cost-­‐to-­‐go	
  func/on	
  v(x)	
  
Define	
  exponen/ated	
  cost-­‐to-­‐go	
  (desireability)	
  func/on:	
  
Bellman	
  equa/on	
  linear	
  in	
  z:	
  
	
  
	
  
Or	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  zi	
  encodes	
  desireability	
  of	
  interior	
  states	
  
	
  
Crucial	
  property:	
  Solu/ons	
  for	
  two	
  different	
  boundary	
  reward	
  structures	
  linearly	
  
compose	
  (Todorov,	
  2009)	
  
	
  
	
  
Mul-task	
  Z-­‐learning:	
  Learn	
  about	
  a	
  set	
  of	
  boundary	
  reward	
  structures	
  
•  represent	
  any	
  new	
  task	
  as	
  a	
  linear	
  combina/on	
  of	
  these	
  
•  op/mal	
  z(x)	
  is	
  linear	
  combina/on	
  of	
  component	
  tasks’	
  zc(x)	
  
	
  
Off-­‐policy	
  update:	
  For	
  each	
  component	
  task	
  at	
  each	
  /me	
  step,	
  update:	
  	
  
	
  
	
  

A change of variables

The equation

v(x) = q(x)� logE
y⇠p(·|x) [exp(�v(y))]

is nonlinear in the unknown function v. To make them linear, we change
variables:

z(x) = exp(�v(x))

Then
z(x) = exp(�q(x))E

y⇠p(·|x) [z(y)]
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zi =Mzi + nb

!qb
1+2 = a !qb

1 + b !qb
2⇒ zi

1+2 = azi
1 + bzi

2

Z-learning

• Z-learning approximates z using observations of state transitions y

t

to
y

t+1 and the associated immediate state cost q

t

ẑ(y

t

) (1� ⌘)ẑ(y

t

) + ⌘exp(�q

t

)ẑ(y

t+1)

• This is using a running average to approximate the update

z(x) = exp(�q(x))E
y⇠p(·|x) [z(y)]
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!qb
c, c =1,…,m

Mul/task	
  Z-­‐learning	
  is	
  capable	
  of	
  instantaneous	
  op/mal	
  adapta/on	
  
to	
  any	
  novel	
  task	
  whose	
  (exponen/ated)	
  boundary	
  cost	
  structure	
  is	
  a	
  
linear	
  combina/on	
  of	
  previously	
  learned	
  component	
  tasks	
  
	
  
Yet	
  it	
  has	
  serious	
  limita/ons:	
  
•  It	
  can	
  only	
  adapt	
  rapidly	
  to	
  changes	
  in	
  boundary	
  rewards;	
  changing	
  

internal	
  reward	
  structure	
  requires	
  slower	
  z-­‐learning	
  updates	
  

•  It	
  cannot	
  adapt	
  quickly	
  to	
  changes	
  in	
  the	
  passive	
  dynamics.	
  The	
  
op/mal	
  ac/on	
  computa/on	
  uses	
  the	
  passive	
  dynamics,	
  so	
  
changing	
  this	
  will	
  immediately	
  change	
  behavior	
  but	
  not	
  in	
  an	
  
op/mal	
  way	
  un/l	
  z-­‐learning	
  has	
  /me	
  to	
  act	
  

•  The	
  LMDP	
  formula/on	
  differs	
  from	
  the	
  standard	
  discrete	
  ac/on	
  
choice	
  MDP	
  formula/on	
  (though	
  a	
  tradi/onal	
  MDP	
  can	
  be	
  
embedded),	
  and	
  is	
  more	
  natural	
  for	
  quasi	
  con/nuous	
  motor	
  
control	
  style	
  problems	
  than	
  discrete	
  ac/on	
  selec/on	
  problems	
  

transition structure and leverage it to evaluate actions
(Figure 1) [22,33!,34,35!,36,12!,37!,38!,39]. The second
involves explicit or implicit counterfactual structure,
where information about rewards not actually received
can be inferred or observed [40–42,13,43,44]. A typical
example is a serial reversal contingency, where a drop in
the value of one option implies an increase in the other’s
value. Purely reinforcement-based model-free RL would
be blind to such structure. Note, however, that while
such tasks go beyond model-free RL, they do not as
directly exercise the key affirmative features of model-
based RL as we have defined it, that is, the computation
of values using a sequential transition model of an
action’s consequences.

From both sorts of studies, the overall sense is that model-
based influences appear ubiquitous more or less wherever
the brain processes reward information. The most
expected of these influences are widespread reports about
model-based value signals in ventromedial prefrontal
cortex (vmPFC) and adjacent orbitofrontal cortex
(OFC), which have previously been identified with
goal-directed behavior using devaluation tasks [45,46].
vmPFC has been proposed to be the human homologue
of rat prelimbic cortex, which is required for goal-directed
behavior [8]. OFC is also implicated in model-based
Pavlovian valuation in rats and goal values in monkeys
[47,48], though understanding this area across species and
methods is plagued by multiple factors [49]. More unex-
pectedly, several reports now indicate that RPE correlates
in the ventral striatum — long thought to be a human
counterpart to the DA response and thus a core com-
ponent of the putative model-free system — also show

model-based influences [33!,34,44]. Even DA neurons,
the same cells that launched the model-free theories due
to their RPE properties [1,2], communicate information
not available to a standard model-free learner [41].

The harder part of this hunt, then, seems to be for neural
correlates of exclusively model-free signals, which are
surprisingly sparse given the prominence of the model-
free DA accounts. The most promising candidate may be
a region of posterior putamen that has been implicated in
extensively trained behavior in a habit study [17] and a
sequential decision task [37!], and may correspond to the
dorsolateral striatal area associated with habits in rodents
[18]. The foundation of both fMRI results, however, was
overtraining (a classic promoter of habits), rather than
whether these areas reflect values learned or updated by
model-free methods. Indeed, value correlates in a nearby
region of putamen have been reported to follow model-
based rather than model-free updating using the compu-
tational definition [34].

A different, promising path for isolating model-based RL
is neural correlates related to the model itself. Repres-
entations of anticipated future states or outcomes —
rather than just their consequences for reward — are what
defines model-based RL. Hippocampal recordings in the
rat have shown evidence of forward model ‘lookahead
sweeps’ to candidate future locations at maze choice
points [35!]. These data fit well with the spatial map-
encoding properties of hippocampus [50], and may permit
striatum to signal value for simulated rather than actually
experienced outcomes [36]. Hippocampus is similarly
implicated in a study that examines learning predictive
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Current Opinion in Neurobiology

Sequential task dissociating model-based from model-free learning. (a) A two-step decision-making task [33!], in which each of two options (A1, A2) at
a start state leads preferentially to one of two subsequent states (A1 to B, A2 to C), where choices (B1 versus B2 or C1 versus C2) are rewarded
stochastically with money. (b and c) Model-free and model-based RL can be distinguished by the pattern of staying versus switching of a top level
choice following bottom level winnings. A model-free learner like TD(1) (b), tends to repeat a rewarded action without regard to whether the reward
occurred after a common transition (blue, like A1 to B) or a rare one (red). A model-based learner (c) evaluates top-level actions using a model of their
likely consequences, so that reward following a rare transition (e.g. A1 to C) actually increases the value of the unchosen option (A2) and thus predicts
switching. Human subjects in [33!] exhibited a mixture of both effects.

www.sciencedirect.com Current Opinion in Neurobiology 2012, 22:1–7

Fig	
  1,	
  Doll	
  et	
  al.,	
  2012	
  

Mul/task	
  Z-­‐learning	
  

Model-­‐free	
   “Model-­‐based”	
  

Humans	
  and	
  animals	
  can	
  rapidly	
  adapt	
  to	
  changing	
  rewards	
  in	
  
sequen/al	
  choices	
  (Daw	
  et	
  al.,	
  2011)	
  

•  Two	
  stage	
  choice	
  task	
  

•  Mul/task	
  Z-­‐learning	
  
behaves	
  like	
  model-­‐
based	
  methods	
  

•  Does	
  not	
  rely	
  on	
  
forward	
  model	
  search	
  

Aler	
  random	
  explora/on	
  of	
  a	
  maze	
  environment,	
  introduc/on	
  of	
  a	
  reward	
  at	
  one	
  
loca/on	
  leads	
  to	
  instant	
  goal-­‐directed	
  behavior	
  towards	
  that	
  point	
  (Tolman,	
  1948)	
  
	
  
•  Covert	
  mul/task	
  z-­‐learning	
  

during	
  explora/on	
  enables	
  
immediate	
  naviga/on	
  to	
  
rewarded	
  loca/ons	
  when	
  
reward	
  structure	
  becomes	
  
known	
  

•  Covert	
  tasks	
  need	
  not	
  include	
  
naviga/on	
  to	
  every	
  point,	
  but	
  
must	
  only	
  provide	
  a	
  linear	
  basis	
  
in	
  which	
  each	
  point	
  can	
  be	
  
represented	
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the number of shortest paths within the graph that pass through an index node.
An illustration, from Şimşek (2008), is shown in Figure 3.

(a) (b)

Fig. 3. (a) One state of the Tower of Hanoi problem. Disks are moved one at a
time between posts, with the restriction that a disk may not be placed on top of
a smaller disk. An initial state and goal state define each specific problem. (b)
Representation of the Tower of Hanoi problem as a graph. Nodes correspond to
states (disk configurations). Shades of gray indicate betweenness. Source: Şimşek
(2008).

Şimşek (2008) and Şimşek and Barto (2009) proposed that option discovery
might be fruitfully accomplished by identifying states at local maxima of graph
betweenness (for related ideas, see also Şimşek et al. (2005); Hengst (2002);
Jonsson and Barto (2006); Menache et al. (2002). They presented simulations
showing that an HRL agent designed to select subgoals (and corresponding op-
tions) in this way, was capable of solving complex problems, such as the Tower
of Hanoi problem in Figure 3(a), significantly faster than a non-hierarchical RL
agent.

As part of our research exploring the potential relevance of HRL to neural
computation, we evaluated whether these proposals for subgoal discovery might
relate to procedures used by human learners. The research we have completed so
far focuses on the identification of bottleneck states, as laid out by Şimşek and
Barto (2009). In what follows, we summarize the results of three experiments,
which together support the idea that the notion of bottleneck identification may
be useful in understanding human subtask learning.

Applicable	
  to	
  goal-­‐directed	
  ac/on	
  in	
  more	
  complex	
  domains	
  (Diuk	
  et	
  
al.,	
  2013)	
  
	
  
•  Move	
  blocks	
  to	
  peg	
  3;	
  smaller	
  blocks	
  must	
  always	
  be	
  stacked	
  on	
  

larger	
  blocks	
  

	
  

State	
  graph	
  with	
  cost-­‐to-­‐go	
  	
  
and	
  op/mal	
  trajectory	
  

•  Aler	
  explora/on,	
  mul/task	
  
Z-­‐learning	
  is	
  capable	
  of	
  
naviga/ng	
  to	
  arbitrary	
  
configura/ons	
  

Model-­‐free	
  learning	
  reinforces	
  ac/ons	
  that	
  lead	
  to	
  reward	
  in	
  the	
  past	
  
	
  
Model-­‐based	
  learning	
  uses	
  a	
  model	
  of	
  the	
  world	
  to	
  perform	
  a	
  forward	
  search,	
  
selec/ng	
  ac/ons	
  that	
  lead	
  to	
  reward	
  
	
  
•  Model-­‐free,	
  thus,	
  cannot	
  rapidly	
  adapt	
  to	
  changing	
  reward	
  structure	
  

•  Model-­‐based	
  appears	
  to	
  require	
  an	
  explicit,	
  sequen/al	
  search	
  through	
  the	
  
environment	
  

	
  
Yet	
  intui/vely,	
  	
  
•  If	
  you	
  learn	
  how	
  to	
  navigate	
  to	
  one	
  spot	
  in	
  a	
  maze,	
  you	
  should	
  know	
  something	
  

about	
  how	
  to	
  get	
  to	
  other	
  spots	
  
•  If	
  you	
  learn	
  how	
  to	
  reach	
  your	
  arm	
  to	
  one	
  point	
  in	
  space,	
  you	
  should	
  know	
  

something	
  about	
  reaching	
  other	
  points	
  
•  If	
  you	
  learn	
  how	
  to	
  solve	
  the	
  Tower	
  of	
  Hanoi	
  task,	
  you	
  should	
  learn	
  how	
  to	
  get	
  to	
  

states	
  other	
  than	
  just	
  the	
  goal	
  

Can	
  we	
  go	
  beyond	
  the	
  model-­‐free,	
  model-­‐based	
  dis-nc-on?	
  (Doll	
  et	
  al.,	
  2012)	
  
	
  

To	
  perform	
  novel	
  tasks	
  using	
  knowledge	
  from	
  previously	
  learned	
  tasks,	
  we	
  must	
  be	
  
able	
  to	
  compose	
  them,	
  blending	
  them	
  together	
  to	
  perform	
  an	
  infinite	
  variety	
  of	
  tasks	
  
	
  
•  Composi/on	
  is	
  a	
  key	
  intui/on	
  underlying	
  theories	
  of	
  perceptual	
  systems	
  
•  How	
  can	
  we	
  transfer	
  this	
  intui/on	
  to	
  control	
  systems?	
  
	
  
Composi/onality	
  does	
  not	
  come	
  naturally	
  in	
  control	
  because	
  the	
  Bellman	
  equa-on	
  is	
  
nonlinear:	
  
•  If	
  we	
  have	
  an	
  op/mal	
  cost-­‐to-­‐go	
  func/on	
  for	
  reward	
  structure	
  A	
  and	
  an	
  op/mal	
  

cost-­‐to-­‐go	
  func/on	
  for	
  reward	
  structure	
  B,	
  
•  Does	
  not	
  mean	
  that	
  the	
  op/mal	
  cost-­‐to-­‐go	
  for	
  reward	
  structure	
  A	
  +	
  B	
  is	
  the	
  sum	
  of	
  

these	
  
	
  
We	
  use	
  a	
  careful	
  problem	
  formula/on	
  to	
  restore	
  this	
  composi/onality,	
  and	
  exploit	
  it	
  
to	
  permit	
  flexible	
  execu/on	
  of	
  a	
  variety	
  of	
  tasks.	
  
	
  


