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Key	results	

Overview	
Retrieving a memory can, surprisingly, cause forgetting of related competitor memories, a 
phenomenon known as retrieval-induced forgetting. For example, after studying a list of 
category-exemplar pairs (``Fruit-Pear,'' ``Fruit-Apple'',...), partial practice of one target pair 
(``Fruit-Pe'') can cause forgetting of related competitor pairs (``Fruit-Apple''). A wealth of 
experiments have delimited four key features of this effect: partial practice yields retrieval-
induced forgetting; extra study of the complete item (``Fruit-Pear'') yields no RIF despite 
equivalent target strengthening; reversed practice with incomplete category information 
(``F-Pear'') yields no RIF; and when present, the RIF effect can be elicited using 
independent cues (``Red-A'') rather than the specific cues used during learning (Norman et 
al., 2007; Anderson, 2003). These intricate findings pose a crucial challenge for theory: what 
sort of memory system might yield these effects, and why? 
 
Here we develop a quantitative theory of retrieval-induced forgetting by deriving new exact 
solutions to the dynamics of learning for the generalized perceptron learning rule (GPLR) as 
it embeds memories in a binary recurrent neural network. These solutions yield closed-form 
expressions for the amount of RIF as a function of experimental parameters that agree with 
experiment. Hence the GPLR, which is known to attain optimal storage capacity in recurrent 
binary networks (Gardner, 1988), naturally exhibits retrieval-induced forgetting, suggesting 
that RIF is a hallmark of memory storage using a computationally optimal learning rule. 

Conclusions	
	•  Theory	points	to	a	computaBonal	raBonale	for	RIF:	phenomena	relaBng	to	RIF	are	

natural	consequences	of	memory	storage	using	a	computaBonally	opBmal	learning	rule	

•  Makes	quanBtaBve,	testable	predicBons	for	the	exact	degree	of	RIF	as	a	funcBon	of	
experimental	parameters	

•  First	analyBcal	model	to	capture	the	basic	phenomenology	of	RIF	

•  Links	neural	plasBcity	to	high	level	psychological	phenomenon,	showing	how	a	network	
of	neurons	with	local	learning	could	combine	to	yield	the	behavioral	paOerns	of	RIF	

•  By	virtue	of	its	neural	formulaBon,	the	model	may	address	more	recent	neural	data	
(Poppenk	&	Norman,	2014;	Wimber	et	al.,	2015)	

•  SoluBon	methods	employed	may	be	generalizable	to	other	emerging	RIF	phenomena	
such	as	reverse	RIF,	integraBon,	and	differenBaBon	(Hulbert	&	Norman,	2014).		
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RIF	with	varying	amounts	of	prac5ce	

RIF	with	independent	cues	

∑
n(t) x(t +1)

…	

W	
x

Target strengthening

~pc

2 4 6 8 10

~p
e

2

4

6

8

10
Competitor punishment

~pc

2 4 6 8 10

~p
e

2

4

6

8

10

Tp

0 5 10 15

"
~n

e

0

0.2

0.4

0.6

Target

Tp

0 5 10 15

"
~n

f

0

0.2

0.4

0.6

Competitor

Partial practice
Reversed practice
Extra study

Target strengthening ∆ñe
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Figure 5: Target strengthening and competitor punishment as a function of the information provided
during partial practice. Other parameters are Ne = pe = pc = p̂c = 10, p̂e = 1. The dotted line
denotes the transition from no RIF to RIF.
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Figure 3: Target strengthening and competitor punishment as a function of practice type. Reversed
practice or extra study abolishes RIF, but both strengthen the target representation, ruling out a
blocking interpretation. Other parameters are Ne = pe = pc = p̂c = 4, p̂e = 1, Ti = 10, Tp = 5.

information (p̂c = pc, p̂e < p̃e).

1.1.4 Target strengthening and competitor weakening

The RIF e↵ect is measured relative to baseline recall before the partial practice phase. In the model,
we assume that correct recall is related to the net input ne received by each unit. The RIF e↵ect is
thus the change in this net input before and after partial practice. We denote the amount of target
strengthening as �n̂e and the amount of competitor weakening as �n̂f . In particular, �n̂f is the
size of the retrieval-induced forgetting e↵ect, which in general depends on Ne, pc, pe, Ti, p̃c, p̃e, Tp, p̂c,
and p̂e.

1.2 Exact solutions to the timecourse of learning

Here we give complete solutions for the dynamics of learning in the above setting. We give ex-
pressions for the net input to each unit over time, but the extended notes below also provide exact
expressions for the full weight matrix over time.

1.2.1 Initial study

All category units have the same net input nc(t), and all exemplar units have the same net input
ne(t) in response to their example, given below

nc(t) = min (1, ⌫(Nepc + pe)Ti) (1)

ne(t) = min

✓
1, ⌫

(Nepc + 1)pe
(Ne � 1)pc + pe

Ti

◆
. (2)

All category and exemplar units have a net input of zero to examples that are not part of their
category or example respectively.
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1.2.2 Partial practice

During partial practice, the net input in response to the partial practice input x̃(c,e) is

ñc(t) = a(Ti)(Nep̃c + p̃e) + dc(t)(p̃c + p̃e) (3)

ñe(t) = b(Ti)


pep̃c

(Ne � 1)pc + pe
+ p̃e

�
+ de(t)(p̃c + p̃e) (4)

ñf (t) = b(Ti)


p̃cpe � pcp̃e

(Ne � 1)pc + pe

�
+ df (t)(p̃c + p̃e) (5)

where

a(t) = min

✓
⌫t,

1

pcNe + pe

◆
(6)

b(t) = min

✓
⌫t,

(Ne � 1)pc + pe
Nepcpe + p2e

◆
(7)

and

dc(t) = min (⌫(t� Ti), d
1
c ) (8)

de(t) = min (⌫(t� Ti), d
1
e ) (9)

df (t) = max
�
�⌫(t� Ti), d

1
f

�
. (10)

with

d1c =
1� a(Ti)(Nep̃c + p̃e)

p̃c + p̃e
(11)

d1e =
1� b(Ti)

⇣
pep̃c

(Ne�1)pc+pe
+ p̃e

⌘

p̃c + p̃e
(12)

d1f = min

✓
0,�b(Ti)

p̃cpe � pcp̃e
[(Ne � 1)pc + pe] (p̃c + p̃e)

◆
. (13)

1.2.3 Test phase

In the test phase we have

�n̂c = dc(Ti + Tp) (min(p̃c, p̂c) + min(p̃e, p̂e)) (14)

�n̂e = de(Ti + Tp) (min(p̃c, p̂c) + min(p̃e, p̂e)) (15)

�n̂f = df (Ti + Tp)min(p̃c, p̂c) (16)

where �n̂e and �n̂f encode the amount of target strengthening and competitor punishment re-
spectively. To illustrate these dynamics, Fig. 1 plots a typical learning trajectory.
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•  Memories	stored	in	binary	recurrent	neural	network	

•  All-to-all	recurrent	connecBons	

•  PaOerns	embedded	as	fixed	points	of	network	dynamics	
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ñ
f

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Competitor

Partial practice
Reverse study
Extra study

Figure 2: Target strengthening and competitor punishment as a function of amount of partial
practice. Competitor punishment quickly saturates, while target strengthening continues. Other
parameters are Ne = pe = pc = p̃c = p̂c = 4, p̂e = 1, Ti = 10.

1.1.2 Partial practice

We now consider partial practice of a specific example (c, e) in which only p̃e of its full pe exemplar
units are active, and only p̃c of its pc category units are active. We denote this modified partial-
practice input by x̃(c,e). We assume that all patterns have been embedded using the initial study
dynamics up to a time Ti before the partial practice commences. The partial practice lasts for a
duration Tp. We shall use f as the index of any competitor (i.e., f 6= e).

1.1.3 Test phase

Finally, to probe recall, a test input is applied. For any example (c, e), we generate the test input
x̂(c,e) by setting p̂c of its category units to one and p̂e of its exemplar units to one. The standard
paradigm used by most experiments is to present all category information, and very limited exemplar
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1.1.3 Test phase
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Optimal storage capacity associative memories exhibit
retrieval-induced forgetting

Andrew M. Saxe & Kenneth A. Norman

1 Summary

Retrieving a memory can, surprisingly, cause forgetting of related competitor memories, a phenomenon
known as retrieval-induced forgetting. For example, after studying a list of category-exemplar pairs
(“Fruit-Pear,” “Fruit-Apple”,...), partial practice of one target pair (“Fruit-Pe”) can cause forgetting of
related competitor pairs (“Fruit-Apple”). This striking behavioral finding has been probed in a wealth
of experiments that have delimited four key features of this e↵ect: partial practice yields retrieval-
induced forgetting; extra study of the complete item (“Fruit-Pear”) yields no RIF despite equivalent
target strengthening; reversed practice with incomplete category information (“F-Pear”) yields no RIF;
and when present, the RIF e↵ect can be elicited using independent cues (“Red-A”) rather than the
specific cues used during learning (Norman et al., 2007; Anderson, 2003). These robust and intricate
empirical findings severely constrain models of memory and pose a crucial challenge for theory: what
sort of memory system might yield these e↵ects, and why?

Here we develop a quantitative theory of retrieval-induced forgetting by deriving new exact solutions
to the dynamics of learning for the generalized perceptron learning rule (GPLR) as it embeds memories
in a binary recurrent neural network. These solutions reveal the full trajectory of every recurrent weight
over the course of learning, and yield closed-form expressions for the amount of RIF seen following partial
practice, extra study, and reversed practice. In accord with behavioral findings, partial practice yields
RIF while reversed practice and extra study provably do not. Moreover, we show that the recurrence
in the network causes independent cues to exhibit RIF to the same extent as trained cues. Hence the
GPLR, which is known to attain optimal storage capacity in recurrent binary networks (Gardner, 1988),
naturally exhibits subtle behavioral phenomena linked to retrieval induced forgetting, suggesting that
RIF is a hallmark of memory storage using a computationally optimal learning rule.

2 Additional details

We analyze a Hopfield-type recurrent network trained using the generalized perceptron learning rule
(Fig. 1A). The generalized perceptron learning rule is a supervised nonlinear learning rule that achieves
a storage capacity of 2N for uncorrelated patterns (cf .14N for Hebbian learning) where N is the number
of neurons (Gardner, 1988). Any neuron which is incorrect adjusts its weights in proportion to their
inputs, with the sign determined by whether the neuron is on and should be o↵ or vice versa; any
neuron which is correct undergoes no change.

Following previous neural network models (Norman et al., 2006), we model experimental RIF
paradigms using binary inputs x 2 {0, 1}N formed from Nc di↵erent classes such as “Fruit”, where
each class has Ne exemplars (Fig. 1B). Training proceeds in three phases. In the initial study phase,
all P patterns are studied for a time Ti (measured in iterations through all examples). In the practice
phase, the network is trained on a specific example in which only p̃e of its full pe exemplar units are
active, and only p̃c of its pc category units are active. The partial practice lasts for time Tp. Finally,
to probe recall, a test input is applied which has p̂c of its category units active and p̂e of its exemplar
units active. No learning occurs, but the recurrent dynamics are allowed to settle to a fixed point.

Recall is measured as the net input for exemplar units not presented as part of the test input. The
RIF e↵ect is the change in this net input before and after partial practice. We denote the amount of
target strengthening as �n̂e and the amount of competitor weakening as �n̂f , which in general depend
on Ne, pc, pe, Ti, p̃c, p̃e, Tp, p̂c, and p̂e.

1

FuncBons	a(t),b(t),	and	d{c,e,f}(t)	omiOed	due	to	space	

c:	target	category	unit	
e:	target	exemplar	unit	
f:	compeBtor	exemplar	unit	
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Figure 1: (A) Top: Recurrent neural network with binary activities x and weightsW (not all connections
shown). Bottom: Each neuron takes a weighted sum of its inputs (the net input n(t)) and applies a
step nonlinearity. (B) Training patterns for typical RIF experimental paradigms. Each item has a
distributed representation with shared category units and distinct exemplar units. Practice and test
inputs activate only a subset of the full distributed representation. (C) Exact solutions to the dynamics
of GPLR learning. Curves show evolution of net input for category units (nc), target exemplar units
(ne), and competitor exemplar units (nf ). Parameters instantiate a typical RIF experiment with partial
practice beginning at T = 10. (D) Target strengthening and competitor punishment as a function of
practice type. (E) Quantitative predictions of RIF as a function of partial practice duration. (F)
Asymptotic RIF as a function of category (p̃c) and exemplar (p̃e) information supplied at practice.
Dotted line indicates transition to zero RIF, when less category than exemplar information is supplied.

Remarkably, for the class of inputs considered here and the three phase learning scheme used in
typical RIF experiments, these dynamics can be solved exactly (Fig. 1C). In the initial study period,
for instance, category units have net input nc(t) and exemplar units have net input ne(t) in response
to their example, (partial practice/test dynamics omitted due to space)

nc(t) = min (1, ⌫(Nepc + pe)Ti) , ne(t) = min

✓
1, ⌫

(Nepc + 1)pe
(Ne � 1)pc + pe

Ti

◆
. (1)

These solutions quantitatively reveal the amount of RIF as a function of experimental parameters
(Fig. 1E), correctly recapitulating the e↵ect of practice type (Fig. 1D). Fig. 1F plots this as a function
of the information presented during partial practice (p̃e, p̃c). Notably, significant RIF is only observed
when category information is present but exemplar information is not (partial but not reversed practice).
And due to the recurrent structure of the network, RIF occurs in response to independent cues.

Retrieval-induced forgetting has generated extensive empirical interest (Anderson, 2003), but no
analytical model has yet captured its basic phenomenology. Our theory makes quantitative, testable
predictions for the exact degree of RIF as a function of experimental parameters, and crosses from
the neural to the behavioral, showing how a network of neurons with local learning could combine to
yield the behavioral patterns of RIF. By virtue of its neural formulation, the model may address more
recent neural data (Poppenk & Norman, 2014; Wimber et al., 2015); and the methods employed may
be generalizable to other emerging RIF phenomena such as reverse RIF, integration, and di↵erentiation
(Hulbert & Norman, 2014). Finally, the theory points to a computational rationale for RIF: the funda-
mental phenomena relating to RIF are natural consequences of memory storage using a computationally
optimal learning rule.
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Figure 1: Net input during learning. Parameters instantiate a typical RIF experiment with partial
practice. At T = 10, the partial practice input is applied. Parameters: Ne = pe = pc = p̃c = p̂c =
4, p̃e = 2,p̂e = 1, Ti = 10, Tp = 5, ⌫ = .01

derive novel exact solutions to the learning dynamics of storing category-exemplar pairs using the
generalized perceptron learning rule (***). These solutions quantitatively reveal what is learned
when; and how extra practice modifies both target and competitor memories. We obtain ana-
lytic expressions for the degree of RIF as a function experimental parameters, and show that the
predictions of the theory agree with experiment.

1 Summary of results

Here we summarize the problem formulation and results. Full derivations are given at the end.

1.1 Problem formulation

We consider binary inputs x 2 {0, 1}N formed from Nc di↵erent classes such as Fruit, Animal,
etc. Each class has Ne exemplars. We suppose that each class is represented by a set of pc units
and the exemplars are each represented by a set of pe units. The vector x is thus of dimension
N = Nc ⇥ pc +Ne ⇥ pe, and there are P = Nc ⇥Ne di↵erent examples to be stored. Concatenate
all inputs into the columns of the matrix X.

We train a Hopfield type recurrent network on these patterns, using the generalized perceptron
learning rule with learning rate ⌫. Initially, all weights W (0) = 0. Training proceeds in three
phases, described below.

1.1.1 Initial study

In the initial study phase, all P patterns are studied for a time Ti (measured in iterations through
the entire set of examples). We denote by x(c,e) the pattern for category c, example e. This pattern
will consist of the pc units corresponding to category c being active (equal to one), and the pe units
corresponding to example e being active. The rest of the units are zero.
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•  Introduced	by	Gardner,	1988	

•  Requires	neurons	to	be	correct	by	a	nonzero	margin	(here	½)	

	

•  The	GPLR	is	known	to	obtain	opBmal	storage	capacity	of	2N	
(cf	.14N	for	Hebbian	learning)	(Gardner,	1988).	

		

4. Instantaneous version? Assume embedding of all patterns with
some margin  at time T ; then assume partial practice of some
sort which shifts these embeddings in a predictable way; then
show that first update will a) strengthen target; b) weaken com-
petitor

5. Maybe: show that any rule which exhibits RIF + some other mod-
est assumptions must be Gardner type, i.e., yield optimal storage
capacity.

6. Maybe: show that class of LRs which exhibit RIF is broader (eg,
seems like pseudoinverse rule would also yield it? but maybe find
some odd predictions of pseudoinverse)

From Ken
hey andrew,

I think sticking a version of the OLR thesis on arxiv is a won-
derful idea–I read it over again last night and feel that before it goes
up I’ll need to bulk out its references. It’s certainly not an ideal doc-
ument, with maybe the biggest issue being that it doesn’t do a great
job explaining the intuitions. So it would be good to do a journal
version of it at some point. I think what’s been holding me up is
that, a while ago, you said that we’re really missing a global conver-
gence proof–and at the time, I didn’t think I had the ability to do that.
Now I think it’s within the realm of possibility. I think the ideal over-
all story would be something along the lines of "We have identified
a metaclass of associative memory learning systems; any element of
this class provably has high storage capacity; stores correlated inputs;
and exhibits retrieval induced forgetting." The main interesting thing
here, I would think, is we’re saying that the cognitive phenomenon
of retrieval induced forgetting is a general hallmark of high capacity
memory systems. As I’ve described it, being in the metaclass is suf-
ficient for high capacity and RIF, but an even stronger version would

be to somehow prove that the metaclass is necessary and sufficient.
Then we would be justified in saying that all optimal capacity mem-
ory systems exhibit RIF. Does that coincide with what you had in
mind?

yes! even the "weaker" version would be a huge contribution.
In terms of timing, I’ll have to focus on my thesis until mid-June,

but after that should have more time free.
ok, that sounds great. i think that the plan would be to figure

out which "improvements" can be done relatively easily (i.e., with a
week or two of focused effort) and which will require more time /
effort / thought; then we could do the relatively easily modifications
and stick that version on arxiv; hopefully, this will also help us figure
out what the path would be to a full journal article...

once your thesis stuff is stabilized (this summer) and you’re ready
to spend time on this, let me know!

Other ideas
if you know your patterns are sparse, can you do a one-sided stop
learning rule? eg, always increase if the memory is supposed to be
on, but stop learning if you’re < k below the target threshold. So
BCM-like. would this be just as good in the sparse regime?
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•  Target	strengthening	persists	while	RIF	rapidly	plateaus	with	pracBce	
	

•  Consistent	with	experiment,	parBal	pracBce	yields	RIF		

•  	Reversed/extra	study	yield	no	RIF,	despite	substanBal	target	strengthening		
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Figure 3: Target strengthening and competitor punishment as a function of practice type. Reversed
practice or extra study abolishes RIF, but both strengthen the target representation, ruling out a
blocking interpretation. Other parameters are Ne = pe = pc = p̂c = 4, p̂e = 1, Ti = 10, Tp = 5.

information (p̂c = pc, p̂e < p̃e).

1.1.4 Target strengthening and competitor weakening

The RIF e↵ect is measured relative to baseline recall before the partial practice phase. In the model,
we assume that correct recall is related to the net input ne received by each unit. The RIF e↵ect is
thus the change in this net input before and after partial practice. We denote the amount of target
strengthening as �n̂e and the amount of competitor weakening as �n̂f . In particular, �n̂f is the
size of the retrieval-induced forgetting e↵ect, which in general depends on Ne, pc, pe, Ti, p̃c, p̃e, Tp, p̂c,
and p̂e.

1.2 Exact solutions to the timecourse of learning

Here we give complete solutions for the dynamics of learning in the above setting. We give ex-
pressions for the net input to each unit over time, but the extended notes below also provide exact
expressions for the full weight matrix over time.

1.2.1 Initial study

All category units have the same net input nc(t), and all exemplar units have the same net input
ne(t) in response to their example, given below

nc(t) = min (1, ⌫(Nepc + pe)Ti) (1)

ne(t) = min

✓
1, ⌫

(Nepc + 1)pe
(Ne � 1)pc + pe

Ti

◆
. (2)

All category and exemplar units have a net input of zero to examples that are not part of their
category or example respectively.
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Figure 1: Net input during learning. Parameters instantiate a typical RIF experiment with partial
practice. At T = 10, the partial practice input is applied. Parameters: Ne = pe = pc = p̃c = p̂c =
4, p̃e = 2,p̂e = 1, Ti = 10, Tp = 5, ⌫ = .01

derive novel exact solutions to the learning dynamics of storing category-exemplar pairs using the
generalized perceptron learning rule (***). These solutions quantitatively reveal what is learned
when; and how extra practice modifies both target and competitor memories. We obtain ana-
lytic expressions for the degree of RIF as a function experimental parameters, and show that the
predictions of the theory agree with experiment.

1 Summary of results

Here we summarize the problem formulation and results. Full derivations are given at the end.

1.1 Problem formulation

We consider binary inputs x 2 {0, 1}N formed from Nc di↵erent classes such as Fruit, Animal,
etc. Each class has Ne exemplars. We suppose that each class is represented by a set of pc units
and the exemplars are each represented by a set of pe units. The vector x is thus of dimension
N = Nc ⇥ pc +Ne ⇥ pe, and there are P = Nc ⇥Ne di↵erent examples to be stored. Concatenate
all inputs into the columns of the matrix X.

We train a Hopfield type recurrent network on these patterns, using the generalized perceptron
learning rule with learning rate ⌫. Initially, all weights W (0) = 0. Training proceeds in three
phases, described below.

1.1.1 Initial study

In the initial study phase, all P patterns are studied for a time Ti (measured in iterations through
the entire set of examples). We denote by x(c,e) the pattern for category c, example e. This pattern
will consist of the pc units corresponding to category c being active (equal to one), and the pe units
corresponding to example e being active. The rest of the units are zero.
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Figure 4: Asymptotic RIF: Target strengthening and competitor punishment as a function of the
information provided during partial practice. Other parameters are Ne = pe = pc = p̂c = 10,
p̂e = 1. The dotted line denotes the transition from no RIF to RIF.

1.2.4 Asymptotic RIF

If training is allowed to proceed to convergence (Ti, Tp ! 1), then the expressions simplify. We
have

�n̂e =

✓
1

p̃c + p̃e
� pep̃c + pep̃e + (Ne � 1)pcp̃e

(Nepc + pe)(p̃c + p̃e)pe

◆
(min(p̃c, p̂c) + min(p̃e, p̂e)) (17)

�n̂f = min

✓
0,� p̃cpe � pcp̃e

(Nepc + pe)(p̃c + p̃e)pe

◆
min(p̃c, p̂c) (18)

Figure 4 plots these quantities as a function of the information presented during partial practice
(p̃e, p̃c). Notably, significant RIF is only observed when category information is present but exemplar
information is not (i.e. partial practice, not reversed study). This behavior arises due to the first
min term in Eqn. (18). If the right hand argument of the minimum is positive, no RIF will occur.
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min term in Eqn. (18). If the right hand argument of the minimum is positive, no RIF will occur.

6

•  No	RIF	is	observed	when	less	category	informaBon	than	exemplar	informaBon	is	presented		

•  A	key	finding	of	experimental	literature	is	that	RIF	can	be	observed	even	with	cues	
not	used	during	training	or	pracBce	(E.g.,	study/pracBce	“Fruit-Apple”,	test	“Red-A”)	

•  Recursive	dynamics	enable	independent	cue	results	

•  Model	predicBon:	Independent-cue	RIF	is	equivalent	to	pracBced-cue	RIF	
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•  Recurrence	is	equivalent	to	
tesBng	with	full	paOern,	

•  Category	units	acBvate	due	to	
recurrence	

•  RIF	then	arises	through	
associaBve	weakening	
between	category	and	
compeBtor	exemplar	units	

What about this? Do GPLR but with real-valued inputs that you get from the piecewise linear
sigmoid. You pass your input vector through the current weights, then through the piecewise linear
sigmoid; and then train on the desired pattern as usual.

A complete theory must explain how RIF varies as a function of ...., how it accounts for
independent-cue forgetting, and ideally should also provide a transparent link between neural and
behavioral measures.

Maybe simplest formulation: do GPLR but with one step recurrence, low inhibition (threshold
is zero) as the input vector. Has to be a way to convert the OLR into a simple one step procedure.
If you are desired to be o↵ but are on with zero threshold, weaken. If you are desired to be on
but are o↵ at high threshold, strengthen. So it’s like GPLR, but with di↵erent cases for if you are
desired to be o↵ vs desired to be on.

So can write it as: 1) if yi = 1, and ŷi < 1 (or equivalently, ⌦1(Wx(c,e))i = 0 and ⌦1/2(Wx(c,e))i =

1) then update DeltawT
i = ⌦1(Wx(c,e))T . Not quite: find all i such that yi = 1 and ŷi < 1 (these

are weak target units). Strengthen connections between them and all targets (whether weak or
strong). So this is just a change in proportion to x(c,e) since that contains all targets, weak or
not (but not if it’s partial practice... then you need recurrence). Now find all i such that yi = 0
and ŷi > 1 (these are strong competitors). Weaken connections between them, and between them
and all targets. So this vector is di↵erent, it is x(c,e) + (yi == 0&ŷi > 1). This allows for direct
weakening of the apple representation.

5 Independent-cue RIF

Here we show that independent-cue RIF may arise in several ways.

5.1 Recurrence

Some independent-cue RIF can occur due to the presence of recurrence alone. Suppose an indepen-
dent cue like “Red–A” is used to activate a competitor representation. This will cause activation
of “Apple” exemplar units, which will then recurrently activate the “Fruit” category label, which
then recurrently gives less support to the “Apple” units under a simple association account. Hence
recurrence + weakened association can yield cue-independent RIF. Under this account, no direct
“Apple” weakening need occur.

To formalize this, we suppose that an independent cue activates p̂e exemplar units, and then
calculate the net input after recursion. That is, we consider an independent cue to be a test input
with p̂c = 0, and p̂e < pe.

After the first step of recursion, all pc category units and pe exemplar units will activate. The
net input in the recurrent setting is thus just like a standard test input applied with p̂c = pc, p̂e = pe.
Hence significant RIF will be observed. More generally, regardless of the test input, the recurrence
will correctly fill in the rest of the pattern, yielding an e↵ective test input of p̂c = pc, p̂e = pe. Hence
recurrence, remarkably, reduces an independent cue exactly to the standard practiced cue.

This yields the simplified RIF expressions,

�n̂c = dc(Ti + Tp) (p̃c + p̃e) , (128)

�n̂e = de(Ti + Tp) (p̃c + p̃e) , (129)

�n̂f = df (Ti + Tp)p̃c, (130)
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