
Online inference

Inferring	Causal	Relations

Inferring	Intentions

Conclusions

Spatial goal inference

Distributed task representations via the LMDP allow cheap inference of actions, 
goals, and causal relations

The neural network implementation is architecturally constituted to reason about 
intentional actions

The assumption of efficient actions is embedded in the cost function, and enables 
inference of goals and causal structure from social observation (Csibra, 2013)

The model requires only incremental online updates, and may provide a starting 
point for investigating neural circuits capable of complex goal inference

Causality is operationalized as the knowledge needed to compute an optimal 
action to achieve unknown rewards in the future (Woodward, 2003; Gopnik & 
Schulz, 2007).

Many limitations remain: 
• Compositionality only holds at boundary absorbing states of the first exit MDP
• Modern Bayesian Theory of Mind models reason about structured goal 

sequences (Nakahashi et al., 2016) and beliefs (Baker et al., 2011)
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experience handling the objects to rule out trial-and-
error learning.

Two objects served as potential causes of a desirable
event. The desirable event was a marble dispensing from
a machine located 30 cm away from the objects (Fig-
ure 1). After observing this display, participants were
given a chance to design an intervention to obtain the
marble based on what they had observed.

Method

Participants

The participants were 32 24-month-olds, all within
!14 days of their birthday (M = 24.10 months, SD =

6.0 days). An equal number of males and females were
tested. An additional four toddlers began testing but
were excluded due to sound sensitivity (one), and
unwillingness to participate (three). Participants were
recruited by telephone from the university’s computer-
ized participant pool. Pre-established criteria for admis-
sion into the study were that the children be full-term,
normal birth weight, and have no known developmental
concerns. The sample was primarily middle- to upper-
middle-class with 78% White, 6% Asian, 16% Other, and
9% of Hispanic ethnicity according to parental report.

Stimuli

Two sets of wooden objects were used which differed
from each other in both shape and color. The set used
during the familiarization phase consisted of a green egg
(6 cm 9 4 cm) and a yellow square (7 cm 9 7 cm). The
set used during the test trial consisted of a red cylinder
(7.5 cm 9 3.25 cm) and a blue hemisphere (4.75 cm 9

9.75 cm). When placed on the table, the objects were
arranged on a tray with a box in the middle and the two

objects on either side (Figure 1A). The marble dispenser
was situated to the toddler’s right near the edge of the
table. When either object was placed on the box, it
always caused the box to illuminate and emit sound
(Figure 1B), but on ‘effective’ demonstrations only, a
marble was immediately dispensed from the marble
machine (the ‘effect’), which was highly desirable for the
children.

Procedure

Toddlers were tested in the laboratory while seated on
their parent’s lap at a black table (72 cm 9 120 cm). All
responses were video-recorded. The objects were out of
reach of the child, approximately 15 cm from the adult’s
side of the table. The experimental protocol consisted of
a short familiarization phase and then the test trial. The
test trial consisted of children observing probabilistic
events (the ‘stimulus-presentation period’) followed by a
30-s period when the test objects were presented to the
children to manipulate (‘response period’).

Throughout the experiment, the adult used everyday
social-interactive cues such as infant-directed speech and
mutual gaze with the child (Csibra & Gergely, 2011), but
crucially, the experimenter did not provide any causal
linguistic description of the events. For example, the
adult said, ‘Let’s watch’ but did not narrate the events
using causal language such as ‘I’m using the block to
make it go’ or ‘It’s my turn to make this work.’ This
safeguard was followed because past work suggests that
causal descriptions in particular can change children’s
performance on causal learning tasks (e.g. Bonawitz
et al., 2010). The experimental protocol thus incorpo-
rated attention-getting, pedagogical cues (Csibra &
Gergely, 2011), see below for quantification, but
excluded causal linguistic descriptions of the displays.

Familiarization phase. Because the procedure and appa-
ratus were novel, toddlers were first familiarized to the
general nature of the game. During familiarization, the
warm-up objects (which were not the same ones used
during the test trial) were deterministically effective in
producing the effect: When the experimenter placed one
object on the box, the desired effect always occurred (4
out of 4 times; 100% effective); when the experimenter
placed the other object on the same box, the desired
effect never occurred (0 out of 4 times; 0% effective).
Following this, all toddlers were given a choice to place
one of the two objects on the box and then presented
with the second object to place on the box. All 32
participants did so, and thus all of them placed both
objects on the box an equal number of times. This
familiarization phase showed children that their own

A B

Figure 1 A schematic display showing the causal chain of
events used in Experiments 1 and 2. (A) Two colored, wooden
objects depicted by the red cylinder (R) and the blue
hemisphere (B), serve as potential causes of a chain of events
that leads to the activation of a marble dispenser (MD). (B)
When placed on a box, the box illuminates (orange highlight)
and emits a sound (musical notes). This event is immediately
followed by the marble (black dot) dispensing from the marble
dispenser. A 30-cm gap separated the box and the marble
dispenser. (Figure is not drawn to scale, see text for
measurements).
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experience handling the objects to rule out trial-and-
error learning.

Two objects served as potential causes of a desirable
event. The desirable event was a marble dispensing from
a machine located 30 cm away from the objects (Fig-
ure 1). After observing this display, participants were
given a chance to design an intervention to obtain the
marble based on what they had observed.

Method

Participants

The participants were 32 24-month-olds, all within
!14 days of their birthday (M = 24.10 months, SD =

6.0 days). An equal number of males and females were
tested. An additional four toddlers began testing but
were excluded due to sound sensitivity (one), and
unwillingness to participate (three). Participants were
recruited by telephone from the university’s computer-
ized participant pool. Pre-established criteria for admis-
sion into the study were that the children be full-term,
normal birth weight, and have no known developmental
concerns. The sample was primarily middle- to upper-
middle-class with 78% White, 6% Asian, 16% Other, and
9% of Hispanic ethnicity according to parental report.

Stimuli

Two sets of wooden objects were used which differed
from each other in both shape and color. The set used
during the familiarization phase consisted of a green egg
(6 cm 9 4 cm) and a yellow square (7 cm 9 7 cm). The
set used during the test trial consisted of a red cylinder
(7.5 cm 9 3.25 cm) and a blue hemisphere (4.75 cm 9

9.75 cm). When placed on the table, the objects were
arranged on a tray with a box in the middle and the two

objects on either side (Figure 1A). The marble dispenser
was situated to the toddler’s right near the edge of the
table. When either object was placed on the box, it
always caused the box to illuminate and emit sound
(Figure 1B), but on ‘effective’ demonstrations only, a
marble was immediately dispensed from the marble
machine (the ‘effect’), which was highly desirable for the
children.

Procedure

Toddlers were tested in the laboratory while seated on
their parent’s lap at a black table (72 cm 9 120 cm). All
responses were video-recorded. The objects were out of
reach of the child, approximately 15 cm from the adult’s
side of the table. The experimental protocol consisted of
a short familiarization phase and then the test trial. The
test trial consisted of children observing probabilistic
events (the ‘stimulus-presentation period’) followed by a
30-s period when the test objects were presented to the
children to manipulate (‘response period’).

Throughout the experiment, the adult used everyday
social-interactive cues such as infant-directed speech and
mutual gaze with the child (Csibra & Gergely, 2011), but
crucially, the experimenter did not provide any causal
linguistic description of the events. For example, the
adult said, ‘Let’s watch’ but did not narrate the events
using causal language such as ‘I’m using the block to
make it go’ or ‘It’s my turn to make this work.’ This
safeguard was followed because past work suggests that
causal descriptions in particular can change children’s
performance on causal learning tasks (e.g. Bonawitz
et al., 2010). The experimental protocol thus incorpo-
rated attention-getting, pedagogical cues (Csibra &
Gergely, 2011), see below for quantification, but
excluded causal linguistic descriptions of the displays.

Familiarization phase. Because the procedure and appa-
ratus were novel, toddlers were first familiarized to the
general nature of the game. During familiarization, the
warm-up objects (which were not the same ones used
during the test trial) were deterministically effective in
producing the effect: When the experimenter placed one
object on the box, the desired effect always occurred (4
out of 4 times; 100% effective); when the experimenter
placed the other object on the same box, the desired
effect never occurred (0 out of 4 times; 0% effective).
Following this, all toddlers were given a choice to place
one of the two objects on the box and then presented
with the second object to place on the box. All 32
participants did so, and thus all of them placed both
objects on the box an equal number of times. This
familiarization phase showed children that their own

A B

Figure 1 A schematic display showing the causal chain of
events used in Experiments 1 and 2. (A) Two colored, wooden
objects depicted by the red cylinder (R) and the blue
hemisphere (B), serve as potential causes of a chain of events
that leads to the activation of a marble dispenser (MD). (B)
When placed on a box, the box illuminates (orange highlight)
and emits a sound (musical notes). This event is immediately
followed by the marble (black dot) dispensing from the marble
dispenser. A 30-cm gap separated the box and the marble
dispenser. (Figure is not drawn to scale, see text for
measurements).

C
o
lo
u
r
o
n
li
n
e
,
B
&
W

in
p
ri
n
t

© 2014 John Wiley & Sons Ltd

Causal learning from probabilistic events 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Waismeyer,	Meltzoff,	&	Gopnik,	2014

S

N

A

B

AB

C

D

“I	want	C!”

• Inferring goals is the inverse reinforcement learning problem

• Typically expensive: requires solving RL in the inner loop

• For LMDPs, just iterate (Dvijotham & Todorov, 2010):

	Δ𝑤 =
𝜕𝐿
𝜕𝑤 ='

1
𝑤)𝑍+)𝑠-./

𝑍+)𝑠-./ −
1

𝑤)𝑍+)𝑃)𝑠-
𝑍+)𝑃)𝑠-

�

-

Upweight tasks that value this transition highly

Δ	𝑤 = −𝛼𝑤 +
1

𝑤)𝑍+)𝑠-./
𝑍+)𝑠-./ −

1
𝑤)𝑍+)𝑃)𝑠-

𝑍+)𝑃)𝑠-

5 10 15
Judgement Point

0

0.5

1

W
ei

gh
t

Incremental
Goal A
Goal B
Goal C

5 10 15
Judgement Point

0

0.5

1

W
ei

gh
t

Batch
Goal A
Goal B
Goal C

• Exact ML inference in this model requires computing the gradient over the entire 
trajectory after each update of the iterative inference, which requires memory of 
the sequence

• Can derive an approximate online version by applying update after each transition:

• This scheme is fully incremental and online, and could explain how inferences 
about commonly-experienced goals can become almost effortless and habitual

“I	want	C!”

“I	don’t	care	between	C	and	D”

Inferring actions, intentions, and causal relations 
in a neural network

Andrew M. Saxe

Overview

Distributed	tasks	with	the	LSMDP

Harvard University

To represent novel tasks in a neural network, a natural approach is a 
distributed representation, in which new tasks are expressed as a blend of 
previously learned tasks.

Optimal policies in standard MDP formulations, however, do not compose.

The Linearly Solvable Markov Decision Process (LSMDP) is an alternative MDP 
formulation in which tasks do blend optimally (Todorov, 2006; Todorov, 2009; 
Saxe, 2015).

Choosing	Actions
Reaching in space

Latent learning in spatial navigationOutcome revaluation in sequential choice

Standard formulation 
(Doll et al., 2012)

Model-free Model-based

After random exploration of a maze environment, introduction of a reward at one location 
leads to instant goal-directed behavior towards that point (Tolman, 1948)
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episode,82

a⇤ = argmaxaE st+1⇠a(·|st)
⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) +R(s⌧ )

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi  QiPizi +QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) = P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(

P
exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

�⇡ \1 ⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119
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transition structure and leverage it to evaluate actions
(Figure 1) [22,33!,34,35!,36,12!,37!,38!,39]. The second
involves explicit or implicit counterfactual structure,
where information about rewards not actually received
can be inferred or observed [40–42,13,43,44]. A typical
example is a serial reversal contingency, where a drop in
the value of one option implies an increase in the other’s
value. Purely reinforcement-based model-free RL would
be blind to such structure. Note, however, that while
such tasks go beyond model-free RL, they do not as
directly exercise the key affirmative features of model-
based RL as we have defined it, that is, the computation
of values using a sequential transition model of an
action’s consequences.

From both sorts of studies, the overall sense is that model-
based influences appear ubiquitous more or less wherever
the brain processes reward information. The most
expected of these influences are widespread reports about
model-based value signals in ventromedial prefrontal
cortex (vmPFC) and adjacent orbitofrontal cortex
(OFC), which have previously been identified with
goal-directed behavior using devaluation tasks [45,46].
vmPFC has been proposed to be the human homologue
of rat prelimbic cortex, which is required for goal-directed
behavior [8]. OFC is also implicated in model-based
Pavlovian valuation in rats and goal values in monkeys
[47,48], though understanding this area across species and
methods is plagued by multiple factors [49]. More unex-
pectedly, several reports now indicate that RPE correlates
in the ventral striatum — long thought to be a human
counterpart to the DA response and thus a core com-
ponent of the putative model-free system — also show

model-based influences [33!,34,44]. Even DA neurons,
the same cells that launched the model-free theories due
to their RPE properties [1,2], communicate information
not available to a standard model-free learner [41].

The harder part of this hunt, then, seems to be for neural
correlates of exclusively model-free signals, which are
surprisingly sparse given the prominence of the model-
free DA accounts. The most promising candidate may be
a region of posterior putamen that has been implicated in
extensively trained behavior in a habit study [17] and a
sequential decision task [37!], and may correspond to the
dorsolateral striatal area associated with habits in rodents
[18]. The foundation of both fMRI results, however, was
overtraining (a classic promoter of habits), rather than
whether these areas reflect values learned or updated by
model-free methods. Indeed, value correlates in a nearby
region of putamen have been reported to follow model-
based rather than model-free updating using the compu-
tational definition [34].

A different, promising path for isolating model-based RL
is neural correlates related to the model itself. Repres-
entations of anticipated future states or outcomes —
rather than just their consequences for reward — are what
defines model-based RL. Hippocampal recordings in the
rat have shown evidence of forward model ‘lookahead
sweeps’ to candidate future locations at maze choice
points [35!]. These data fit well with the spatial map-
encoding properties of hippocampus [50], and may permit
striatum to signal value for simulated rather than actually
experienced outcomes [36]. Hippocampus is similarly
implicated in a study that examines learning predictive
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Current Opinion in Neurobiology

Sequential task dissociating model-based from model-free learning. (a) A two-step decision-making task [33!], in which each of two options (A1, A2) at
a start state leads preferentially to one of two subsequent states (A1 to B, A2 to C), where choices (B1 versus B2 or C1 versus C2) are rewarded
stochastically with money. (b and c) Model-free and model-based RL can be distinguished by the pattern of staying versus switching of a top level
choice following bottom level winnings. A model-free learner like TD(1) (b), tends to repeat a rewarded action without regard to whether the reward
occurred after a common transition (blue, like A1 to B) or a rare one (red). A model-based learner (c) evaluates top-level actions using a model of their
likely consequences, so that reward following a rare transition (e.g. A1 to C) actually increases the value of the unchosen option (A2) and thus predicts
switching. Human subjects in [33!] exhibited a mixture of both effects.

www.sciencedirect.com Current Opinion in Neurobiology 2012, 22:1–7

• Simple two stage choice task with varying terminal rewards

• Adaptation to new rewards thought to require model-based control

• Distributed task model behaves like highly flexible model-based 
agent for tasks in the span of the distributed representation 

LMDP formulation 
(Saxe, 2015) Instantaneous 

reward
Optimal value function/

Trajectories
Instantaneous 

reward
Optimal value function/

Trajectories

Four Rooms domain

Tower of Hanoi domain

Even from a young age, we can select actions to achieve desired goals, infer the goals of 
other agents, and learn causal relations in our environment through social interactions. 
Crucially, these abilities are productive or generative: we can impute desires to others that 
we have never held ourselves. 

This capacity has been captured by the powerful Bayesian Theory of Mind formalism 
(Baker, Saxe, & Tenenbaum, 2011), but it remains to forge connections to the rich neural 
data around action selection, goal inference, and social causal learning. How can 
productive inference about actions and intentions arise within the neural circuitry of the 
brain? 

Using the recently-developed linearly solvable Markov decision process, we present a 
neural network model which permits a distributed representation of tasks. Such a 
representation allows the expression of infinite possibilities by combining a finite set of 
bases, enabling truly generative inference of actions, goals, and causal relations in a neural 
network framework.

The key added ingredient is intentional actions: the neural network is constrained by its 
architecture to interpret data as arising from efficient action selection towards a goal.

2.1 Canonical MDPs32

In its standard formulation, an MDP is a four-tuple M = hS, A, P, Ri, where S is a set of states, A is33

a set of discrete actions, P is a transition probability distribution P : S ⇥A⇥S ! [0, 1], and R is an34

expected instantaneous reward function R : S ⇥ A ! R. The goal is to determine an optimal policy35

⇡ : S ! A specifying which action to take in each state. This optimal policy can be computed from36

the optimal value function V : S ! R, defined as the expected reward starting in a given state and37

acting optimally thereafter. The value function obeys the well-known Bellman optimality condition38

V (s) = max

a2A

(
R(s, a) +

X

s0

P (s0|s, a)V (s0
)

)
. (1)

This formalism is the basis of nearly all practical and theoretical applications of decision-making39

under uncertainty and reinforcement learning. See, for instance, [***] for recent successes in40

challenging domains.41

For the purposes of a compositional hierarchy of actions, this formulation presents two key difficulties.42

1. Mutually exclusive sequential actions First, the agent’s actions come from a discrete set43

of mutually exclusive actions. Exactly one action must be chosen at any given time point.44

Hence there is no way to build up an action at a single time point out of several ‘subactions’45

taken in parallel. For example, a control signal for a robotic arm cannot be composed of a46

control decision for the elbow joint, a control decision for the shoulder joint, and a control47

decision for the gripper, each taken in parallel and combined into a complete action for48

a specific time point. Previous hierarchical reinforcement learning schemes, such as the49

options framework [****], enable higher-level actions to be composed of a sequence of50

lower-level actions, but do not have this fundamentally concurrent compositionality within a51

single time point. At higher levels of the hierarchy, a policy must still select exactly one52

option or action to execute, to the exclusion of all others.53

2. Non-composable optimal policies The maximization in Eqn. (1) over a discrete set of54

actions is inherently nonlinear. This means that optimal solutions, in general, do not compose55

in a simple way. Consider two standard MDPs M1 = hS, A, P, R1i and M2 = hS, A, P, R2i56

which have identical state spaces, action sets, and transition dynamics but differ in their57

instantaneous rewards R1 and R2. These may be solved to yield value functions V1 and58

V2. Unfortunately, the value function of the MDP M1+2 = hS, A, P, R1 + R2i, whose59

instantaneous rewards are the sum of the first two, is not V1+2 = V1 + V2. In general, there60

is no simple procedure for deriving V1+2 from V1 and V2; it may only be found by solving61

Eqn. (1) again.62

2.2 Linearly Solvable MDPs63

By contrast, the LMDP is defined by a three-tuple L = hS, P, Ri, where S is a set of states, P is a64

passive transition probability distribution P : S ⇥ S ! [0, 1], and R is an expected instantaneous65

reward function R : S ! R. The LMDP framework replaces the traditional discrete set of actions A66

with a continuous probability distribution over next states a : S ⇥ S ! [0, 1]. That is, the ‘control’ or67

‘action’ chosen by the agent in state s is a transition probability distribution over next states, a(·|s).68

The controlled transition distribution may be interpreted either as directly constituting the agent’s69

dynamics, or as a stochastic policy over deterministic actions which effect state transitions [cite**].70

Swapping a discrete action space for a continuous action space is a key change which will allow for71

concurrently selected ‘subactions’ and distributed representations.72

The LMDP framework additionally requires a specific form for the cost function to be optimized.73

The instantaneous reward for taking action a(·|s) in state s is74

R(s, a) = R(s) � �KL (a(·|s)||P (·|s)) , (2)

where the KL term is the Kullback-Leibler divergence between the selected control transition75

probability and the passive dynamics. This term penalizes the agent for selecting actions which differ76

substantially from the passive dynamics. The KL term thus implements a control cost, encouraging77

actions to conform to the natural passive dynamics of a domain. For physical systems this can be78

interpreted as a broad preference for energetic efficiency; in a cart-pole balancing task, for instance,79

2

Seek reward Act efficiently

the passive dynamics might encode the transition structure arising from physics in the absence of80

control input. Any deviation from these dynamics will require energy input. In more abstract settings,81

such as navigation in a 2D grid world, the passive dynamics might encode a random walk, expressing82

the fact that actions cannot transition directly to a far away goal but only move some limited distance83

in a specific direction. ***Add a bit about the effect of �.84

Furthermore, it is required that a(s0|s) = 0 wherever P (s0|s) = 0, such that some transitions (such85

as jumping straight to a goal location) can be disallowed. Together, the control cost and preserved86

sparsity pattern serve to rein in the flexibility afforded by a continuous action space.87

We consider first-exit problems (see [***] for infinite horizon and other formulations), in which the88

state space is divided into a set of absorbing boundary states B ⇢ S and non-absorbing interior89

states I ⇢ S. In this formulation, an agent acts in a variable length episode that consists of a series90

of transitions through interior states before a final transition to a boundary state which terminates91

the episode. The goal is to find the policy a which maximizes the total expected reward across the92

episode,93

a⇤
= argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧ )

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the94

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as95

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-96

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary97

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the98

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and99

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,100

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing101

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions102

from internal states to boundary states.103

As shown in [***], the Bellman equation in this setting reduces to104

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated105

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of106

special properties flow from the linearity of the Bellman equation, which we exploit in the following.107

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method108

(akin to value iteration),109

zi  QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as110

a⇤
(s0|s) =

P (s0|s)Z(s0
)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =

P
s0 P (s0|s)Z(s0

). Detailed derivations of these results111

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft112

maximization log(

P
exp(·)), and the continuous action space enables closed form computation of113

the optimal policy.114

2.3 Concurrent subactions and distributed representations of tasks115

�⇡ \2 ⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.116

1. Continuous concurrent actions117

2. Compositional optimal policies118

3

to share across actions due to their shared structure. And you
could also develop unsupervised learning signals for them–
something like predicting the effects of the actions. Eg, an
action to next state representation.

How would you learn to represent a policy? Eg, given an
input state s, you’d want to learn a one-hot vector that repre-
sents argmax

a

q

a

. Ultimately would want to move away from
requiring this to be a one-hot vector, but maybe that’s for an-
other day.

Would be interesting to connect to Todorov’s linear con-
trol framework. He reparametrizes the costs c(x) as q(x) =
exp(�c(x)), and assumes that actions directly specify prob-
ability distributions over next states u(y|x) which incur costs
relative to a passive dynamics p(y|x). The Bellman equation
then becomes linear, with z = QPz where Q has q(x) along
the diagonal and P is an N ⇥N matrix with elements p(y|x).
This makes it clear why learning the successor representation
P in an unsupervised fashion would be useful. The linearity
also means it might be amenable to analysis and permit com-
positionality. In particular, I think this would be able to do
very good multi-task reinforcement learning.

Suppose the transition probabilities remain the same, but
the reward function q(x) changes to instantiate different tasks.
These could correspond to having different destinations in,
e.g., a grid word, or different targets in an arm reaching task.
You would then be able to decompose the current q vector
in terms of a number of reward components q

i

(x) with as-
sociated cost-to-go functions z

i

(x) and hence you could im-
mediately start acting near-optimally with respect to a new
instantaneous reward configuration. You would be blending
goal states, essentially. A potentially valuable first task might
be to consider various reaching tasks where there are differ-
ent obstacles in the way at any given time. This would enable
considering the statistics of reward structure, and how these
would be decomposed in a linear neural net. It would also
make a number of neural predictions about what might be
represented in various brain areas.

How would this work as a neural net? You’d have one
net learning the z

i

(x). This means you’d learn a mapping
z = W

32
W

21
x. Then you’d have another neural net encod-

ing q(x) in terms of the q

i

(x). This would be approximately
w =W

32
W

21
q. To compute the current cost-to-go you’d cal-

culate w

T

z. You then derive the action as usual, something
like u(y|x) = diag(wT

z)P/(wT

z)T

P. To get the q

i

, which ul-
timately determine the z

i

, you’re doing a PCA decomposition
of the instantaneous reward structure of the set of tasks you’ll
face. Another way to choose q

i

would be to use the successor
representation.

Ultimately I think this could be made hierarchical by hav-
ing the q(x) be supplied by a higher level module. The ‘ac-
tion’ you choose is now a reward structure at the lower level,
which simplifies the task for the higher level.

Multitask learning
We note that adding or subtracting a constant reward at all
states leaves the optimal actions unchanged (though this will
change the cost to go).

Other learning problems: going beyond RL
We can summarize the situation intuitively by the basic equa-
tion:

action = physics+desires (9)

Knowing any two, we can infer the third. When physics and
desires are known, we can try to infer actions, for instance.
This is the standard RL problem treated earlier. When physics
and actions are known, we can try to infer desires–this is in-
verse reinforcement learning. Finally, we have a third as-yet-
unstudied option, in which actions and desires are known and
physics is inferred. This is a form of social learning: if you
know someone is trying to turn on a light, and you see her
flip two switches, you infer that flipping both switches was
necessary to switch on the light. This inference is based on
the agent’s laziness, ultimately: if one switch would’ve done
the job, she wouldn’t have bothered with both.

We now show how these ideas can be incorporated in
the multitask framework. Crucially, the compositionally of
the LMDP formulation will allow new, never-before-pursued
goals to be inferred, provided they can be expressed as a
linear combination of subtasks. This answers an objection
lodged against previous accounts of imitation learning that
require the imitated behavior to be known in advance by the
agent.

Inverse reinforcement learning
In this setting, we are given the passive dynamics P and a
series of actions, encoded here as transitions between states,
i.e., samples from u(x0|x). From this, we wish to infer the
cost-to-go function v, desirability function z, or instantaneous
cost structure q (all of these are equivalent in the sense that
they can be computed from each other) of the agent.

As shown in [?], the inverse RL problem in the LMDP
framework boils down to minimizing

L[z(·)] =�Â
n

logZ(s
n+1)+Â

n

logÂ
x

P(x|x
n

)Z(x)+Â
n

log p(x
n+1|xn

)

(10)

L[Z,P] =�Â
n

logZ(s
n+1)+Â

n

logÂ
s

P(s|s
n

)Z(s)+Â
n

logP(s
n+1|sn

)

(11)

Optimal action:

Probability of trajectory through states 𝑠/, 𝑠6, ⋯ , 𝑠8 (Dvijotham & Todorov, 2010):

State(t)

State(t+1)

Task(t)
Composite

Desirability(t)

Passive next 
state(t)

Passive dynamics P

Action(t)

Stoch. 
sample

~

Task bases
Q

Task 
Weights(t)

Task cost-to-go
𝑍+Value	pathway

Dynamics	pathway

Instantaneous reward:

Equivalent	neural	network	model

the passive dynamics might encode the transition structure arising from physics in the absence of80

control input. Any deviation from these dynamics will require energy input. In more abstract settings,81

such as navigation in a 2D grid world, the passive dynamics might encode a random walk, expressing82

the fact that actions cannot transition directly to a far away goal but only move some limited distance83

in a specific direction. ***Add a bit about the effect of �.84

Furthermore, it is required that a(s0|s) = 0 wherever P (s0|s) = 0, such that some transitions (such85

as jumping straight to a goal location) can be disallowed. Together, the control cost and preserved86

sparsity pattern serve to rein in the flexibility afforded by a continuous action space.87

We consider first-exit problems (see [***] for infinite horizon and other formulations), in which the88

state space is divided into a set of absorbing boundary states B ⇢ S and non-absorbing interior89

states I ⇢ S. In this formulation, an agent acts in a variable length episode that consists of a series90

of transitions through interior states before a final transition to a boundary state which terminates91

the episode. The goal is to find the policy a which maximizes the total expected reward across the92

episode,93

a⇤
= argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧ )

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the94

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as95

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-96

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary97

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the98

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and99

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,100

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing101

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions102

from internal states to boundary states.103

As shown in [***], the Bellman equation in this setting reduces to104

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated105

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of106

special properties flow from the linearity of the Bellman equation, which we exploit in the following.107

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method108

(akin to value iteration),109

zi  QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as110

a⇤
(s0|s) =

P (s0|s)Z(s0
)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =

P
s0 P (s0|s)Z(s0

). Detailed derivations of these results111

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft112

maximization log(

P
exp(·)), and the continuous action space enables closed form computation of113

the optimal policy.114

2.3 Concurrent subactions and distributed representations of tasks115

�⇡ \2 ⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.116

1. Continuous concurrent actions117

2. Compositional optimal policies118

3

Bellman equation: 𝑍 = 𝑒: = desirability	function

Distributed task representation: 𝑞 = 𝑄+𝑤	 ⟹ 𝑍 = 𝑍+𝑤
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Figure 4: The mean bet (likelihood rating) placed on each of the five possible causes of C. The Social condition (a) confirms the social-
causal model predictions (Fig. 2a). The Prior condition (c) confirms predictions of the social-causal model with strong prior (Fig. 2c). The
Self condition (b) reflects a reversion to the causal-only model (Fig. 2b), as expected, but seems to be mixed with residual social-causal
inferences—see Footnote 4.

causal knowledge to inform inferences, even when social con-
text information was available. To see whether this is a graded
integration of information sources, as predicted by the social-
causal model (Fig. 3), or an all-or-nothing gating effect of
prior knowledge, we exploit natural variation among the sce-
narios. The relationship between the plausibility rating of a
participant and their bet on “A and B” in the corresponding
scenario, can be used to further examine the effect of prior
knowledge on inferences. Pooling Social and Prior scenar-
ios, prior plausibility ratings explain 43% of the variance in
bets (r=0.66, p<0.001), as shown in Fig. 5.5 Within con-
ditions, causal structure inferences remain significantly cor-
related with the variation in plausibility judgments (r=0.46,
p<0.01 within the Social condition, r=0.56, p<0.001 within
the Prior condition). This result indicates that participants
continuously integrate prior causal knowledge with social
context information, rather than using prior causal knowledge
as a gate on social inference.

Over-imitation
The results of the previous sections show that generic infer-
ence abilities, combined with an understanding of causality
and agency, can result in rapid learning of causal knowledge.
Yet where there is rapid learning there is the possibility of go-
ing rapidly astray—are there situations in which social-causal
inference might lead to incorrect conclusions?

A number of authors have reported that children seem to
over-imitate adults, copying even actions which are, to adults,
clearly superfluous to bringing about an effect (Horner &
Whiten, 2005; Lyons et al., 2007; Meltzoff, 1995). For in-
stance Horner and Whiten (2005) present a “puzzle box” to
children and demonstrate a series of actions which culminate
in retrieving a prize from within the box. The box is trans-
parent, and some of these actions are plausibly related to the

5The correlation is higher for group means (r=0.85); we are,
however, primarily interested in the relationship within individual
participants.
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Figure 5: The mean bet (likelihood rating) of participants on “A
and B” according to their plausibility rating for B as a cause of C.
The graded effect of prior knowledge confirms the model predictions
(Fig. 3).

outcome, but one is not (for example, touching a rod to the top
of the box). When invited to retrieve the prize, children per-
form all the actions, including the superfluous one. Chimps
in a similar experiment did not over-imitate, leaving out the
implausible action. Lyons et al. (2007) investigated a num-
ber of possible explanations for over-imitation in children but
found it to be remarkably robust; the only manipulation they
report that reversed children’s over-imitation was removal of
physical contact between cause and (potential) effect (Lyons
et al., 2007, Expt. 2b). On the basis of these findings Lyons et
al. (2007) suggest that over-imitation reflects an “automatic
causal encoding” mechanism, with “boundary conditions” to
switch off this encoding (such as physical contact).

Our modeling results indicate that a separate principle
(such as automatic causal encoding) needn’t be invoked to
explain children’s over-imitation. If children’s prior beliefs
are weaker than adults’ (and, like adults, contact-causality is
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• Observational causal learning: Inferring 
causal structure from observations of 
social actions and goals (Meltzoff, 
Waismeyer, & Gopnik, 2012; Goodman, 
Baker & Tenenbaum, 2009)

• Update passive dynamics matrix P, which 
encodes the causal structure of which 
states follow each other

• Iterative procedure based on subgradient
descent on P:

• After each update, project back to 
probability simplex

• Implicitly incorporates the principle of 
efficiency (Csibra, 2013), i.e., that actions 
are taken to efficiently achieve their ends

	Δ𝑃 =
𝜕𝐿
𝜕𝑃

• Humans can infer likely goals from partial trajectories in spatial environments (Baker, Saxe, & 
Tenenbaum, 2009)

• Distributed task representations enable similar inferences in a neural network framework


