
Outcome	  revalua-on,	  latent	  learning	  and	  specific	  sa-ety	   Tower	  of	  Hanoi	  

Limita/ons	  

Latent	  learning	  in	  spa/al	  naviga/on	  

Exploi-ng	  composi-onality:	  Complex	  task	  blends	  
“Place	  medium	  size	  block	  on	  middle	  peg”	  “Navigate	  to	  room	  A	  or	  B”	  
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Andrew M. Saxe 

Overview	  
Conventional model-free reinforcement learning algorithms are limited to performing only 
one task, such as navigating to a single goal location in a maze, or reaching one goal state in 
the Tower of Hanoi block manipulation problem. Yet in ecological settings, our tasks change 
often and we respond flexibly—we may wish to navigate to some other point in the maze, or 
reach some state other than the typical end goal in the Tower of Hanoi problem. It has been 
thought that in most cases, only model-based algorithms provide such flexibility. 
 
We present a novel model-free algorithm, multitask Z-learning, capable of flexible 
adaptation to new tasks without a forward search through future states. The algorithm learns 
about many different tasks simultaneously, and mixes these together to perform novel, 
never-before-seen tasks. Crucially, it performs any linear blend of previously learned tasks 
optimally. 
 
The algorithm learns a distributed representation of tasks, thereby avoiding the curse of 
dimensionality afflicting other hierarchical reinforcement learning approaches like the 
options framework that cannot blend subtasks. That is, while it is easy to learn a fixed set of 
alternative tasks using an off-policy model-free algorithm, it has not previously been 
possible to perform an infinite set of tasks by blending a fixed set. We present applications 
to sequential choice, spatial navigation, and the Tower of Hanoi problem. The model has a 
number of limitations, which make novel predictions about problem manipulations that 
should show rapid adaptation, versus those that should require slow practice for 
improvement. 

Beyond	  model-‐free	  and	  model-‐based	  

Mul-task	  Z-‐learning	  
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Needed:	  Composi-onality

Linearly-‐solvable	  Markov	  Decision	  
Processes	  

	  

Mul/task	  Z-‐learning	  

Stanford	  University	  

Outcome	  revalua/on	  in	  sequen/al	  choice	  

Mul/task	  Z-‐learning	  is	  a	  new	  reinforcement	  learning	  algorithm	  with	  interes/ng	  
proper/es:	  
•  Instantaneous	  op-mal	  adap/on	  to	  new	  absorbing	  boundary	  rewards	  
•  Relies	  on	  careful	  problem	  formula/on	  to	  permit	  composi/onality	  
•  Off-‐policy	  algorithm	  over	  states	  (not	  state/ac/on	  pairs)	  
•  Compa/ble	  with	  func/on	  approxima/on	  

It	  suggests	  that,	  with	  enough	  experience	  in	  a	  domain,	  complex	  new	  tasks	  can	  be	  
op/mally	  implemented	  without	  an	  explicit	  forward	  search	  process	  
	  
Similar	  in	  spirit	  to	  the	  successor	  representa/on	  (Dayan,	  1993),	  but	  generalizes	  this	  to	  
off-‐policy,	  states-‐based,	  mul/task	  rewards:	  a	  more	  powerful	  representa/on	  than	  
successors	  is	  one	  that	  already	  accounts	  for	  possibly	  complicated	  internal	  reward	  
structure	  
	  
Compa/ble	  with	  model-‐based	  &	  model-‐free	  accounts,	  which	  are	  tractable	  in	  the	  LMDP	  
	  
Mul/task	  z-‐learning	  introduces	  new	  poten/ally	  relevant	  dis/nc/ons:	  
•  Absorbing	  boundary	  reward	  change	  =>	  instant	  adapta/on	  
•  Internal	  reward	  change	  =>	  slow	  adapta/on	  
•  Transi/on	  change	  =>	  subop/mal	  instant	  adapta/on,	  slow	  op/mal	  adapta/on	  
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Composi/onality	  enables	  rapid	  response	  to	  complex	  queries	  
•  Stack	  small	  block	  on	  large	  block	  
•  Place	  medium	  block	  on	  peg	  1,	  small	  block	  on	  peg	  3	  

	  
•  Models	  highly	  prac/ced	  expert	  quite	  familiar	  with	  domain	  
•  Can	  be	  combined	  with	  model-‐based	  search	  

Student Version of MATLAB

Student Version of MATLAB

Instantaneous	  rewards	   Cost-‐to-‐go/trajectory	  

Can	  respond	  flexibly	  to	  a	  variety	  of	  naviga/on	  tasks	  
•  Find	  food	  or	  water	  (specific	  sa/ety	  experiments)	  
•  Go	  to	  a	  point,	  while	  avoiding	  door	  #2	  	  

•  Important	  note:	  Not	  the	  same	  as	  planning	  through	  arbitrary	  
cost	  map	  because	  of	  boundary	  state	  formula/on.	  

We	  use	  the	  first-‐exit	  LMDP	  formula/on	  of	  Todorov,	  2006.	  
	  
States:	  x,	  par//oned	  into	  interior	  states	  and	  absorbing	  
boundary	  states	  
	  
Passive	  dynamics:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  Prob(	  state(t+1)=y|state(t)=x)	  
	  
Ac-on:	  u,	  choose	  new	  transi/on	  probabili/es	  	  
	  
Cost:	  
•  q(x)	  specifies	  instantaneous	  rewards	  
•  KL	  term	  penalizes	  devia/on	  from	  passive	  dynamics	  

Goal:	  Minimize	  total	  cost	  

	  
	  

New formulation: passive dynamics

• If the agent could choose u(y|x) without any restrictions, it could
transition straight to the goal state

• To prevent this, we introduce the passive dynamics p(y|x)

• The passive dynamics encode how the system would move without any
control

• e.g., for the walking example, the passive dynamics would encode how
states change without activating any muscles

• also, by requiring u(y|x) = 0 whenever p(y|x) = 0, we can disallow
certain transitions
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New formulation: immediate cost

• Finally, the new formulation requires the immediate cost to be of the
form

l(x, u) = q(x) + KL(u(·|x)||p(·|x)) = q(x) + E
y⇠u(·|x)


log

u(y|x)

p(y|x)

�

• This cost can be written in words as

l(x, u) = state cost + action cost

• The action cost penalizes large deviations from the passive dynamics
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New formulation: continuous actions

• To be able to explicitly minimize over the possible actions, they can’t be
discrete

• Instead of discrete actions, we will allow the agent to specify the
transition probabilities u(y|x) directly, i.e.

p(y|x, u) = u(y|x)
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New formulation: immediate cost

• Finally, the new formulation requires the immediate cost to be of the
form

l(x, u) = q(x) + KL(u(·|x)||p(·|x)) = q(x) + E
y⇠u(·|x)


log

u(y|x)

p(y|x)

�

• This cost can be written in words as

l(x, u) = state cost + action cost

• The action cost penalizes large deviations from the passive dynamics
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For	  LMDPs,	  op/mal	  ac/on	  directly	  computable	  from	  cost-‐to-‐go	  func/on	  v(x)	  
Define	  exponen/ated	  cost-‐to-‐go	  (desireability)	  func/on:	  
Bellman	  equa/on	  linear	  in	  z:	  
	  
	  
Or	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  where	  zi	  encodes	  desireability	  of	  interior	  states	  
	  
Crucial	  property:	  Solu/ons	  for	  two	  different	  boundary	  reward	  structures	  linearly	  
compose	  (Todorov,	  2009)	  
	  
	  
Mul-task	  Z-‐learning:	  Learn	  about	  a	  set	  of	  boundary	  reward	  structures	  
•  represent	  any	  new	  task	  as	  a	  linear	  combina/on	  of	  these	  
•  op/mal	  z(x)	  is	  linear	  combina/on	  of	  component	  tasks’	  zc(x)	  
	  
Off-‐policy	  update:	  For	  each	  component	  task	  at	  each	  /me	  step,	  update:	  	  
	  
	  

A change of variables

The equation

v(x) = q(x)� logE
y⇠p(·|x) [exp(�v(y))]

is nonlinear in the unknown function v. To make them linear, we change
variables:

z(x) = exp(�v(x))

Then
z(x) = exp(�q(x))E

y⇠p(·|x) [z(y)]
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Z-learning

• Z-learning approximates z using observations of state transitions y

t

to
y

t+1 and the associated immediate state cost q
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• This is using a running average to approximate the update

z(x) = exp(�q(x))E
y⇠p(·|x) [z(y)]
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!qb
c, c =1,…,m

Mul/task	  Z-‐learning	  is	  capable	  of	  instantaneous	  op/mal	  adapta/on	  
to	  any	  novel	  task	  whose	  (exponen/ated)	  boundary	  cost	  structure	  is	  a	  
linear	  combina/on	  of	  previously	  learned	  component	  tasks	  
	  
Yet	  it	  has	  serious	  limita/ons:	  
•  It	  can	  only	  adapt	  rapidly	  to	  changes	  in	  boundary	  rewards;	  changing	  

internal	  reward	  structure	  requires	  slower	  z-‐learning	  updates	  

•  It	  cannot	  adapt	  quickly	  to	  changes	  in	  the	  passive	  dynamics.	  The	  
op/mal	  ac/on	  computa/on	  uses	  the	  passive	  dynamics,	  so	  
changing	  this	  will	  immediately	  change	  behavior	  but	  not	  in	  an	  
op/mal	  way	  un/l	  z-‐learning	  has	  /me	  to	  act	  

•  The	  LMDP	  formula/on	  differs	  from	  the	  standard	  discrete	  ac/on	  
choice	  MDP	  formula/on	  (though	  a	  tradi/onal	  MDP	  can	  be	  
embedded),	  and	  is	  more	  natural	  for	  quasi	  con/nuous	  motor	  
control	  style	  problems	  than	  discrete	  ac/on	  selec/on	  problems	  

transition structure and leverage it to evaluate actions
(Figure 1) [22,33!,34,35!,36,12!,37!,38!,39]. The second
involves explicit or implicit counterfactual structure,
where information about rewards not actually received
can be inferred or observed [40–42,13,43,44]. A typical
example is a serial reversal contingency, where a drop in
the value of one option implies an increase in the other’s
value. Purely reinforcement-based model-free RL would
be blind to such structure. Note, however, that while
such tasks go beyond model-free RL, they do not as
directly exercise the key affirmative features of model-
based RL as we have defined it, that is, the computation
of values using a sequential transition model of an
action’s consequences.

From both sorts of studies, the overall sense is that model-
based influences appear ubiquitous more or less wherever
the brain processes reward information. The most
expected of these influences are widespread reports about
model-based value signals in ventromedial prefrontal
cortex (vmPFC) and adjacent orbitofrontal cortex
(OFC), which have previously been identified with
goal-directed behavior using devaluation tasks [45,46].
vmPFC has been proposed to be the human homologue
of rat prelimbic cortex, which is required for goal-directed
behavior [8]. OFC is also implicated in model-based
Pavlovian valuation in rats and goal values in monkeys
[47,48], though understanding this area across species and
methods is plagued by multiple factors [49]. More unex-
pectedly, several reports now indicate that RPE correlates
in the ventral striatum — long thought to be a human
counterpart to the DA response and thus a core com-
ponent of the putative model-free system — also show

model-based influences [33!,34,44]. Even DA neurons,
the same cells that launched the model-free theories due
to their RPE properties [1,2], communicate information
not available to a standard model-free learner [41].

The harder part of this hunt, then, seems to be for neural
correlates of exclusively model-free signals, which are
surprisingly sparse given the prominence of the model-
free DA accounts. The most promising candidate may be
a region of posterior putamen that has been implicated in
extensively trained behavior in a habit study [17] and a
sequential decision task [37!], and may correspond to the
dorsolateral striatal area associated with habits in rodents
[18]. The foundation of both fMRI results, however, was
overtraining (a classic promoter of habits), rather than
whether these areas reflect values learned or updated by
model-free methods. Indeed, value correlates in a nearby
region of putamen have been reported to follow model-
based rather than model-free updating using the compu-
tational definition [34].

A different, promising path for isolating model-based RL
is neural correlates related to the model itself. Repres-
entations of anticipated future states or outcomes —
rather than just their consequences for reward — are what
defines model-based RL. Hippocampal recordings in the
rat have shown evidence of forward model ‘lookahead
sweeps’ to candidate future locations at maze choice
points [35!]. These data fit well with the spatial map-
encoding properties of hippocampus [50], and may permit
striatum to signal value for simulated rather than actually
experienced outcomes [36]. Hippocampus is similarly
implicated in a study that examines learning predictive
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Current Opinion in Neurobiology

Sequential task dissociating model-based from model-free learning. (a) A two-step decision-making task [33!], in which each of two options (A1, A2) at
a start state leads preferentially to one of two subsequent states (A1 to B, A2 to C), where choices (B1 versus B2 or C1 versus C2) are rewarded
stochastically with money. (b and c) Model-free and model-based RL can be distinguished by the pattern of staying versus switching of a top level
choice following bottom level winnings. A model-free learner like TD(1) (b), tends to repeat a rewarded action without regard to whether the reward
occurred after a common transition (blue, like A1 to B) or a rare one (red). A model-based learner (c) evaluates top-level actions using a model of their
likely consequences, so that reward following a rare transition (e.g. A1 to C) actually increases the value of the unchosen option (A2) and thus predicts
switching. Human subjects in [33!] exhibited a mixture of both effects.

www.sciencedirect.com Current Opinion in Neurobiology 2012, 22:1–7

Fig	  1,	  Doll	  et	  al.,	  2012	  

Mul/task	  Z-‐learning	  

Model-‐free	   “Model-‐based”	  

Humans	  and	  animals	  can	  rapidly	  adapt	  to	  changing	  rewards	  in	  
sequen/al	  choices	  (Daw	  et	  al.,	  2011)	  

•  Two	  stage	  choice	  task	  

•  Mul/task	  Z-‐learning	  
behaves	  like	  model-‐
based	  methods	  

•  Does	  not	  rely	  on	  
forward	  model	  search	  

Aler	  random	  explora/on	  of	  a	  maze	  environment,	  introduc/on	  of	  a	  reward	  at	  one	  
loca/on	  leads	  to	  instant	  goal-‐directed	  behavior	  towards	  that	  point	  (Tolman,	  1948)	  
	  
•  Covert	  mul/task	  z-‐learning	  

during	  explora/on	  enables	  
immediate	  naviga/on	  to	  
rewarded	  loca/ons	  when	  
reward	  structure	  becomes	  
known	  

•  Covert	  tasks	  need	  not	  include	  
naviga/on	  to	  every	  point,	  but	  
must	  only	  provide	  a	  linear	  basis	  
in	  which	  each	  point	  can	  be	  
represented	  
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the number of shortest paths within the graph that pass through an index node.
An illustration, from Şimşek (2008), is shown in Figure 3.

(a) (b)

Fig. 3. (a) One state of the Tower of Hanoi problem. Disks are moved one at a
time between posts, with the restriction that a disk may not be placed on top of
a smaller disk. An initial state and goal state define each specific problem. (b)
Representation of the Tower of Hanoi problem as a graph. Nodes correspond to
states (disk configurations). Shades of gray indicate betweenness. Source: Şimşek
(2008).

Şimşek (2008) and Şimşek and Barto (2009) proposed that option discovery
might be fruitfully accomplished by identifying states at local maxima of graph
betweenness (for related ideas, see also Şimşek et al. (2005); Hengst (2002);
Jonsson and Barto (2006); Menache et al. (2002). They presented simulations
showing that an HRL agent designed to select subgoals (and corresponding op-
tions) in this way, was capable of solving complex problems, such as the Tower
of Hanoi problem in Figure 3(a), significantly faster than a non-hierarchical RL
agent.

As part of our research exploring the potential relevance of HRL to neural
computation, we evaluated whether these proposals for subgoal discovery might
relate to procedures used by human learners. The research we have completed so
far focuses on the identification of bottleneck states, as laid out by Şimşek and
Barto (2009). In what follows, we summarize the results of three experiments,
which together support the idea that the notion of bottleneck identification may
be useful in understanding human subtask learning.

Applicable	  to	  goal-‐directed	  ac/on	  in	  more	  complex	  domains	  (Diuk	  et	  
al.,	  2013)	  
	  
•  Move	  blocks	  to	  peg	  3;	  smaller	  blocks	  must	  always	  be	  stacked	  on	  

larger	  blocks	  

	  

State	  graph	  with	  cost-‐to-‐go	  	  
and	  op/mal	  trajectory	  

•  Aler	  explora/on,	  mul/task	  
Z-‐learning	  is	  capable	  of	  
naviga/ng	  to	  arbitrary	  
configura/ons	  

Model-‐free	  learning	  reinforces	  ac/ons	  that	  lead	  to	  reward	  in	  the	  past	  
	  
Model-‐based	  learning	  uses	  a	  model	  of	  the	  world	  to	  perform	  a	  forward	  search,	  
selec/ng	  ac/ons	  that	  lead	  to	  reward	  
	  
•  Model-‐free,	  thus,	  cannot	  rapidly	  adapt	  to	  changing	  reward	  structure	  

•  Model-‐based	  appears	  to	  require	  an	  explicit,	  sequen/al	  search	  through	  the	  
environment	  

	  
Yet	  intui/vely,	  	  
•  If	  you	  learn	  how	  to	  navigate	  to	  one	  spot	  in	  a	  maze,	  you	  should	  know	  something	  

about	  how	  to	  get	  to	  other	  spots	  
•  If	  you	  learn	  how	  to	  reach	  your	  arm	  to	  one	  point	  in	  space,	  you	  should	  know	  

something	  about	  reaching	  other	  points	  
•  If	  you	  learn	  how	  to	  solve	  the	  Tower	  of	  Hanoi	  task,	  you	  should	  learn	  how	  to	  get	  to	  

states	  other	  than	  just	  the	  goal	  

Can	  we	  go	  beyond	  the	  model-‐free,	  model-‐based	  dis-nc-on?	  (Doll	  et	  al.,	  2012)	  
	  

To	  perform	  novel	  tasks	  using	  knowledge	  from	  previously	  learned	  tasks,	  we	  must	  be	  
able	  to	  compose	  them,	  blending	  them	  together	  to	  perform	  an	  infinite	  variety	  of	  tasks	  
	  
•  Composi/on	  is	  a	  key	  intui/on	  underlying	  theories	  of	  perceptual	  systems	  
•  How	  can	  we	  transfer	  this	  intui/on	  to	  control	  systems?	  
	  
Composi/onality	  does	  not	  come	  naturally	  in	  control	  because	  the	  Bellman	  equa-on	  is	  
nonlinear:	  
•  If	  we	  have	  an	  op/mal	  cost-‐to-‐go	  func/on	  for	  reward	  structure	  A	  and	  an	  op/mal	  

cost-‐to-‐go	  func/on	  for	  reward	  structure	  B,	  
•  Does	  not	  mean	  that	  the	  op/mal	  cost-‐to-‐go	  for	  reward	  structure	  A	  +	  B	  is	  the	  sum	  of	  

these	  
	  
We	  use	  a	  careful	  problem	  formula/on	  to	  restore	  this	  composi/onality,	  and	  exploit	  it	  
to	  permit	  flexible	  execu/on	  of	  a	  variety	  of	  tasks.	  
	  


