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We	
  propose	
  that	
  depth—the	
  brain’s	
  layered	
  structure—is	
  a	
  key	
  factor	
  controlling	
  the	
  size	
  and	
  
:ming	
  of	
  neural	
  changes	
  across	
  the	
  cor:cal	
  hierarchy.	
  
	
  
Depth	
  substan:ally	
  complicates	
  the	
  learning	
  process	
  (Hochreiter,	
  1991;	
  Bengio	
  et	
  al.,	
  1994)	
  
by	
  introducing	
  nonconvexity,	
  vanishing	
  gradients,	
  nonlinear	
  coupling,	
  and	
  scaling	
  symmetries	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Learning	
  in	
  a	
  deep	
  network	
  must	
  overcome	
  these	
  difficul:es,	
  yielding	
  drama:cally	
  different	
  
learning	
  dynamics	
  in	
  comparison	
  to	
  shallow	
  networks	
  (Saxe	
  et	
  al.,	
  2014).	
  

Within	
  layer:	
  most	
  informa:ve	
  neuron	
  changes	
  most	
  
	
  
	
  
	
  
	
  
	
  

	
  Task	
  precision	
  determines	
  most	
  informa:ve	
  neuron	
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual
information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and
Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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task conditions (with large signal-to-noise ratios) are
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are learned at lower-levels where receptive fields are more
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though trials with different levels of difficulty
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manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
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Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.

Opinion TRENDS in Cognitive Sciences Vol.8 No.10 October 2004 459

www.sciencedirect.com

Changing	
  V1	
  disrupts	
  subsequent	
  layers	
  

Coupling	
   Symmetries	
  

in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these
parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive
fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for
spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.
These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these
levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the
neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural
modification.
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Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
perceptual learning.
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similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).
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scheme is illustrated in Figure 4.
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(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning
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Hochstein [17–19,21,22] focused on processes underlying improvement in detect-
ing presence of an oddly oriented bar in an array of homogenously oriented
distractor bars (a). Detection would have been effortless, except that the stimuli
were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty
was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With
practice, performance improved first for longer, then also for shorter SOAs. Early
learning for long SOAs transferred to new orientations, suggesting that training
first affects high-level generalized representations. When stimulus detection was
made difficult, by using short SOAs, a small target/distractor orientation difference,
or greater target position uncertainty and eccentricity, improvement was later and
both orientation- and position-specific, suggesting that later learning reflects top-
down guided low-level changes. This cascade of learning, from higher to lower
areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of
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Overview	
  
With practice, humans and other organisms dramatically improve their accuracy in simple 
perceptual discriminations. Experiments have reported learning-induced changes in neural 
tuning at many levels of the cortical hierarchy, and the magnitude of changes within an area 
has been found to depend strongly on its position in the hierarchy. A fundamental challenge 
for theory is to understand this distribution of changes across brain areas. 
 

Here we propose that depth—the brain’s layered structure—is a key factor controlling the 
size and timing of neural changes across the cortical hierarchy.  
 

We construct a quantitative, analytic theory of perceptual learning by analyzing gradient 
descent dynamics in deep linear neural networks. Deep networks exhibit several learning 
pathologies, including nonconvexity, nonlinear coupling, and scaling symmetries, which 
strongly impact learning dynamics. 
 

Our results uncover a fundamental dichotomy between learning in ‘shallow’ parallel 
structure and ‘deep’ serial structure: learning in parallel structures targets the ‘most 
informative neurons,’ while learning in serial structures targets the ‘least informative layers.’ 
 

The model’s predictions accord with a diverse set of experimental findings, including the 
pattern of changes within layers; the size and timing of changes across layers; the effects of 
high precision vs low precision tasks; and the transfer of performance to untrained locations. 
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1 Introduction

Deep learning approaches have realized remarkable performance across a range of application areas
in machine learning, from computer vision [1, 2] to speech recognition [3] and natural language
processing [4], but the complexity of deep nonlinear networks has made it difficult to develop a
comprehensive theoretical understanding of deep learning. For example, the necessary conditions
for convergence, the speed of convergence, and optimal methods for initialization are based pri-
marily on empirical results without much theoretical support. As a first step in understanding the
learning dynamics of deep nonlinear networks, we can analyze deep linear networks which compute
y = W

D

W

D�1 · · ·W 2
W

1
x, where x, y are input and output vectors respectively, and the W

i are
D weight matrices in this D + 1 layer deep network. Although these networks are no more expres-
sive than a single linear map y = Wx (and therefore unlikely to yield high accuracy in practice),
we have previously shown [5] that they do exhibit nonlinear learning dynamics similar to those ob-
served in nonlinear networks. By precisely characterizing how the weight matrices evolve in linear
networks, we may gain insight into the properties of nonlinear networks with simple nonlinearities
(such as rectified linear units).

In this progress report, we show preliminary results for continuous batch gradient descent, in which
the gradient step size is assumed to be small enough to take a continuous time limit. By the end of
the project, we hope to obtain similar results for discrete batch gradient descent (with a discrete step
size) and stochastic (online) gradient descent.

2 Preliminaries and Previous Work

A deep linear network maps input vectors x to output vectors y =

⇣Q
D

i=1 W
i

⌘
x ⌘ Wx. We wish

to minimize the squared error on the training set {xµ

, y

µ}P
µ=1, l(W ) =

P
P

µ=1 kyµ �Wx

µk2.

The batch gradient descent update for a layer l is

�W

l

= �

PX
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l�1Y
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i

!
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, (1)

where
Q

b

i=a

W

i

= W

b

W

(b�1) · · ·W (a�1)
W

a with the caveat that
Q

b

i=a

W

i

= I if a > b.

The minimizing W can be found analytically, by setting the derivative of the loss to zero:
PX

µ=1

(y

µ �Wx

µ

)x

µT

= 0 (2)

Let ⌃xx ⌘
P

P

µ=1 x
µ

x

µT be the input correlation matrix, and ⌃

yx ⌘
P

P

µ=1 y
µ

x

µT be the input-
output correlation matrix. The optimal W is

W

⇤
= ⌃

yx
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)

�1 (3)
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Effect	
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earlier: to change W 21 requires knowledge of W 32 and visa
versa.

Exact solutions to the gradient descent dynamics
To solve these equations in general is not possible, and prior
solutions [?, ?] have relied on restricted decoupled initial con-
ditions that are not satisfied by our initial weights that encode
V1 orientation tuning. Here we therefore give a new reduc-
tion of these dynamics, specialized to the present problem.
We assume that a solution exists with weights that can be
written as

W 21 = [g+ g�]+a(t)[d �d] (3)
W 32 = b(t)dT . (4)

This form highlights the fact that the only change due to
learning is an increase in the strength of the difference vec-
tor d. The scalar coefficient a(t) encodes the strength of this
change in the input layer, and b(t) encodes the strength of
this change in the output layer. This form must be justified by
showing that it actually does work in the differential equation
describing gradient descent dynamics. Substituting, we have

t d
dt

W 21 = W 32T
(S31 �W 32W 21S11) (5)

t d
dt

a[d �d] = bd
�
[1 �1]�bdT ([g+ g�]+ (6)

a[d �d])) (7)
= bd ([1 �1]�b([v � v]+ (8)

a[u �u])) (9)
= b(1� vb�uab)[d �d] (10)

t d
dt

W 32 = (S31 �W 32W 21S11)W 21T (11)

t d
dt

bdT =
�
[1 �1]�bdT ([g+ g�]+a[d �d])

�
(12)

([g+ g�]+a(t)[d �d])T (13)
= ([1 �1]�b([v � v]+a[u �u])) (14)

([g+ g�]+a[d �d])T (15)
= (1� vb�uab) [1 �1] (16)

([g+ g�]+a[d �d])T (17)
= (1� vb�uab)(1+2a)dT (18)

where v = dT g+ = gT
+g+ � gT

+g� measures the overlap
between the difference vector and the input response, and
u = dT d measures the norm of the difference vector.

Hence our assumed form of the solution is correct, and we
have the reduced scalar dynamics

t d
dt

a = b(1� vb�uab) (19)

t d
dt

b = (1� vb�uab)(1+2a) (20)

These scalar dynamics directly track the magnitude of the
change in the input layer, a(t), and that in the output layer,
b(t).

Fixed points
To determine the end point of learning, we set both equations
to zero.

0 = b(1� vb�uab) (21)
0 = (1� vb�uab)(1+2a) (22)

One fixed point occurs for b = 0,a =�1/2. This is unstable.
Other fixed points occur when

0 = 1� vb�uab (23)
1 = (v+ua)b (24)

This defines a hyperbola of stable fixed points, representing a
family of solutions that correctly solve the task. This hyper-
bola demonstrates the problem of redundancy: the discrimi-
nation task can be solved either by a large input layer change
a and small output layer change b, or by a small input layer
change and large output layer change, or any intermediate
scaling in between–so long as (v+ua)b = 1, the task will be
solved exactly. As we will show shortly, however, the gra-
dient descent dynamics will select one particular fixed point
from among this infinite number.

Equal tuning curve widths
We note that, for the case where gT

+g+ = gT
�g�, as would

be expected in any area with roughly homogeneous tuning
properties, we have u = dT d = gT

+g+ � 2gT
+g� + gT

�g� =
2(gT

+g+�gT
+g�) = 2v. In this case the dynamics are

t d
dt

a = b(c� vb(1+2a)) (25)

t d
dt

b = (c� vb(1+2a))(1+2a) (26)

which depends only on the single constant v to describe the
problem. This constant encodes the difficulty of the problem.
Small v’s near zero represent difficult problems, and large v’s
represent easy problems.

One way to understand v is to compute it for the case where
g+ and g� are Gaussian distributions with the same standard
deviation s, but different means µ+ and µ�. From signal de-
tection theory, define the discriminability d0 = (µ+� µ�)/s.
Then we can compute

v =
Z •

�•
g+(x)(g+(x)�g�(x))dx (27)

=
1

2
p

ps

⇣
1� e�(d0/2)2

⌘
(28)

Hence, for a fixed tuning curve width s, as the difference
between target stimuli increases, v increases. And as the dif-
ference goes to zero, v decreases. It is not enough, however,
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Equal tuning curve widths

We note that, for the case where gT
+g+ = gT

�g�, as would
be expected in any area with roughly homogeneous tuning
properties, we have u = dT d = gT

+g+ � 2gT
+g� + gT

�g� =
2(gT

+g+�gT
+g�) = 2v. In this case the dynamics are

t d
dt

a = b(1� vb(1+2a)) (23)

t d
dt

b = (1� vb(1+2a))(1+2a) (24)

which depends only on the single constant v to describe the
problem. One way to understand v is to compute it for
the case when g+ and g� are Gaussian distributions with
the same standard deviation s, but different means µ+ and
µ�. From signal detection theory, define the discriminability
d0 = (µ+�µ�)/s. Then we can compute

v =
Z •

�•
g+(x)(g+(x)�g�(x))dx (25)

=
1

2
p

ps

⇣
1� e�(d0/2)2

⌘
(26)

Hence, for a fixed tuning curve width s, as the difference
between target stimuli increases, v increases. And as the dif-
ference goes to zero, v decreases. It is not enough, however,
to just know the discriminability d0–the tuning curve width
must also be known to calculate v. The metric v is thus dis-
tinct from d0, and more parsimonious for describing learning
dynamics.

For the case of equal width tuning curves, the hyperbola of
fixed points is

1 = v(1+2a)b (27)

Easier discriminations (larger v) require less overall change
in a and b.

Phase trajectory

It is hard to solve for the full temporal dynamics of learn-
ing. Instead, we will solve for a in terms of b. Dividing the
differential equations, we have

da
db

=
b

1+2a
(28)

which is separable with solution

a+a2 = b2/2+C (29)

where the constant C depends on the initial conditions. For
the relevant initial condition a(0) = b(0) = 0, we have C = 0.
Thus in terms of a, we have

b =
p

2a+2a2 (30)

This formula directly describes the ratio of change in the de-
cision layer weights, b, to that in the input layer weights, a.

Initially, both weights start at zero. For small a, b ⇡
p

2
p

a.
Once a is large, then b⇡

p
2a. Both of these facts are critical

predictions of the model.
The first result shows that b grows large more quickly than

a when both are small. Hence the decision layer will be the
first to show large changes due to learning; it precedes a in
time.

The second result shows that b eventually grows at the
same rate as a, but is about a factor of

p
2 larger in size.

Hence the magnitude of the change in the decision layer after
learning is greater than that in the input layer. Both of these
important predictions are in line with experiment.

One further prediction of the model is the interaction of
discrimination difficulty with the changes induced in the de-
cision layer as opposed to the input layer. If the discrimina-
tion is quite hard, then v is small and the network will enter
the regime in which b ⇡

p
2a. In this ’hard discrimination’

regime, large changes in both layers are anticipated (though
the magnitude is greater in the decision layer). If the dis-
crimination is quite easy, by contrast, then v is large and the
network will be in the regime for which b ⇡

p
2a. In this

case, the majority of the change will come from the decision
layer weights, and there may be little to no learning in the
input layer. Hence the experimental prediction is that very
fine discriminations should provoke greater changes in input
layer weights as compared to easy discriminations (though
for all difficulties, the change in decision layer weights will
be greater in magnitude).

Summary of results

Higher layers change more:

b >
p

2a for all t (31)

Higher layers change first:

b/a ⇠ O(
p

2/
p

a) for small t (32)

b/a ⇠ O(
p

2) for large t (33)

A corollary is that very easy problems may cause mainly
decision layer changes. Very hard problems are likely to
cause both decision and input layer changes.

‘Most informative’ neurons change the most

The change in neural tuning is described by the difference
vector d = g+ � g�. This makes detailed predictions about
the magnitude of the change in orientation tuning for neu-
rons with different preferred orientations. In particular, the
neurons that change the most will be those that correspond
to the maxima in d. Intuitively, one might expect that the
maximally changed neurons would be the maximally active
neurons, i.e., the neurons with preferred orientations of either
µ+ or µ�. This intuition is correct when the discrimination
is easy. However for difficult discriminations, this intuition
no longer holds. For fine discriminations, the maximum of d

Equal tuning curve widths

We note that, for the case where gT
+g+ = gT

�g�, as would
be expected in any area with roughly homogeneous tuning
properties, we have u = dT d = gT

+g+ � 2gT
+g� + gT

�g� =
2(gT

+g+�gT
+g�) = 2v. In this case the dynamics are

t d
dt

a = b(1� vb(1+2a)) (23)

t d
dt

b = (1� vb(1+2a))(1+2a) (24)

which depends only on the single constant v to describe the
problem. One way to understand v is to compute it for
the case when g+ and g� are Gaussian distributions with
the same standard deviation s, but different means µ+ and
µ�. From signal detection theory, define the discriminability
d0 = (µ+�µ�)/s. Then we can compute

v =
Z •

�•
g+(x)(g+(x)�g�(x))dx (25)

=
1

2
p

ps

⇣
1� e�(d0/2)2

⌘
(26)

Hence, for a fixed tuning curve width s, as the difference
between target stimuli increases, v increases. And as the dif-
ference goes to zero, v decreases. It is not enough, however,
to just know the discriminability d0–the tuning curve width
must also be known to calculate v. The metric v is thus dis-
tinct from d0, and more parsimonious for describing learning
dynamics.

For the case of equal width tuning curves, the hyperbola of
fixed points is

1 = v(1+2a)b (27)

Easier discriminations (larger v) require less overall change
in a and b.

Phase trajectory

It is hard to solve for the full temporal dynamics of learn-
ing. Instead, we will solve for a in terms of b. Dividing the
differential equations, we have

da
db

=
b

1+2a
(28)

which is separable with solution

a+a2 = b2/2+C (29)

where the constant C depends on the initial conditions. For
the relevant initial condition a(0) = b(0) = 0, we have C = 0.
Thus in terms of a, we have

b =
p

2a+2a2 (30)

This formula directly describes the ratio of change in the de-
cision layer weights, b, to that in the input layer weights, a.

Initially, both weights start at zero. For small a, b ⇡
p

2
p

a.
Once a is large, then b⇡

p
2a. Both of these facts are critical

predictions of the model.
The first result shows that b grows large more quickly than

a when both are small. Hence the decision layer will be the
first to show large changes due to learning; it precedes a in
time.

The second result shows that b eventually grows at the
same rate as a, but is about a factor of

p
2 larger in size.

Hence the magnitude of the change in the decision layer after
learning is greater than that in the input layer. Both of these
important predictions are in line with experiment.

One further prediction of the model is the interaction of
discrimination difficulty with the changes induced in the de-
cision layer as opposed to the input layer. If the discrimina-
tion is quite hard, then v is small and the network will enter
the regime in which b ⇡

p
2a. In this ’hard discrimination’

regime, large changes in both layers are anticipated (though
the magnitude is greater in the decision layer). If the dis-
crimination is quite easy, by contrast, then v is large and the
network will be in the regime for which b ⇡

p
2a. In this

case, the majority of the change will come from the decision
layer weights, and there may be little to no learning in the
input layer. Hence the experimental prediction is that very
fine discriminations should provoke greater changes in input
layer weights as compared to easy discriminations (though
for all difficulties, the change in decision layer weights will
be greater in magnitude).

Summary of results

Higher layers change more:

b >
p

2a for all t (31)

Higher layers change first:

b/a ⇠ O(
p

2/
p

a) for small t (32)

b/a ⇠ O(
p

2) for large t (33)

A corollary is that very easy problems may cause mainly
decision layer changes. Very hard problems are likely to
cause both decision and input layer changes.

‘Most informative’ neurons change the most

The change in neural tuning is described by the difference
vector d = g+ � g�. This makes detailed predictions about
the magnitude of the change in orientation tuning for neu-
rons with different preferred orientations. In particular, the
neurons that change the most will be those that correspond
to the maxima in d. Intuitively, one might expect that the
maximally changed neurons would be the maximally active
neurons, i.e., the neurons with preferred orientations of either
µ+ or µ�. This intuition is correct when the discrimination
is easy. However for difficult discriminations, this intuition
no longer holds. For fine discriminations, the maximum of d
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to just know the discriminability d0–the tuning curve width
must also be known to calculate v. The metric v is thus dis-
tinct from d0, and more parsimonious for describing learning
dynamics.

For the case of equal width tuning curves, the hyperbola of
fixed points is

1
v
= (1+2a)b (29)

Easier discriminations (larger v) require less overall change
in a and b.

Phase trajectory
It is hard to solve for the full temporal dynamics of learn-
ing. Instead, we will solve for a in terms of b. Dividing the
differential equations, we have

da
db

=
b

1+2a
(30)

which is separable with solution

a+a2 = b2/2+C (31)

where the constant C depends on the initial conditions. The
relevant initial condition is no change in either the input or
decision layer, a(0) = b(0) = 0, and for this we have C = 0.
Thus in terms of a, we have

b =
p

2a+2a2 (32)

This formula directly describes the ratio of change in the de-
cision layer weights, b, to that in the input layer weights, a.
Initially, both weights start at zero. For small a, b ⇡

p
2
p

a.
Once a is large, then b⇡

p
2a. Both of these facts are critical

predictions of the model.
The first result shows that b grows large more quickly than

a when both are small. Hence the decision layer will be the
first to show large changes due to learning; it precedes a in
time.

The second result shows that b eventually grows at the
same rate as a, but is a factor of

p
2 larger in size. Hence the

magnitude of the change in the decision layer after learning
is greater than that in the input layer. Both of these important
predictions are in line with experiment.

Easy vs hard discriminations
One further prediction of the model is the interaction of dis-
crimination difficulty with the changes induced in the deci-
sion layer as opposed to the input layer. If the discrimina-
tion is quite hard, then v is small and the network will enter
the regime in which b ⇡

p
2a. In this ’hard discrimination’

regime, large changes in both layers are anticipated (though
the magnitude is greater in the decision layer). If the dis-
crimination is quite easy, by contrast, then v is large and the
network will be in the regime for which b ⇡

p
2a. In this

case, the majority of the change will come from the decision

layer weights, and there may be little to no learning in the
input layer. Hence the experimental prediction is that very
fine discriminations should provoke greater changes in input
layer weights as compared to easy discriminations (though
for all difficulties, the change in decision layer weights will
be greater in magnitude).

‘Most informative’ neurons change the most
The change in neural tuning is described by the difference
vector d = g+ � g�. This makes detailed predictions about
the magnitude of the change in orientation tuning for neu-
rons with different preferred orientations. In particular, the
neurons that change the most will be those that correspond
to the maxima in d. Intuitively, one might expect that the
maximally changed neurons would be the maximally active
neurons, i.e., the neurons with preferred orientations of either
µ+ or µ�. This intuition is correct when the discrimination
is easy. However for difficult discriminations, this intuition
no longer holds. For fine discriminations, the maximum of d
can be calculated to be the angle corresponding to the stan-
dard deviation of the tuning curves, s. Hence the most infor-
mative neurons reside ±s from the trained orientation, and
these are clearly not the most active. To summarize the re-
sults, let Dµ = µ+�µ� be the orientation difference between
the two stimuli. Then, the preferred orientation of the most
changed neurons is O(Dµ/2) for Dµ/2 >> s, and is O(s) for
Dµ/2 << s. For fine discriminations, the most informative
neurons are thus not the maximally active neurons. This is in
line with experiment [?, ?, ?].

Summary of results
Higher layer changes more

b >
p

2a for all t (33)

Higher layer changes first

b/a ⇠ O(
p

2/
p

a) for small t (34)

b/a ⇠ O(
p

2) for large t (35)

‘Most informative’ neurons change most The preferred
orientation of the most changed neurons is

O(Dµ/2) for Dµ/2 >> s (36)
O(s) for Dµ/2 << s. (37)

Easy vs hard discriminations Very easy problems cause
mainly decision layer changes; most active neurons change
most. Very hard problems cause both decision and input layer
changes; neurons with preferred orientation offset by s from
the trained orientation change most.

Hyperbolic dynamics
The strength of each mode in deep networks is the product
of the effective singular values in each layer. In this sense,
a linear deep network is not in fact linear. A term contain-
ing scalar products such as u = a1a2 · · ·aD is not linear, and
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