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Inferring actions, intentions, and causal relations
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Distributed task representations via the LMDP allow cheap inference of actions,
goals, and causal relations

The neural network implementation is architecturally constituted to reason about
intentional actions

The assumption of efficient actions is embedded in the cost function, and enable:
inference of goals and causal structure from social observation (Csibra, 2013)

The model requires only incremental online updates, and may provide a starting
point for investigating neural circuits capable of complex goal inference

Causality is operationalized as the knowledge needed to compute an optimal
action to achieve unknown rewards in the future (Woodward, 2003; Gopnik &
Schulz, 2007).

Many limitations remain:

+ Compositionality only holds at boundary absorbing states of the first exit MDP

* Modern Bayesian Theory of Mind models reason about structured goal
sequences (Nakahashi et al., 2016) and beliefs (Baker et al., 2011)




