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SUMMARY
Mammals formmental maps of the environments by exploring their surroundings. Here, we investigate which
elements of exploration are important for this process.We studiedmouse escape behavior, in whichmice are
known to memorize subgoal locations—obstacle edges—to execute efficient escape routes to shelter. To
test the role of exploratory actions, we developed closed-loop neural-stimulation protocols for interrupting
various actions while mice explored. We found that blocking running movements directed at obstacle edges
prevented subgoal learning; however, blocking several control movements had no effect. Reinforcement
learning simulations and analysis of spatial data show that artificial agents can match these results if they
have a region-level spatial representation and explore with object-directed movements. We conclude that
mice employ an action-driven process for integrating subgoals into a hierarchical cognitive map. These find-
ings broaden our understanding of the cognitive toolkit that mammals use to acquire spatial knowledge.
INTRODUCTION

A fundamental ability of mobile animals is to learn the location of

resources and how to get there. This can, in principle, be done

using a variety of strategies. At one end, the behaviorist frame-

work focuses on the importance of repeating actions. Mazes

can be solved by learning the correct movements directly in a

‘‘stimulus-response sequence.’’1,2 At the opposite end, the

cognitive map theory proposes that animals have mental maps

of their environments that they can query to navigate to goals.3

In this framework, a spatial map is learned through an innate ca-

pacity to map observations and is used to derive novel actions.4

These two strategies are thought to be separate processes in the

brain, with the striatum responsible for repeating successful

movements and targeting landmarks and the hippocampus for

constructing an internal map of the environment.5,6

Cognitive maps are powerful because they decouple actions

from spatial learning, allowing the computation of routes in an al-

locentric (spatial-location-centered) reference frame. Models of

this class generally ignore themotivation underlying the learner’s

exploration and use ‘‘random agents’’ that select movements

from a distribution of cardinal directions to map the environ-

ment.7–10 Similarly, paradigmatic experiments in this vein focus

on the cues rather than the actions that animals use to pinpoint

locations and rely on sessions that end when the animal finds

the reward.2,11–13 This contrasts starkly with the way animals

explore natural environments. Mice, for example, move in a high-

ly structured manner, punctuating investigatory bouts along

boundaries with rapid lunges to familiar, enclosed spaces or
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visually salient objects.14 It thus seems plausible that the senso-

rimotor tendencies of each species play an important role in

identifying important locations or compartments within the

map rather than serving a fully independent function.15–18

The homing behavior of rodents offers a powerful window into

the relationship between spontaneous exploration patterns and

spatial cognition.19 Within minutes of entering a new environ-

ment, rodents rapidly identify and memorize sheltering loca-

tions,20 spontaneously shuttle back and forth between the

outside and the ‘‘home,’’2–22 and respond to threatening stimuli

by running directly to shelter.23 Homing behavior is also sophis-

ticated enough to involve map-based computations of multi-

step escape routes. Shamash et al.22 recently showed that

mice learn to escape past obstacles by memorizing allocentric

subgoal locations at the obstacle edges and that this learning

was correlated with the execution of a particular sensorimotor

action during exploration—spontaneous running movements

targeting the obstacle edge. This raises the hypothesis that the

execution of specific exploratory actions is important for learning

elements of a cognitive map.

Here, we directly test this hypothesis by investigating whether

spontaneous edge-directed runs are necessary for subgoal

learning. We use closed-loop neural manipulations to precisely

interrupt these runs during exploration and then examine the

effect on the use of subgoals during escape behavior. We

demonstrate that subgoal learning is action driven in nature

and that it relies on a mapping capacity. We then use reinforce-

ment learning (RL) models to identify the computational princi-

ples underlying this learning process. Overall, we suggest that
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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spatial learning through natural exploration relies on a learning

mechanism that combines both action- and map-based

strategies.

RESULTS

Closed-loop optogenetic activation of premotor cortex
to block spontaneous edge-vector runs
Whenmice are placed in an arena with a shelter and an obstacle,

they spontaneously execute runs targeting the obstacle edge.22

Our main aim here was to test the causal necessity of these runs

in learning that the obstacle edge is a subgoal, i.e., a location that

should be targeted to run past the obstacle to get to the shelter.

We therefore designed a manipulation to prevent mice from

executing spontaneous runs to an obstacle edge. To prevent

confounding effects, our manipulation should not change the

external environment, reduce the animal’s opportunities to

observe the environment, or create a place aversion. We found

that closed-loop stimulation of premotor cortex (M2) fit all

criteria. We expressed channelrhodopsin in excitatory neurons

in the right M2 and performed optogenetic stimulation via an

implanted optic fiber (Figures 1B and S1A). As previously re-

ported,24,25 stimulating M2 with a 2-s, 20-Hz pulse wave caused

low-latency (<200 ms) deceleration, halting, and leftward turning

motion (Figure S1B; Video S1). This stimulation protocol did not

generate place aversion in a two-chamber place-preference

assay (Figure S1D). We thus leveraged this approach to specif-

ically interrupt edge-vector runs during spontaneous explora-

tion. Using online video tracking, we set up a virtual ‘‘trip wire’’

between the threat area and the left obstacle edge; whenever

mice crossed this line while moving in the direction of the

edge, a 2-s light pulse was automatically delivered (Figures 1C

and S1C; Video S1). All other movements, including runs to the

left edge along the obstacle or from the shelter, were not inter-

rupted by laser stimulation.

We divided injected and implanted animals into a laser-on and

a control, laser-off group. Both groups explored a circular plat-

form with a shelter and an obstacle for 20 min (n = 8 mice/ses-

sions; Figures S2A and S2B). During this time, all mice located

the shelter and visited the entire platform, including the obstacle

(Figures S3F and S3H). In agreement with previous results,22 all

mice in the laser-off group executed continuous running move-

ments from the threat area toward the shelter area (‘‘homing

runs’’; No. per session: 6 [5, 8.25], median [IQR]; Figures 1A,

S3G, and S3I). These included at least one homing run that

directly targeted an obstacle edge (‘‘edge-vector runs’’; No.

per session: 1.5 [1, 2.25], median [IQR]); Figures 1A and S3J;

Video S1). Mice in the laser-on group triggered 3.5 [2.75, 6] (me-

dian [IQR]) laser stimulation trials, lasting 20 [16, 26] s in total and

interrupting all potential edge-vector runs (Figures 1D, S3G, and

S3J). While mice in the laser-off group executed nearly direct

paths between the threat area and the left obstacle edge, the

paths taken by mice in the stimulation group were twice as

long, reflecting the inaccessibility of edge-vector runs (Figure 1E).

Exploratory behavior, however, was not reduced. Mice in the

stimulation condition explored the obstacle, the edge, the threat

area, and the entire arena as much as the control group

(Figures 1F, S3F, and S3H).
Interrupting spontaneous edge-vector runs abolishes
subgoal learning
We next measured the impact of blocking edge-vector runs on

subgoal learning. After the 20 min exploration period, we elicited

escape behavior using a threatening sound. Mice triggered the

threat stimulus automatically by entering the threat zone and

staying there for 1.5 s. Escape routes were quantified using a

target score and classified as targeting the obstacle edge

(edge vector) or the shelter (homing vector) (Figure 2B; see

STAR Methods). First, we acquired a negative-control distribu-

tion by presenting threats to mice that explored an open-field

environment with no obstacle (n = 8 mice; same viral injection

and implantation procedure as above). As expected from previ-

ous work,20 mice escaped by turning and running directly along

the homing vector (Figures 2A and S2C; Video S2). Second, we

examined escapes in a positive-control condition known to

generate subgoal learning. After the laser-off group explored

the arena with the obstacle and shelter for 20 min, we removed

the obstacle and triggered escapes (2–30 min later, IQR: 8–

17 min). We found that 42% of escapes were directed toward

the obstacle edge location despite the obstacle being gone

(edge vectors; 26 total escapes on the left side; more edge vec-

tors than in the open field: p = 0.003, permutation test; Figures 2A

and 2C; right-side escapes shown in Figure S2D; Video S3). This

result is consistent with Shamash et al.,22 which found that these

edge-vector escapes reflect thememorization of a subgoal loca-

tion. Third, we tested the laser-on group, which explored with an

obstacle and shelter but had their exploratory edge-vector runs

interrupted. After removing the obstacle, threat-evoked escape

routes were similar to the paths taken in the open-field condition

rather than the subgoal-learning group (13% edge vectors; 23

escapes [left side]; fewer edge vectors than in the laser-off con-

dition: p = 0.03, and not significantly more edge vectors than in

the open field: p = 0.2, permutation tests; Figures 2A and 2C;

Video S3). Thus, interrupting spontaneous edge-vector runs

abolished subgoal learning.

An alternative explanation could be that mice did learn sub-

goals, but the stimulation during edge-vector runs taught them

to avoid expressing edge-vector escapes. To address this, we

repeated the stimulation experiment (n = 8 mice) but allowed

mice to perform two spontaneous trip-wire crossings before

subjecting them to the same edge-vector-blocking protocol as

above (3 [1.75, 4.25] laser trials per session, median [IQR], lasting

16 [5.5, 26.5] s in total; Figures S3A–S3E; Video S4). Removing

the obstacle and triggering escapes now revealed robust sub-

goal behavior (65% edge vectors; n = 23 escapes [left side];

more edge vectors than in the open field: p = 3 3 10�4, and

not significantly fewer edge vectors than the laser-off condition:

p = 0.9, permutation tests). This shows that our manipulation

does not reduce the use of subgoals once they are learned

and suggests that edge-vector runs are causally required for

learning subgoals.

Blocking edge-to-shelter runs does not reduce subgoal
learning
Spontaneous edge-vector runs were often followed by an edge-

to-shelter run. After completing an edge-vector run, mice in the

laser-off condition reached theshelterwithin2.5 [1.7,10] s (median
Neuron 111, 1966–1978, June 21, 2023 1967
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Figure 1. Closed-loop optogenetic activation of M2 interrupts spontaneous edge-vector runs

(A) Spontaneous edge-vector runs during the initial exploration period (continuous turn-and-run movements, starting in the threat area and stopping at or moving

past the obstacle edge); n = 8 mice.

(B) Schematic illustrating optic fiber placement in the right premotor cortex. M2, supplementary motor cortex (premotor cortex); PrL, prelimbic cortex; MO/LO/

VO, medial/lateral/ventral orbital cortex; AI, agranular insular cortex.

(C) On crossing a virtual trip wire (dashed line) during exploration, mice automatically received a 2-s, 20-Hz light pulse. This caused a stopping and leftward-

turning motion preventing the mice from reaching the obstacle edge. In the example trial, the mouse ran to the right side of the platform after the stimulation.

Mouse drawing: scidraw.io.

(D) All trip-wire crossings, with and without laser stimulation, ordered by time of arrival to the left obstacle edge. Note that micemust bemoving toward the shelter

area (i.e., southward) to trigger the trip wire.

(E) Spatial efficiency is the ratio of the straight-line path to the length of the path taken. White horizontal lines, median; black dots, mean; gray boxes, first and third

quartiles; gray vertical lines, range. Each dot represents one mouse/session. p = 5 3 10�5, one-tailed permutation test.

(F) Distance explored on the threat half: p = 0.5, one-tailed permutation test; n = 8 mice in each group.
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[IQR]), generally taking direct paths (spatial efficiency: 0.87 [0.47,

0.95]; 1.0 corresponds to the direct path; Figures S3F and S3H).

We therefore considered whether edge-vector runs support sub-

goal learning because they are part of a sequence of actions that

quickly brings the mouse from the threat zone to the shelter. To

test this, wemodified the stimulation experiment to block the sec-

ond phase of the threat-area-to-edge-to-shelter sequence by

placing the trip wire in a location that stopped movements from

the left obstacle edge toward the shelter (n = 8 mice; 3 [2, 3.25]

laser trials per session, median [IQR], lasting 25 [20, 30] s in total;
1968 Neuron 111, 1966–1978, June 21, 2023
Figures 3A and S3D–S3I; Video S4). This manipulation resulted in

edge-vector runs on the left side being followed by long, slow

paths to shelter (seconds to shelter: 29 [18, 55]; spatial efficiency:

0.28 [0.13, 0.37]; slower than the laser-off condition: p = 13 10�3;

less spatially efficient than the laser-off condition: p = 2 3 10�3,

permutation tests; Figures S3F and S3H). Despite this effect,

removing the obstacle and triggering escapes revealed robust

subgoal behavior (55% edge vectors; n = 23 escapes [left side];

Figures 3B and 3C; more edge vectors than in the open field:

p = 1 3 10�4, and not significantly fewer edge vectors than the
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Figure 2. Interrupting spontaneous edge-vector runs abolishes subgoal learning

(A) Black traces show exploration during an example session (open field: 10 min, obstacle removal: 20 min). Lines and silhouette traces show escape routes from

threat onset to shelter arrival; open field: 29 escapes; obstacle removal (laser off): 26 escapes; obstacle removal (laser on): 23 escapes. All: n = 8 mice.

(B) The initial escape target is the vector from escape initiation to 10 cm in front of the obstacle (black dots), normalized between 0 (shelter direction) and 1

(obstacle edge direction).

(C) Escape target scores over 0.65 are classified as edge vectors; scores under 0.65 are classified as homing vectors (as in Shamash et al.22). Obstacle removal

(laser off) vs. open field: p = 0.003; obstacle removal (laser on) vs. open field: p = 0.2; Obstacle removal (laser off) vs. obstacle removal (laser on): p = 0.03, one-

tailed permutation tests on proportion of edge-vector escapes.
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laser-off condition: p = 0.8, permutation tests). Thus, for their

causal role in subgoal learning, edge-vector runs do not need to

be rapidly followed by the extrinsic reward of entering the shelter.

This result also supports the argument that optogenetic stimula-

tion at the left edge does not teach the mice to avoid passing by

that location during escapes.
Subgoal-escape start points are determined by
spatial rules
The results from the previous experiment suggest that learning

subgoals with edge-vector runs is not simply amatter of reinforc-

ing actions that lead to the shelter. This fits with the finding by

Shamash et al.22 that subgoals in this context are stored as
Neuron 111, 1966–1978, June 21, 2023 1969
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Figure 3. Blocking edge-to-shelter runs does not diminish subgoal learning

(A) Blocking left-edge-to-shelter runs by activatingM2 at the obstacle edge. In the example trial, themousewas stimulated for 10 s and then ran toward the center

of the platform.

(B) Escapes after obstacle removal. n = 8 mice, 23 escapes (left side).

(C) Obstacle removal (block edge-to-shelter) vs. open field: p = 13 10�4; vs. obstacle removal (block edge vectors): p = 0.03; vs. obstacle removal (laser off): p =

0.8; one-tailed permutation tests on proportion of edge-vector escapes.
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allocentric locations rather than egocentric movements and rai-

ses the possibility that the learning process combines actions

and spatial information. To explore this further, we investigated

the rules governing the set of locations from which mice initiate

memory-guided subgoal escapes—the ‘‘initiation set’’ of sub-

goal escapes. We aimed to determine whether the initiation set

was (1) spread indiscriminately throughout the environment, (2)

restricted to the vicinity of previous edge-vector-run start posi-

tions, or (3) related to the spatial layout of the environment inde-

pendent of past actions. Option 1 would be expected if mice

learned to execute edge-vector actions without taking into ac-

count their starting location, option 2 if mice learned to repeat

edge-vector actions based on proximity to previous successful

actions, and option 3 if mice selected the subgoal strategy

through a map-based process. We first repeated the obstacle

removal experiment but now elicited escapes from in front of

the obstacle location, near the shelter (n = 8 mice with no laser

stimulation, 28 escapes; Figure S4A). From this starting point,

mice did not escape by running toward a subgoal location but

instead fled directly to shelter, suggesting that the initiation set

is spatially confined rather than indiscriminate.

Next, we tested whether the initiation set is confined to the

area in which spontaneous edge-vector homing runs have previ-

ously occurred. We modified our laser stimulation experiment

with a new trip-wire location, so that edge-vector runs were al-

lowed from a section of the arena next to the threat zone but

were interrupted if they started within the threat zone (n = 8

mice; 2 [1.75, 4] laser trials per session, median [IQR], lasting 4

[6, 9] s; Figures 4A, 4B, and Figures S3D–S3I; Video S4). As

before, laser stimulation succeeded in blocking edge-vector

runs from the threat zone (Figure S3I). In this configuration, how-

ever, mice were still able to execute edge-vector runs starting

from the area to the left of the threat zone (leftmost gray arrow

in Figure 4A; Figure S6D). Removing the obstacle and triggering

escapes in this cohort revealed robust subgoal behavior (63%

edge vectors; n = 19 escapes [left side]; Figures 4B and 4C;
1970 Neuron 111, 1966–1978, June 21, 2023
more edge vectors than in the open field: p = 6 3 10�4, and

not significantly fewer edge vectors than the laser-off condition:

p = 0.8, permutation tests). Thus, the initiation set for subgoal es-

capes extends beyond the locations in which successful edge-

vector runs have been initiated (Figure 4B, inset). This result

also reaffirms that optogenetic stimulation does not teach mice

to avoid paths that are blocked by laser stimulation during

exploration.

To more precisely determine the impact of spatial location on

subgoal behavior, we ran the obstacle removal experiment with

a larger threat zone, located between the obstacle location and

the original threat zone (n = 8 mice, 53 escapes; no laser stim-

ulation; Figures 4D and S4D). We then combined these es-

capes with the original threat zone data and used logistic

regression to test the relationship between the location of

escape onset and subgoal use (n = 40 total sessions, 207 es-

capes; Figures 4E–4H). We found that being closer to previous

edge-vector runs was not significantly related to the likelihood

of executing edge-vector escapes (McFadden’s pseudo-R2 =

0.086; p = 0.5, permutation test; Figures 4G, S4C, and S4D);

on the contrary, this non-significant relationship tended toward

greater distance from an edge-vector run predicting a higher

likelihood of edge-vector escapes. In contrast, several spatial

metrics were effective predictors of edge-vector escape prob-

ability (Figures 4F, 4G, and S4C–S4E). These include the dis-

tance from the obstacle, distance from the central axis of the

platform (the axis perpendicular to the obstacle), distance

from the shelter, and angle between the edge-vector and hom-

ing-vector paths. Thus, the initiation set is defined in relation to

the layout of the environment rather than proximity to previous

successful actions.

We next analyzed whether a two-dimensional (2D) spatial-

location predictor fit the data better than a one-dimensional

(1D) predictor by applying Akaike Information Criterion (AIC)

analysis to the logistic regression model (Figure 4H). If the initia-

tion set were fully explained by the mouse’s perception of which
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Figure 4. Subgoal-escape start points are determined by spatial rules

(A) Blocking threat-zone-to-left-side runs by changing the trip-wire location andwidth of the threat zone. In the example trial, there were two consecutive trip-wire

crossings (2-s stimulations), after which the mouse moved back toward the threat zone.

(B) Escapes after obstacle removal. The reduced-width threat zone ensured that mice would need to cross the deactivated trip wire in order to execute edge-

vector escapes; n = 8 mice, 19 escapes (left side). Inset: all start locations for spontaneous edge-vector runs (light green) and subsequent edge-vector escapes

(dark green).

(C) Obstacle removal (block threat-zone-to-left-side) vs. open field: p = 63 10�4; vs. obstacle removal (block edge vectors): p = 0.01; vs. obstacle removal (laser

off): p = 0.8, one-tailed permutation tests on proportion of edge-vector escapes.

(D) Four example escapes triggered after obstacle removal with the threat zone in a new position.

(E) Pooled data from all obstacle-removal experiments (excepted the block-edge-vectors experiment). Escapes on both the left and right sides are shown. Right-

sided escapes are flipped horizontally for visualization, and thus, all the green dots can be seen as left-edge vectors. Each dot represents one escape; n = 40

sessions, 207 escapes.

(F) Illustration of three spatial metrics used to predict the likelihood of executing an edge-vector escape. Silhouettes in each arena image are an example escape;

orange trajectories in the top image illustrate the corresponding history of edge-vector runs in the exploration period. Black bar shows the distance being

measured.

(G) McFadden’s pseudo-R2 measures the strength of the relationship between each metric and the odds of executing edge-vector escapes. Values of 0.2–0.4

represent ‘‘excellent fit.’’26 Distances are measured from the escape initiation point of each escape. For the distance to the nearest spontaneous edge-vector run

start point, only runs toward the same side as the escape are considered. Distance to the nearest start point of a spontaneous edge-vector run: pseudo-R2 =

0.086; p = 0.5. Distance to the obstacle: pseudo-R2 = 0.28; p = 0.007. Distance to the central axis: pseudo-R2 = 0.26; p = 0.01.

(H) Akaike Information Criterion (AIC) analysis on a logistic regression with different predictors. Decreases in AIC represent better model fit and include a penalty

for using additional predictors; DAICi = AICi – AICmin, where AICmin here is the AIC from the model with the single distance-from-central-axis predictor.
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side of the obstacle it is on or of how close to the shelter it is, then

adding additional spatial predictors should not improve the

model (i.e., AIC should increase). On the other hand, if mice

use their 2D position within the environment to select whether

to use a subgoal, then using 2D spatial information should

improve the model (i.e., AIC should decrease). In line with this

possibility, using only distance from the obstacle (i.e., distance

along the y axis) or distance from the central axis (i.e., distance

along the x axis) produced AIC scores of 206.8 and 212.9,
respectively, whereas the AIC for using both dimensions as input

was 200.5. The magnitude of the AIC decrease (6.3) indicates

that the combined 2D model has considerably more support

than either 1D model.27 We found similar results with distance

from the shelter plus distance to the central axis as a predictor

(Figure S4F; see Figure S4E for an alternative analysis). These

analyses further support the hypothesis that the selection be-

tween subgoal routes and direct routes is modulated by their

2D starting position within the arena.
Neuron 111, 1966–1978, June 21, 2023 1971
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Figure 5. Reinforcement learning models of mouse escape behavior

(A) Schematic illustrating the training, pre-test, and testing phases. Gray traces represent paths taken during exploration by the RL agents (training map shown is

the map used in condition 1). Accessible states are white, blocked states are black, and accessible rewarded states are red. In the training phase, agents have

sufficient exploration for all 100 random seeds to learn a path from the threat zone to the shelter. Middle: a representative exploration trace from the pre-test

phase. Right: an example ‘‘escape’’ trajectory from the threat zone (asterisk) to the shelter (red square).

(B) Illustration of the practice runs included in the training phase. Each ‘‘S’’ represents a start point for the hard-coded action sequence, and each arrowhead

shows the terminal state. The sequences were triggered with probability p = 0.2 upon entering each start state.

(C) Segmented arena used for the hierarchical state-space agent. Each colored region represents a distinct state. After selecting a neighboring high-level region

to move to, the agent moves from its current location to the region central location indicated by the asterisks.

(D) Escape runs from all seeds in all four conditions for the Q-learning, Successor Representation, and model-based (immediate learner) agents. All trials are

superimposed. Bar chart below each plot shows the proportion of each type of escape. Edge-vector routes go directly to the obstacle edge; homing-vector

routes go directly toward the shelter; tortuous routes go around both the obstacle and the trip wire; non-escapes do not arrive at the shelter. In the training map of

conditions 3 and 4, the one-way trip wire is represented by the blue line, and the blue arrows indicate the blocked transitions.

(E) Qualitative mouse behavior for each condition (left) and illustration of the type of RL agent that matches this behavior (right). Condition 1: gradual model-based

shown; condition 2: Q-learning and immediate model-based shown; condition 3: SR and immediate model-based shown; condition 4: hierarchical-state-space

Q-learning shown.
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A dual RL system matches mouse behavior after
obstacle removal
We next aimed to determine the computational principles behind

subgoal learning by identifying RL modeling strategies that can

qualitatively capture the behavior. We used a spectrum of RL al-
1972 Neuron 111, 1966–1978, June 21, 2023
gorithms previously used to model navigation28,29 in a tractable

grid-world environment based on our experimental setup (Fig-

ure 5A; STAR Methods). The three core algorithms we used

were model-free tabular Q-learning, the Successor Representa-

tion (SR),30 and model-based tree search (see Figure S5A and



Table 1. Number of training steps needed to learn escape routes

Algorithm Exploration

No. steps to learn

escape routes

Tabular Q-learning random 45k

Tabular Q-learning random +

practice runs

30k

Hierarchical Q-learning random 2.5k

Hierarchical Q-learning random +

practice runs

1.5k

Tile-coding Q-learning random 285k

Successor Representation random 125k

Successor Representation random +

practice runs

20k

Model-based (immediate) random +

practice runs

3k

Model-based (gradual) random +

practice runs

3k

Tabular SARSA random +

practice runs

35k

Hierarchical SARSA random +

practice runs

2k
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STARMethods for detailed descriptions). The tabular Q-learning

agent incrementally learns the value of each of the 944 state-ac-

tion pairs (e.g., ‘‘go northwest from the shelter state’’) based on

its history of receiving rewards. The SR also computes state-ac-

tion values but updates two separate representations: a spatial

representation measuring which locations follow each state-ac-

tion pair and a reward representation. It then combines this infor-

mation to compute the estimated value of each state-action pair.

Third, the model-based agent does not update action values but

instead updates a graphical representation of the arena and

searches through this graph to calculate optimal routes to the

reward. This model is different from the other two algorithms in

two main ways: it uses model-based search, and it updates

the model immediately after visiting a state. To facilitate deter-

mining the role of these two properties when performing model

comparisons, we also included a model-based agent that up-

dates its model gradually, using the past 15 observations of

each graph edge to decide whether two adjacent states are con-

nected or blocked by a barrier.

Similar to the experiments in mice, all simulations included a

training map (e.g., the arena with an obstacle present) and a

test map (e.g., the arena with the obstacle removed) and took

place over three phases (Figure 5A). In the ‘‘training phase,’’ the

agent explored a training map for a duration long enough to learn

a route from the threat zone to the shelter (Table 1). Importantly,

this phase also included stochastically generated practice-run

sequences from the threat zone to the obstacle edge and from

here to the shelter to mimic the natural exploratory pattern

observed in mice (Figure 5B). This was followed by the ‘‘pre-

test phase,’’ which took place in the test map. In this phase, the

agent started in the shelter and executed a random-exploration

movement policy until reaching the threat zone. Finally, there

was a ‘‘test phase’’ executing the learned policy in the test

map, starting from the threat zone. We selected four particularly
revealing behavioral andoptogenetic experiments tomodel in sil-

ico using this procedure. All test maps hade a shelter and no

obstacle, and, therefore, the only difference between the four

experimental conditions was the training map.

The first condition was the basic obstacle removal experiment

(Figures 2, 5D, and 5E), where the training map had an obstacle

and a shelter (i.e., a reward). Similar to mice, the Q-learning, SR,

and gradual model-based (MB-G; Figure S5B) agents all ex-

hibited persistent escape routes around the obstacle in the

test phase. The immediate-learning model-based (MB-I), on

the other hand, was able to update its model during the test-

map exploration and compute the new, fastest route to the shel-

ter 94% of the time. The differentiating factor here was whether

the agents updated their policy immediately (MB-I) versus incre-

mentally or stochastically (all others). In the latter case, the pre-

test exploration was too brief to learn the homing-vector path.

In the secondcondition, the trainingmaphadanobstacle but no

shelter (Figure 5D). Mice in this experiment22 failed to learn edge-

vector routes and instead escaped usinghomingvectors. The only

agent to take homing vectors here was the agent that did not

execute edge vectors in condition 1 (MB-I, 92% homing vectors).

The remaining agents differed in their behavior. The SR andMB-G

agents learned edge vectors because of their ability to separately

solve spatial-learningproblemseven in theabsenceof reward (SR,

100% edge vectors, Figure 5D; 93% edge vectors, Figure S5B).

TheQ-learning agent failed to learn edge vectors or any alternative

escape route because it cannot learn without reward in the envi-

ronment (100% non-escape; Figure 5D).

Overall, mice exhibited a pattern unlike any of these RL agents.

Mice failed to immediately learn a homing-vector path in condi-

tion 1, but they did immediately learn the homing-vector path

when they did not have a memorized policy in place (condition

2). For the RL models, this represents a paradox: the models

that learned fast enough to run straight to shelter in condition 2

would also do so in condition 1. One solution to this paradox is

a dual system that can switch between flexible and inflexible

learners depending on the situation.31,32 We implemented this

solution in an agent containing both a Q-learning and an MB-I

system. When the Q-learning model suggested an action with

a positive value above a threshold, the agent would take that ac-

tion. If no such action was available, as in condition 2, the MB-I

system was invoked to find a novel route. This agent was able to

match mouse behavior on conditions 1 and 2 (Figure 5E).

Behavior with the full trip wire is matched with non-
uniform exploration and on-policy learning
Next, we added the optogenetic trip wire to our modeling envi-

ronment. In addition to the obstacle and shelter, the training

map now contained paths from the threat area to the obstacle

edge that were blocked one way. Mice in this experiment again

failed to learn edge-vector routes (Figure 2). We were thus look-

ing for a gradual learning system that failed to learn viable es-

capes with the trip wire present, thereby triggering the backup

immediate learner. For Q-learning andMB-G, the trip wire simply

added an additional detour. These agents learned tortuous

routes around both the trip wire and the obstacle (Q-learning:

98% tortuous routes around both trip wire and obstacle, Fig-

ure 5D; MB-G: 78% tortuous routes; 19% homing vectors;
Neuron 111, 1966–1978, June 21, 2023 1973
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Figure S8B), indicating that models that memorized routes

around the physical barrier would tend to do the same with the

trip wire.

In contrast, the SR agent did not have this problem; it learned

routes around the obstacle in condition 1 but failed to learn with

the trip wire (70% non-escape; Figure 5D). This happened for

two reasons. The first reason was the practice runs in the training

phase. With a fully random policy, the SR agent learned routes in

condition 3 just as quickly as routes in condition 1 (Figure S5C).

Thus, it was the practice edge-vector runs that predisposed this

agent to learn edge-vector routes faster than other, arbitrary

paths through space. The second reason was that, unlike

Q-learning, our SR implementation was an on-policy learner.33

This means that value that it attributed to an action depended

on how often that action led to the shelter during the training

period. Because uninterrupted practice-run action sequences

were possible only in condition 1, edge-vector actions accumu-

lated high values faster than the meandering actions leading

around the trip wire in condition 3. In line with this explanation,

we found that an on-policy variant of Q-learning (SARSA) with

practice runs behaved similarly to the SR: it also often failed to

find routes in condition 3, but not condition 1 (Figure S5D).

Thus, the pattern of exploration that we observed in mice—

slow meandering exploration punctuated by rapid edge- and

shelter-directed runs—could explain why an on-policy learner

would learn edge-vector runs in condition 1 but fail to learn a

route in condition 3.
Behavior with the partial trip wire is matched with state-
action abstraction
Our final condition (condition 4) mimicked the optogenetics

experiment in Figure 4. This partial trip wire blocked edge-vector

runs from the threat zone itself, but not from other, nearby loca-

tions. In this condition, mice learned direct edge-vector escapes.

The gradual-learning RL agents, on the other hand, all executed

tortuous routes around both the trip wire and the obstacle

(Q-learning: 98% tortuous routes; SR: 90% tortuous routes;

MB-G: 81% tortuous routes, 17% homing vectors; Figures 5D

and S5B). To match mouse behavior on both conditions 3 and

4, an RL agent would need to run through the line where the

trip wire was during training instead of taking a step-by-step

route around it. In addition, it would have to infer the availability

of this direct edge-vector route based on nearby, but non-iden-

tical practice runs during the training phase.

We reasoned that an agent with a coarse-grained state space

could possess these features. We first tried implementing

Q-learning with a coarse-grained state representation designed

to promote spatial generalization (tile coding).34 This agent’s

behavior, however, was not substantively different from tabular

Q-learning (98% tortuous routes; Figure S5E). Next, we tried a

more targeted state-action abstraction protocol. We divided

the state space into regions of grid squares (e.g., the shelter

area, the left obstacle edge area) and the action space into vec-

tors connecting those regions (Figure 5C) (note that we could

have used a more sophisticated state-action abstraction

scheme such as the options framework35 but found this to be

the most direct solution to condition 4). This Hierarchical State
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Space (HSS) Q-learning agent explored using the same random

walk policy on the full-resolution training map but updated its

controller only with respect to transitions between the high-level

regions. We found that this agent was able to learn edge-vector

escapes even with the partial trip wire in place (94% edge vec-

tors; Figure 5E). Notably, the HSS agent could learn a valuable

‘‘threat area to obstacle edge area’’ action without ever having

taken that action from the exact grid cell where the escape is trig-

gered. These high-level actions also better matched the smooth,

biphasic escape trajectories we saw in mice and generated a

much faster learning profile (Figure S5F). In addition, the regional

state representation fit well with our finding that mice use a

spatially defined ‘‘subgoal initiation set’’ (see Figure 4).

To summarize, the vanilla RL agents we tested were not

effective at matching mouse behavior across all experimental

conditions. To achieve this, our simulations suggested that we

need an agent that:

1. includes a gradual-learning system.

2. does not fully separate spatial and reward learning.

3. abstracts over regions of space and the actions connect-

ing those regions.

4. has an immediate-learning system (e.g., hardcoded hom-

ing-vector policy, MB-I) in parallel with the gradual system

that comes online when the gradual learner has no valu-

able action.

5. experiences non-uniformexploration, with rapid and direct

practice runs toward the obstacle edges and shelter.

Having defined these five key computational principles, we

then built an agent with all these properties. This agent included

a gradual learning system that directly learned action values in

an on-policy manner (i.e., the SARSA algorithm) within the

high-level state-action space introduced above. The agent per-

formed practice runs during exploration, and we assume that it

switched to a default MB-I agent in conditions with high failure

rates. We found that this agent could qualitatively match mouse

behavior on all four conditions, executing persistent edge

vectors in conditions 1 and 4 and frequently failing to escape

in conditions 2 and 3 (Figure S5G).

DISCUSSION

When a mouse investigates a new environment, it does not act

like a ‘‘random agent.’’ Instead, its exploration consists of purpo-

sive, extended, sensorimotor actions. In this work, we have

demonstrated that one such class of movements—running to

an obstacle edge that grants direct access to a goal—plays a

causal role in the process of gaining useful spatial information

about the environment.

Our previous work has showed that during 20 min of explora-

tion with a shelter and an obstacle, mice memorize subgoals at

the obstacle edge location.22 This is revealed by removing the

obstacle and presenting threats, which causes mice to initiate

escapes by running to the location of an edge that is no longer

there. To explain this allocentric behavior, typical spatial learning

models would rely on two steps: (1) constructing an internal map

of space by observing how locations and obstructions in the
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environment are positioned relative to each other and (2) using

this map to derive a useful subgoal location, computed either

at decision time or in advance during rest.36,37 This process is

well suited for agents that learn by diffusing throughout their

environment, be it randomly or with a bias toward unexplored

territory.38 However, it does not account for the prevalence of

goal- and object-oriented actions in natural exploratory

patterns.14,39

We thus explored a potential role for a third process: (3)

executing ‘‘practice runs’’ to candidate subgoal locations during

exploration. This idea follows from a strain of research in the

cognitive sciences called sensorimotor enactivism,40 which as-

serts that an explanation of learning should include not only

how an animal extracts meaning from its sensory data but also

how its actions are used to control this stream of data.16–18,41,42

Here, we combined this principle—the importance of intrinsically

motivated actions for learning—with the causal perturbation

techniques and spatial behaviors available in rodent neurosci-

ence. Specifically, we used closed-loop optogenetic stimulation

of M2 to interrupt edge-vector practice runs and found that this

manipulation abolished subgoal escape routes.

It is important to note that this effect does not inform us about

the role thatM2may play in computing subgoals. This question is

not the point of this study or the goal of manipulating M2 activity.

Notably, three M2 stimulation protocols spared edge-vector

runs, and these manipulations did not impair learning. Thus,

stimulating M2 does not intrinsically affect spatial learning.

Only when M2 stimulation interrupted practice edge-vector

runs did we see the effect. Our results therefore indicate that

the edge-vector actions themselves are necessary for triggering

subgoal memorization. While the neural implementation remains

unknown, our results open the door for future work elucidating

the network ofmotor and spatial brain nuclei that implement sub-

goal memorization. The action driven mapping strategy we have

uncovered suggests that the coordination between map and ac-

tion-reinforcement systems might be tighter than previously

thought, and thus, it will be particularly interesting to investigate

interactions between the hippocampus and striatum during sub-

goal learning.

One interpretation of the need for practice runs in learning

could be that subgoal behavior is a naturalistic form of oper-

ant conditioning. In this view, edge-vector runs are followed

by reinforcement and then simply get repeated in response

to threat. This framework could explain why edge-vector re-

sponses persist after obstacle removal: they are habits that

have not yet been ‘‘extinguished.’’ Moreover, the lack of effect

of blocking edge-to-shelter runs fits with an instrumental

chaining mechanism,1,43 in which arrival at the obstacle

edge itself acts as a reinforcer. However, subgoal learning di-

verges from instrumental learning in two ways: it operates

within an allocentric framework (generally seen as distinct

from an instrumental response strategy,2,5,6,31 and it only re-

quires 1–2 practice runs (even simple instrumental training

takes tens of learning trials.44 More importantly, the set of lo-

cations from which mice initiate subgoal escapes are defined

by the mouse’s spatial position relative to the obstacle and

shelter and not by their proximity to previous edge-vector

runs. The concepts of action and reinforcement are therefore
insufficient for explaining subgoal memorization; an internal

map of space must also be invoked.

There are several possible explanations of the initiation set’s

spatial arrangement, with subgoals executed when the mouse

is farther back from the obstacle location and from the arena’s

central vertical axis. First, it could reflect the outcome of a spatial

cost-benefit analysis: the preferred subgoal-escape starting

points are in the locations where the subgoal route is almost as

short as the homing vector. Second, it could indicate that the

memory-guided escape strategy is only used when the animal

is so far away from the shelter or obstacle’s center that the ani-

mals know that they cannot rely on local visual cues. One final

possibility is that the mouse clusters its spatial map of the arena

into regions with similar features. In that case, subgoal actions

might generalize across the back perimeter region but not to

the region right in front of the obstacle.

To formalize the computational properties of subgoal learning,

weperformedRLmodeling of four key behavioral and optogenetic

experimental conditions. First, we found that models that update

gradually—be it model-free or model-based—can match our

persistent edge-vector escape result. Second, we found that

mice exhibit differing levels of flexibility in different conditions

and are thus best modeled through a dual-system agent. This

dual agent included one system that updates a policy gradually

and another that learns muchmore rapidly (at a greater computa-

tional cost). For the rapid learner,weused theMB-I system, though

there is no principled reason why this needs to be a classical

model-based system. One appealing alternative is a homing-vec-

tor instinct, a built-in policy of running directly toward a recently

visited shelter. This system would produce the same result (hom-

ing vectors in conditions 2 and 3), and it better corresponds to

known navigation strategies in rodent escape behavior.20–22 Our

implementation of the dual system switches to the rapid learner

when the model-free learner fails to produce a valuable action.

Previous work on dual-system arbitration has generated more

sophisticated hypotheses, such as selecting the system with

less uncertain action values32 orwith a historyof reliably lower pre-

diction errors.45 Reliability-based arbitration may require an

implausibly high number of practice runs. However, uncertainty-

based arbitration should work with our results: assuming that the

rewarded shelter state starts with very low prior uncertainty, this

uncertainty should take longer to propagate back to the threat

zone in conditions 2 and 3 than in condition 1.

The third condition modeled was the laser trip wire. With unlim-

ited uniform exploration, the RL models found valid but convo-

luted escape routes around the trip wire. However, with a limited

exploration period punctuated with practice edge-vector se-

quences, the on-policy SR agent learned escape routes in condi-

tion 1, but not in condition 3. Through the logic of the dual-system

agent described above, this agent therefore invokes the backup

homing-vector policy here, mirroring mouse behavior. This sup-

ports the notion that the mice’s non-uniform exploratory paths—

with runs to the shelter and obstacle edges being more rapid

and direct than paths in the center and perimeter—is a crucial

factor in modeling their spatial learning capabilities.46

One key difference from actual biological learning is the number

of runs needed for learning: mice required 1–2 runs to learn the

edge-vector route, while Q-learning and SR agents took tens of
Neuron 111, 1966–1978, June 21, 2023 1975
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practice runs. One possibility is that mice construct a value func-

tion or successor representation through a more data-efficient,

model-based learningalgorithm than thepurelymodel-free updat-

ingmechanismsweusedhere.29,47 Another possibility is thatmice

simply imbue certain actions (e.g. running toward salient objects)

with a very high learning rate.48 A final, compatible option is that

they use a high-level representation of states and actions (e.g.,

‘‘go from shelter area to obstacle edge’’ instead of ‘‘go north

10 cm’’) to speed up learning dramatically.35 Indeed, agents that

break down the arena into high-level regions and actions (e.g., a

‘‘threat-area-to-obstacle-edge’’ action) not only learnedona rapid

timescale but alsomatchedmice’s capacity for spatial generaliza-

tion in subgoal behavior. Unlike ‘‘flat’’ agents, operating at the level

of individual grid-world states, this agent could execute edge-vec-

tor escapes after practicing nearby but non-identical routes.

Hierarchical representations are known to allow for orders-of-

magnitude increases in time and memory efficiency for planning,

at the expense of overlooking routes that do not map directly

onto the agent’s high-level representation of the environment.49

This state-action space also provides a straightforward explana-

tion for our finding that subgoal escapes were selected based

on spatial rules: the initiation set could correspond to a spatial

region from which mice learned a valuable ‘‘go to obstacle

edge’’ action. How animals might cluster states within their

environments into these regions remains an interesting,

open question.49–51 This spatially sophisticated representation

within model-free learning illustrates a disconnect between

‘‘map-based’’ and ‘‘model-based’’ methods. While we are

invoking a spatial map to define states and actions, we do not

need to invokeamodel-basedsearch through thatmap touncover

routes. Caching state-action values or a successor representation

within a hierarchical spatial map is perfectly compatible with

mouse escape trajectories.

A key remaining question is to define the scope of action-

driven subgoal mapping. First, is the persistent subgoal strategy

specific to escape behavior? Reactions to imminent threats tend

to be less deliberate and flexible than less urgent behaviors such

as reward seeking;52 this raises the possibility that the persistent

usage ofmemorized subgoals could be specific to escape. How-

ever, previous studies have also shown that rats53 and mice22

tend to prefer familiar routes over new shortcut routes even

during reward seeking. This suggests that subgoal memorization

is a general learning strategy across task modalities. Second,

does action-driven mapping extend across species to human

behavior? Clearly, an adult human in a small, well-lit room would

not need to run to an obstacle edge in order to learn its location.

However, humans may use analogous strategies in other sce-

narios. For example, De Cothi et al.28 showed that in a virtual

environment with changing obstacles and a limited visual field,

humans tend to update their spatial behavior gradually based

on the paths they take rather than immediately upon observing

an obstacle. In addition, as in subgoal behavior, humans natu-

rally break down multi-step tasks into high-level state and action

representations.50,54 For example, previouswork has shown that

human participants prefer paths that include sub-paths experi-

enced during training, even if a shorter route was available.49,55

Overall, it is highly plausible that action-driven mapping forms

a part of the human cognitive repertoire. Future work across
1976 Neuron 111, 1966–1978, June 21, 2023
different species and behaviors will be needed to build a broader

picture of the role of action-drivenmapping inmammalian cogni-

tion at large.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Tiago

Branco (t.branco@ucl.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The data reported in this paper will be shared by the lead contact upon request. All original code has been deposited at Zenodo and is

publicly available as of the date of publication. DOIs are listed in the key resources table. Any additional information required to re-

analyze the data reported in this paper is available from the lead contact upon request.

The data-acquisition software is available fromGithub: https://github.com/philshams/bonsai-behavior, the data-analysis software

is available from Github: https://github.com/philshams/behavior-opto-analysis, and the RL simulation software is available from Gi-

thub: https://github.com/philshams/Euclidean_Gridworld_RL. The data from this study will be made available upon publication.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All experiments were performed under the UK Animals (Scientific Procedures) Act of 1986 (PPL70/7652) after local ethical approval

by the Sainsbury Wellcome Center Animal Welfare Ethical Review Body. We used 36 singly housed (starting from 8 weeks old), male,

8–12-week-old C57BL/6J mice (Charles River Laboratories) during the light phase of the 12-h light/dark cycle. Mice were housed at

22�C and in 55% relative humidity with ad libitum access to food and water.

Re-use over multiple sessions

For the exploration and escape experiments in implantedmice (experiments 1–6): four of the eight mice were naive, and this was their

first behavioral session. The remaining four mice had experienced a previous session 5–7 days prior. Their previous session was not

allowed to be the same exact experiment as the second session but was otherwise selected randomly. The effects of having a pre-

vious session on escape behavior weremodest (Figure S2E-F), and do not impact the interpretation of our results. For the place-pref-

erence experiment and laser-power test, mice were randomly selected from those that had already experienced their behavioral ses-

sions in experiments 1–6. For the experiments in unimplanted mice, experiment #7 was performed in naive mice, and experiment #8

was performed 5–7 days later, with the same set of mice.

Exclusion criteria

Data from mice with zero escapes in the session (three mice: due to staying in the shelter; two mice: due to not responding to the

threat stimulus; one mouse: due to climbing down from the platform; all mice had a previous session) were excluded, and a replace-

ment session was performed 5–7 days later in a randomly selected mouse.
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METHOD DETAILS

Viral injection and fiber-optic cannula implantation
Surgical procedure

Mice were anesthetized with isoflurane (5%) and secured on a stereotaxic frame (Kopf Instruments). Meloxicam was administered

subcutaneously for analgesia. Isoflurane (1.5–2.5% in oxygen, 1 Lmin�1) was used tomaintain anesthesia. Craniotomies weremade

using a 0.7 mm burr (Meisinger) on a micromotor drill (L12M, Osada), and coordinates were measured from bregma. Viral vectors

were delivered using pulled glass pipettes (10 mL Wiretrol II pulled with a Sutter-97) and an injection system coupled to a hydraulic

micromanipulator (Narishige), at approximately 100 nL min�1. Implants were affixed using light-cured dental cement (3M) and the

surgical wound was closed using surgical glue (Vetbond).

Injection and implantation

Mice were injected with 120 nL of AAV9/CamKIIa-ChR2-EGFP in the right, anterior premotor cortex (AP: 2.4 mm, ML: 1.0 mm,

DV: �0.75 mm relative to brain surface) and implanted with a magnetic fiber-optic cannula directly above the viral injection

(DV: �0.5 mm) (MFC_200/245–0.37_1.5mm_SMR_FLT, Doric). All behavioral sessions took place 2–4 weeks after the injection/

implantation.

Histology

To confirm injection and implantation sites, mice were terminally anesthetized by pentobarbital injection and decapitated for brain

extraction. The brains were left in 4% PFA overnight at 4�C. 100um-thick coronal slices were acquired using a standard vibratome

(Leica). The sections were then counter-stained with 40,6-diamidino-2-phenylindole (DAPI; 3 mM in PBS), and mounted on slides in

SlowFade Gold antifade mountant (Thermo Fisher, S36936) before imaging (Zeiss Axio Imager 2). Histological slice images were

registered to the Allen Mouse Brain Atlas56 using SHARP-Track,57 to find the fiber tip coordinates.

Behavioral apparatus
Platform and shelter

Experiments took place on an elevated white 5-mm-thick acrylic circular platform 92 cm in diameter. The platform had a 503 10 cm

rectangular gap in its center. For conditions with no obstacle (all post-exploration escapes and the entirety of experiments 3 and 10),

this was filled with a 50 3 10 cm white 5-mm-thick acrylic rectangular panel (Figure S2B). For conditions with the obstacle present

(the exploration period in experiments 1–2 and 4–8), this was filled with an identical panel that, attached to an obstacle: a 50 cm long x

12.5 cm tall x 5 mm thick white acrylic panel (Figure S2A). The shelter was 20 cm wide x 10 cm deep x 15 cm tall and made of 5-mm-

thick transparent red acrylic, which is opaque to the mouse but transparent to an infrared-detecting camera. The shelter had a 9cm-

wide entrance at the front, which extended up to the top of the shelter and then 5 cm along its ceiling; this extension of the opening

allowed the optic fiber, which was plugged into the mouse’s head, to enter the shelter without twisting or giving resistive force.

Additional hardware

The elevated platform was in a 160 cmwide x 190 cm tall x 165 cm deep sound-proof box. A square-shaped projector screen (Xerox)

was located above the platform. This screen was illuminated in uniform, gray light at 5.2 cd m�2 using a projector (BenQ). Behavioral

sessions were recorded with an overhead GigE camera (Basler) with a near-infrared selective filter, at 40 frames per second. Six

infrared LED illuminators (TV6700, Abus) distributed above the platform illuminated it for infrared Video recording. All signals and

stimuli, including each camera frame, were triggered and synchronized using hardware-time signals controlled with a PCIe-6351

and USB-6343 input/output board (National Instruments), operating at 10 kHz. The platform and shelter were cleaned with 70%

ethanol after each session.

Data acquisition software and online video tracking

Data acquisition was performed using custom software in the visual reactive programming language Bonsai.58 In order to automat-

ically deliver laser and auditory stimuli (see below), mice were tracked online during each behavioral session. Online tracking was

based on the mouse being darker than the white acrylic platform; we used the following Bonsai functions, in this order:

BackgroundSubtraction, FindContours, BinaryRegionAnalysis, and LargestBinaryRegion.

Closed-loop optogenetic stimulation
Laser stimuli consisted of 2-s, 20-HZ square-wave pulses at 30mW (duty cycle 50%, so 15mWaverage power over the 2 s) supplied

by a 473-nm laser (Stradus 472, Vortran). For experiment #5, we instead used 5-s pulses. The laser was controlled by an analog signal

from our input/output board into the laser control box. At the beginning of each session, themousewas placed in an open 103 10 cm

box and the magnetic fiber-optic cannula was manually attached to a fiber-optic cable (MFP_200/230/900_0.37_1.3m_FC-SMC,

Doric). A rotary joint (Doric) was connected to the laser via a 200-mm core patch cable (ThorLabs) and used to prevent the cable

from twisting. At the beginning of each mouse’s first session, the mouse was placed in a 10 3 10 cm box, and two 2-s stimuli

were applied. If these did not evoke stopping and leftward turning (2/24 mice), then the mouse was assigned to one of the laser-

off conditions (experiment 1 or 3). During laser-on sessions, the criteria for triggering laser stimuli were: 1) the mouse crosses the

‘trip wire’ (illustrated in Figures 1, 3, 4); and 2) the mouse is moving in the ‘correct’ direction. For blocking edge-vector and edge-

to-shelter runs, the direction was determined by a directional speed threshold: moving toward the shelter area (i.e., south)

at > 5 cm s�1. For blocking threat-zone-to-left-side runs, mice had to be moving toward the left side (i.e., west) at > 5 cm s�1. These
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speed thresholds are low enough to be effective at catching all cases in which themouse crosses the trip wire in a particular direction.

These criteria were computed online using the Bonsai software described in the previous section. The laser pulses were emitted with

a delay of 300–400 ms after being triggered. Up to three subsequent 2-s pulses (or one 5-s pulse in experiment #5) were triggered

manually if the mouse continued moving forward. Mice usually took 1-3 min to enter the shelter for the first time, and these first mi-

nute(s) of exploration typically contains relatively vigorous running. Since subgoal learning does not occur in this setting without a

shelter in the environment,22 the laser-on condition was initiated only after the mouse entered the shelter for the first time.

Exploration and escape behavior
A list of the different experimental configurations is given in the below table.
List of all experiments

ID Experimental setup M2 stimulation Mice Figures

1 obstacle removal injection/implantation, no stim 8 Figures 1, 2, S3, S4, and S7

2 obstacle removal stop edge-vector runs 8 Figures 1, 2, S1, S3, and S4

3 open field—no obstacle injection/implantation, no stim 8 Figures 2 and S4

4 obstacle removal stop edge-vector runs after two 8 Figures S5–S7

5 obstacle removal stop edge-to-shelter runs 8 Figures 3, S6, and S7

6 obstacle removal stop threat-area-to-left-side runs 8 Figures 4, S6, and S7

7 obstacle removal—threat zone II none 8 Figure S7

8 obstacle removal—threat zone III none 8 Figures 4 and S7

9 two-chamber place preference paired with one chamber 8 Figure S1

10 open field—no obstacle or shelter test effects of three laser powers 4 Figure S1
Auditory threat stimuli

Threat stimuli were loud (84 dB), unexpected crashing sounds played from a speaker located 1 m above the center of the platform

(Data S1). Sounds (‘smashing’ and ‘crackling fireplace’) were downloaded from soundbible.com. They were then edited using

Audacity 2.3.0, such that they were 1.5 s long and continuously loud. Stimuli alternated between the ‘smashing’ sound and the

‘crackling’ sound each trial, to prevent stimulus habituation. The volume was increased by 2 dB after time a stimulus failed to elicit

an escape, up to a maximum of 88 dB. When a threat trial began, the stimuli repeated until the mouse reached the shelter or for a

maximum of 9 s.

Triggering escapes

The criteria for activating a threat stimulus were 1) themouse is currently in the threat zone (illustrated in Figure 2); 2) themousewas in

the threat zone 1.5 s ago; 3) the mouse is moving away from the shelter at >5 cm s�1 (this ensures that escape runs are always initi-

ated after the stimulus onset); 4) the most recent threat stimulus occurred >45 s ago. These criteria were computed online using the

Bonsai software described above, and auditory threat stimuli played automatically when all four criteria were met. Experiments were

terminated after six successful escapes or 1 h. In experiments 7–9, criterion #2was not applied. For experiment #8, experiments were

terminated after ten escapes rather than six, as this threat zone allowed for more trials. Reaching the shelter was defined as reaching

any point within 10 cm of the shelter entrance, and escapes were considered successful if they reached the shelter within the 9-s

stimulus period.

Obstacle removal

After 20 min of exploration were complete, as soon as the mouse entered the shelter, the experimenter quickly and quietly removed

the central panel containing the obstacle and replaced it with the flat 503 10 cm panel. Mice were then allowed to freely explore and

(and trigger escapes) in this open-field platform.

Exploration time

Micewere given 10min of exploration in the open arena before the threat zone became active. This provides enough time for themice

to locate the shelter and adopt the shelter as their home base. In the arena with the obstacle, mice had 20min of exploration, allowing

enough time to additionally perform edge-vector runs and learn subgoals. The threat zone then became active immediately after the

obstacle was removed. Since this condition does not allow for much time to explore the obstacle-free environment before facing

threat stimuli, we found that the shorter exploration time (10 min) in the open arena provides a fairer comparison.

Adding bedding to the platform

Bedding from the mouse’s home cage was added to the platform in order to encourage exploration, rather than staying in the shelter

throughout the experiment. One pinch (�1g) of bedding was added to the center of the threat zone in all experiments when either of

the following two criteria was met: 1) The mouse did not leave the shelter for 5 min; or 2) The mouse did not enter the threat zone for

10 min. In order to encourage occupancy of the areas from which edge-vector runs initiate, a pinch of bedding was placed on the left
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side of the threat zone in experiments #4 and 6, and the left and right sides in experiments 7–8. In order to maintain comparability

across conditions, a pinch of bedding was also placed in the same location for the mice with a previous session in experiment

#2. See Shamash and Branco59 for a step-by-step behavioral protocol.

Place preference assay
Mice were hooked up to the optic fiber as described above and placed into a two-chamber place preference arena. The arena was

made of 5-mm-thick transparent red acrylic (opaque to the mouse) and consisted of two 18 cm long x 18 cmwide x 18 cm tall cham-

bers connected by a 8cm-long opening. To make the chambers visually distinguishable, one chamber had a 10 3 10 cm x-shaped

white acrylic piece affixed to its back wall and the other had a filled-in, 10cm-diameter circular white acrylic piece affixed to its back

wall. The stimulation chamber (left or right) was pseudoramdomly determined before each session, such that both sides ended up

with four mice. After a 1-min habituation period, a series of four 2-s laser stimuli were manually triggered whenever the mouse fully

entered the stimulation chamber. A minimum of 1 min was given in between each trial, and a total of six stimulation series were deliv-

ered. After the last stimulation, 1 min was given so that the occupancy data would not be biased by always starting in the stimulation

chamber. Then, the next 20 min were examined to test for place aversion in the stimulation chamber. This assay is adapted from the

conditioned place preference assay60 and the passive place avoidance assay,61 such that it matches the conditions of our explora-

tion/escape assay (i.e., to be relevant, place aversionmust be elicited during the same session as the laser stimulation, and it must be

expressed through biases in occupancy patterns).

QUANTIFICATION AND STATISTICAL ANALYSIS

All analysis was done using custom software written in Python 3.8 as well as open-source libraries, notably NumPy, OpenCV,

Matplotlib and DeepLabCut. See Shamash and Branco59 for additional details on quantification of escape trajectories.

Video tracking
Video recording was performed with custom software in Bonsai. We used DeepLabCut62 to track the mouse from the Video, after

labeling 412 frames with 13 body parts: snout, left eye, right eye, left ear, neck, right ear, left upper limb, upper back, right upper

limb, left hindlimb, lower back, right hindlimb and tail base (Video 5). Post-processing includes removing low-confidence tracking,

using a median filter with a width of 7 frames and applying a linear transformation to the tracked coordinates to match all Videos

to the same coordinate reference frame. Videos were generated using custom Python code, the OpenCV library and Adobe

AfterEffects.

Calculating position, speed and heading direction
For analysis of escape trajectories and exploration, we used the average of all 13 tracked points, which we found to be more stable

and consistent than any individual point. To calculate speed, we smoothed the raw frame-by-frame speedwith aGaussian filter (s = 4

frames = 100ms). To calculate themouse’s body direction, we computed the vector between the lower body (averaging the lower left

limb, lower right limb, lower back, and tail base) and the front of the body (averaging the upper left limb, upper right limb, and upper

back). See Video 5 for a visualization of the tracking and of these calculations.

Analysis of escape trajectories
The escape target score was computed by taking the vector from the mouse’s position at escape initiation to its position when it was

10 cm in front of the obstacle. Vectors aimed directly at the shelter received a value of 0; those aimed at the obstacle edge received a

value of 1.0; a vector halfway between these would score 0.5; and a vector that points beyond the edge would receive a value greater

than 1.0. The formula is:

score =
joffsetHV � offsetEV +offsetHV �EV j

2 � offsetHV �EV

OffsetHV is the distance from themouse to where themousewould be if it took the homing vector; offsetEV is the distance from the

mouse towhere themousewould be if it took the obstacle edge vector; and offsetHV�EV is the distance from the homing vector path

to the obstacle edge vector path. The threshold for classifying a trajectory as an edge vector (scores above 0.65) was taken from

Shamash et al.,22 where it represented the 95th percentile of escapes in the open-field condition. Escapes with scores under 0.65

were designated as homing vectors. When escape trajectories are limited to escapes on the left side, this refers to escapes that

are on the left half of the arena when they cross the center of the platform along the vertical (threat-shelter) axis.

The escape initiation point occurs when mice surpass a speed of 20 cm s�1, relative to (i.e., getting closer to) the shelter location.

This threshold is high enough to correctly reject non-escape locomotion bouts along the perimeter of the platform but also low

enough to identify the beginning of the escape trajectory.
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Extraction of spontaneous homing runs and edge-vector runs
Homing runs are continuous turn-and-run movements from the threat area toward the shelter and/or obstacle edges. As in Shamash

et al.,22 they are extracted by (1) computing the mouse’s ‘homing speed’ (that is, speed with respect to the shelter or obstacle edges

with Gaussian smoothing (/sigma = 0.5 s)) and the mouse’s ‘angular homing speed’ (the rate of change of heading direction with

respect to the shelter or obstacle edges); (2) identifying all frames in which the mouse has a homing speed of >15 cm s�1 or is turning

toward the shelter at an angular speed of >90� per s; (3) selecting all frameswithin 1 s of these frames, to include individual frames that

might be part of the same homing movement but do not meet the speed criteria; (4) rejecting all frames in which the mouse is not

approaching or turning toward an edge or the shelter; and (5) rejecting sequences that take less than 1 s or do not decrease the dis-

tance to the shelter by at least 20%. Each series of frames that meet these criteria represents one homing run. We limited analysis to

the homing runs that started within the threat area (Figure 1A). Edge-vector runs are homing runs that enter anywhere within the

10-cm-long (along the axis parallel to the obstacle) 3 5-cm-wide (along the axis perpendicular to the obstacle) rectangle centered

2.5 cm to the left of the obstacle edge.

Initiation set analysis: Logistic regression
Our logistic regression analysis tests the strength of the linear relationship between each spatial metric and the log odds of perform-

ing an edge-vector escape. No regularization penalty was used. The strength of the fit was measured using McFadden’s pseudo-R2

R2 = 1 � LLfull
LLnull

, where LLfull is the log likelihood of the logistic regression model fitted with the predictor data and LLnull is the log

likelihood of the logistic regression fitted with only an intercept and no predictor data. Pseudo-R2 values of 0.2–0.4 represent "excel-

lent fit".26 To test statistical significance of these values, we performed a permutation test, based on the distribution of pseudo-R2 for

the same predictor value, across 10,000 random shuffles of the escape responses (edge vector or homing vector).

Initiation set analysis: Normalizing a metric
To normalize a spatial metric (y, e.g. distance from the center of the arena along the left-right axis) by another metric (x, e.g. distance

from the shelter), we computed a linear regression on these variables. We then took the residuals of this prediction (residual = y� y^,

where y^ = slope3 x + offset) and correlated themwith proportion of edge vector escapes in each bin. This tells uswhether, at a given

distance from the shelter, there is still a correlation with distance from the center.

Initiation set analysis: Correlation analysis
To better visualize the relationship between the mouse’s initial position and the likelihood of executing an edge-vector escape, we

binned the spatial metric and computed the correlation to the proportion of edge-vectors in each bin. The widest possible range of

values was selected, given the constraints that this range starts and ends on a multiple of 2.5 cm and that all bins contain at least six

escapes. From this range, seven equal-sized bins were used. The correlation results were robust to the number of bins used.

Initiation set analysis: Testing for bias
To test whether correlations between edge-vector likelihood and spatial location could be the result of biases in the edge-vector clas-

sification computation, we performed a simulation analysis of escapes from throughout the threat zone, testing whether edge vector

likelihood varied due to the escape’s start point. The simulated escape routes followed a Von Mises distribution of vectors with a

direction between the shelter and left obstacle edge. We used a distribution centered upon the direction 60% of the way from the

homing-vector path to the edge vector path, corresponding to the mean target score of 0.6 in the obstacle removal experiments.

The Von Mises distribution had a kappa value of 8.0, producing 50% edge vectors overall, corresponding to the proportion of

edge vectors in the obstacle removal experiments. We simulated 100 escape trials starting from each square cm of threat zone

(1652 total starting location). Thus, in each starting point, the simulated mice randomly selected from the average observed distri-

bution of escape movements. We then examined whether there was any correlation between the average probability of an edge vec-

tor escape in each square-cm bin and the spatial location of the bin, similar to our analysis of the mouse escape data. In the mouse

data, we observed that mice tended to execute more edge-vector escapes further from the central vertical axis and further from the

obstacle. In the simulated data, there was a slight negative correlation between the distance from the central axis and the proportion

of edge vectors (r =�0.16, p = 13 10�10, Pearson correlation). This is in the opposite direction of the observed trend in mice. In the

other axis (distance from obstacle), there was no correlation between spatial location and edge-vector probability (r = 0.02, p = 0.4).

We conclude that the spatial effects we saw were not due to bias in the metric.

Statistics
For comparisons between groups, we used a permutation test with the test statistic being the pooled group mean difference. The

condition of each mouse (e.g., laser-on vs. laser-off) is randomly shuffled 10,000 times to generate a null distribution and a p value.

We used this test because it combines two advantages: 1) Having the test statistic as the pooled group mean gives weight to each

trial rather than collapsing each animal’s data into itsmean (as in the t-test or theMann–Whitney test); 2) It is non-parametric and does

not assume Gaussian noise (unlike the repeated-measures ANOVA), in line with much of our data. Tests for increases or decreases

(e.g., whether exploration decreased due to laser stimulation) were one tailed. TheWilcoxon signed-rank test was used for the place-

preference assay to test whether occupancy in the stimulation chamberwas less than 50%. The sample size of our experiments (n = 8
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mice) was selected based on a power analysis based on the data from Shamash et al. 2021 and a minimum power of 0.8. Ranges in

boxplots are limited from the first quartile minus 1.5 x IQR to the third quartile plus 1.5 x IQR. Statistically significant results are

indicated in the figures using the convention n.s.: p > 0.05, *: p < 0.05, **: p < 0.01 and ***: p < 0.001.

Reinforcement learning simulations
General reinforcement learning setup

Reinforcement learning simulations use the formalism of a Markov Decision Process (MDP).33 An MDP consists of a tuple (S,A,T,R)

where S is the set of states; A is the set of possible actions; T: S3 A� > S0 is the transition function defining what happens when an

action a is taken in state s;R: S3A3S0� >R is the reward function, which determines the scalar reward returned by the environment

after a given state-action-next-state sequence. We construct our environment as a 13x13 gridworld. S consists of the set of acces-

sible positions in this map, shown in white in the figures. A, unless stated otherwise, consists of 8 actions (north, northwest, west,

southwest, south, southeast, east, northeast). T is a deterministic function that moves the agent one unit in the direction of the action

taken. R is a deterministic function in which a reward of 100 is given for entry to the shelter state, and a negative reward of d(s,s0) is
given for each transition. d(s,s0) is the distance between a pair of states s and s0 - 1.0 for side-by-side states and O2 for diagonally

separated states; using this negative reward is the mechanism by which the agents take sideways actions (north, west, etc.) to

be shorter than diagonal actions (northwest, etc.). This negative reward was not present when the shelter was not in the environment,

i.e. the training phase of condition 2, to avoid accumulating unmitigated negative value in each state-action pair.

In general, the reinforcement learning problem is to find a policy, p, which maps states to actions, such that the expected sum of

discounted future rewards is maximized.33

E
�XN
t = 0

gtRat ðst; st + 1ÞjS0 = S
�

where at = p(st), i.e. actions given by the policy and g is the temporal discount factor, a hyperparameter specifying howmuch long-

term reward should be weighted against short-term reward. Each of the RL agents described below operates by searching for a pol-

icy that can optimize expected future reward. The algorithms have different limitations and compute their policies differently; thus,

different algorithms often generate different policies. We compared the behavior of these various algorithms to mouse behavior, in

order to end up with a concrete, computational description of mouse behavior.

Simulation details

Simulation experiments consisted of three phases: a training phase, a pre-test phase, and a test phase. Each algorithmwas repeated

100 times with 100 different random seeds. Each agent started by being dropped in at a (uniform) random location in the arena. In the

training phase, unless otherwise stated, the RL agent thenmoved around the environment with a random policy (probability of 1/8 for

each action) and learned based on this experience. Moving into a barrier (black) resulted in the agent remaining in the same state from

which it initiated an action in the previous timestep. Trip wires acted like barriers but only when the agent was attempting to pass the

trip wire in the threat-area-to-obstacle-edge direction. Each algorithm received enough training steps that all 100 seeds was able to

learn an escape to shelter in condition 1, after being dropped into the threat zone, rounded up to the nearest 500 steps (for models

that took <10k steps) or 5k steps (for models that took >10k steps) (see below table). Thus, we are modeling only the mice that learn

edge-vector escapes during the training phase. This number of training steps was used across all four conditions. In the pre-test

phase, the agent started in the shelter and then moved randomly through the environment until reaching the threat zone square

(learning was allowed to continue during this period). At this point, the test phase was initiated. The agent then stopped moving

randomly and adopted its learned policy in order to navigate to the reward. After this a second and third trial (pre-test + test phase

for each one) were performed. The test phase proceeded until the agent reached the shelter or for a maximum of 100 steps.
Hyperparameters

Algorithm Hyperparameter Value

Q-learning temporal discount factor g 0.9

Q-learning TD(l) decay factor g 0.5

Q-learning learning rate, a 0.1

Q-learning neg. reward per step 0.01

SR temporal discount factor g 0.9

SR TD(l) decay factor g 0.5

SR learning rate, a 0.1

SARSA temporal discount factor g 0.99

SARSA TD(l) decay factor g 0.5

(Continued on next page)
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Continued

Algorithm Hyperparameter Value

SARSA learning rate, a 0.1

SARSA neg. reward per step 0.001

Tile coding tile size [2 3 2, 3 3 3]

MB-G model buffer window, N 15
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Hyper-parameters

In machine learning, and reinforcement learning in particular, models can be highly sensitive to hyper-parameters. Different hyper-

parameter configurations can lead to different behavior even for the same algorithm. In the tabular setting, these sensitivities are well

understood, but are nonetheless present (see ch. 2, ch.8 of Sutton and Barto33). While we did not conduct extensive comparison over

hyper-parameters, we endeavored to use comparable settings across models and chose from typical ranges for grid-world environ-

ments in the RL literature (e.g. https://github.com/karpathy/reinforcejs). Some hyper-parameters, such as the initialization scheme in

the value-based and successor-representation models, are particularly significant for learning speed, making it difficult to meaning-

fully calibrate learning speed across models. In general, due to the possibility of behavior changing across hyper-parameters, we are

careful not to point to any one algorithm as ‘the match’ to mouse behavior; instead, we investigate the causes of behavior across a

variety of algorithms in order to extract overarching computational principles.

Q-learning

At test time, the Q-learning agent generates a policy by selecting the action a in the current state s that has themaximum state-action

value. State-action values are incrementally learned during the training and pre-test phases using the Q-learning algorithm63 com-

bined with an eligibility trace.33 The eligibility trace is a decaying trace of recent state-action pairs. After taking action at in state st and

moving to state st+1, the agent takes three steps to update its state-action values. First, it decays its eligibility trace e, by e ) lge,

where l is the eligibility trace decay parameter and g is the temporal discount factor introduced above. Second, it updates its eligi-

bility trace to add the current state-action pair: e(st,at) ) e(st,at) + 1. Finally, it updates its state-action-value table:

Qðst; atÞ)Qðs; aÞ + a

�
rt + g max

a
Qðst + 1; aÞ � Qðst; atÞ

�
e

where rt is the reward gained from this step, a is the learning rate and g is the temporal discount factor. State-action values are

initialized randomly with mean 0 and variance 0.1.

Tile coding

One limitation of tabular methods is that they are unable to generalize. Learning information (e.g. about value) in one state does not

provide information about any other states. A common way to overcome this is to use function approximation to represent quantities

rather than storing themexplicitly in look-up tables. Among the simplest forms of function approximation is a linearmap. For example,

the approximate state-action value function can be defined as

bQðs; a;wÞhw $ x =
Xd
i = 1

wixiðs; aÞ

where x is the featured state with dimension d, and w are learnable weights. The update rule for these weights under stochastic

gradient descent is given by

wt + 1 = wt + a

�
rt + 1 + gmax

a0
Qðs0; a0Þ � Qðs; aÞ

�
Qðs; aÞ

where a is the learning rate and g is the discount factor. One popular way to featurize a state space for linear methods is tile coding.

The feature map consists of a set of overlapping receptive fields; for each field a state is said to be present—and given a feature value

of 1—if it is within the receptive field, and absent—and given a feature value of 0—if it is not. We use rectangular receptive fields (tiles)

of both 2x2 and 3x3, shifted by 1 in both x and y coordinates as well as iterated over the available actions. For a more detailed treat-

ment of linear function approximation and coarse coding methods, see chapter 9 of Sutton and Barto.33

Hierarchical state space

The hierarchical state space experiments took place in the same gridworld environment and conditions as with the non-hierarchical

(flat) learners. The difference was that the Q-learning policy that the agent learned was in relation to a different state space. Instead of

the 118 grid states a 944 state-action pairs, this regional state space contained 10 states (regional groupings of grid states, e.g. the

obstacle edge areas) and 40 state-action pairs (e.g. go to the shelter area from the left obstacle edge area). During the training phase,

the agent’s policy was updated with respect to its transitions between these regions. For example, it would only update the value of

its "go to the shelter area from the left obstacle edge area" immediately after crossing the border between those regions. Here, the

distance function d(s,s0) that determines negative reward per timestepwas equal to the distance between the centroids of the regions
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that the agent moved between. When the agent executes its policy at test time, it produces high-level actions. To carry out

these actions, its low-level controller simply carries out an innate ability to move directly in a straight line from its current position

(e.g. the threat zone) to the target location (e.g. obstacle edge area), similar to Edvardsen et al.36 We set up this hierarchical state

space to use with Q-learning out of convenience, but it could have been used with the other gradual learners as well.

Successor Representation

The SR agent uses amodel-free update rule to learn a representation of how state-action pairs predict (temporally discounted) future

occupancy in each state in the environment. This successor representation, M, is thus a SxAxS0 tensor, where the index of the first

two dimensions identifies a state-action pair and the third dimension corresponds to the successor state.M can be combined with a

separately learned reward vector R in order to compute value:

QðS;AÞ =
X
S0

MðS;A; s0ÞRðs0Þ

This equation shows that the value of a state-action pair is the product of how much that state-action pair predicts future occu-

pancy in the rewarded states and how much reward is those states. In our experiments, there is at most one rewarded state, so

this reduces to:

QðS;AÞ = MðS;A;shelterÞRðshelterÞ
In order to learn the successor representationM, the agent applies a model-free updating rule with an eligibility trace64 to an entire

row after each step:

Mðst; at; :Þ)Mðst; at; :Þ + a
�
1st + 1

+ gEa½Mðst + 1; a; : Þ� � Mðst; at; :Þ
�
e

where a is the learning rate, 1st + 1
is a one-hot vector with a 1 in the position of the successor state s0, g is the temporal discount

factor, e is the eligibility trace updated similarly to Q-learning as described above, and Ea[.] is the expected row in the SR for the

successor state s0, averaged across the possible actions taken from that state. SR values are initialized randomly with mean

0 and variance 1. Simultaneously, a reward vector must be learned. It is updated after each step:

RðstÞ)RðstÞ+aðrt � RðstÞÞ
The reward vector is initialized to all zeros. Note that a non-zero reward initialization (along with a small learning rate) will cause the

SR model to fail to find routes to shelter in condition 2 until the agent enters and exits the shelter multiple times.

Model-based agent

The model-based agent builds up a model of the environment in the form of an undirected graph. Each time the agent encounters a

new state, it stores that state as a node in the graph. Each time the agent receives a reward, it labels the node from which the reward

emanated with the amount of reward. Each time the agent takes a new transition between nodes, it stores that transition as an edge in

the graph. Each time the agent attempts to make a transition and is blocked by an obstacle or trip wire, it deletes that edge from the

graph. The immediate learner plans using themost recent set of edges. The gradual learner stores a buffer of up toN observations per

edge. During planning, edges are only used if the majority of observations in the buffer indicate that the edge is not blocked. In addi-

tion, the reward in each state is taken to be the average reward observed over the past N observations. At decision time, the model-

based agent uses itsmodel to plan the shortest possible route to the reward location, where horizontal and vertical edges have a path

length of 1.0 and diagonal edges have a path length of O2. This is a heuristic that maximizes the expected future reward in this nav-

igation-task setting. Shortest routes were calculated using an A-star tree search algorithm.65 Equally effective actions (according to

the A-star algorithm, which finds the shortest route to the goal) were sampled with equal probability.

Practice runs

Weaugmented the random exploration policy during the training phasewith practice edge-vector and shelter-vector runs. Edge-vec-

tor runs were hard-coded action trajectories taking the agent from the threat area directly to an obstacle edge. The initiation and

termination states are shown in Figure 5. Each time the agent entered one of these states, the hard-coded trajectory was triggered

with a probability of 0.2.

Classifying escape runs

Weused four classifications for simulated escape runs: homing-vector routes, edge-vector routes, tortuous routes and non-escapes.

Homing-vector routes went from the threat zone to one of the three middle states above the obstacle location, and then continued

toward the shelter (south, southwest or southeast) from there. Edge-vector routes went from the threat zone to the obstacle edge,

without deviating from its path by more than one step to go around the trip wire. Tortuous routes are homing-vector or edge-vector

routes that deviate from that path (to go around a trip wire location) by at least two steps. Non-escapes did not reach the shelter within

the 50-step time limit.
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	Mice identify subgoal locations through an action-driven mapping process
	Introduction
	Results
	Closed-loop optogenetic activation of premotor cortex to block spontaneous edge-vector runs
	Interrupting spontaneous edge-vector runs abolishes subgoal learning
	Blocking edge-to-shelter runs does not reduce subgoal learning
	Subgoal-escape start points are determined by spatial rules
	A dual RL system matches mouse behavior after obstacle removal
	Behavior with the full trip wire is matched with non-uniform exploration and on-policy learning
	Behavior with the partial trip wire is matched with state-action abstraction

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Animals
	Re-use over multiple sessions
	Exclusion criteria


	Method details
	Viral injection and fiber-optic cannula implantation
	Surgical procedure
	Injection and implantation
	Histology

	Behavioral apparatus
	Platform and shelter
	Additional hardware
	Data acquisition software and online video tracking

	Closed-loop optogenetic stimulation
	Exploration and escape behavior
	Auditory threat stimuli
	Triggering escapes
	Obstacle removal
	Exploration time
	Adding bedding to the platform

	Place preference assay

	Quantification and statistical analysis
	Video tracking
	Calculating position, speed and heading direction
	Analysis of escape trajectories
	Extraction of spontaneous homing runs and edge-vector runs
	Initiation set analysis: Logistic regression
	Initiation set analysis: Normalizing a metric
	Initiation set analysis: Correlation analysis
	Initiation set analysis: Testing for bias
	Statistics
	Reinforcement learning simulations
	General reinforcement learning setup
	Simulation details
	Hyper-parameters
	Q-learning
	Tile coding
	Hierarchical state space
	Successor Representation
	Model-based agent
	Practice runs
	Classifying escape runs





