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Organizing memories for generalization in 
complementary learning systems

Weinan Sun1, Madhu Advani2, Nelson Spruston    1, Andrew Saxe    2,3,4,5,6   & 
James E. Fitzgerald    1,6 

Memorization and generalization are complementary cognitive processes 
that jointly promote adaptive behavior. For example, animals should 
memorize safe routes to specific water sources and generalize from these 
memories to discover environmental features that predict new ones.  
These functions depend on systems consolidation mechanisms that 
construct neocortical memory traces from hippocampal precursors, 
but why systems consolidation only applies to a subset of hippocampal 
memories is unclear. Here we introduce a new neural network formalization 
of systems consolidation that reveals an overlooked tension—unregulated 
neocortical memory transfer can cause overfitting and harm generalization 
in an unpredictable world. We resolve this tension by postulating that 
memories only consolidate when it aids generalization. This framework 
accounts for partial hippocampal–cortical memory transfer and provides 
a normative principle for reconceptualizing numerous observations in the 
field. Generalization-optimized systems consolidation thus provides new 
insight into how adaptive behavior benefits from complementary learning 
systems specialized for memorization and generalization.

The brain’s ability to learn, store and transform memories lies at the 
heart of our ability to make adaptive decisions. Memory is threaded 
through cognition, from perception through spatial navigation to 
decision-making and explicit conscious recall. Befitting the central 
importance of memory, brain regions—including the hippocampus—
appear specifically dedicated to this challenge.

The concept of memory has refracted through psychology and 
neurobiology into diverse subtypes and forms that have been difficult 
to reconcile. Taxonomies of memory have been drawn on the basis of 
psychological content, for instance, differences between memories 
for detailed episodes and semantic facts1; on the basis of anatomy, for 
instance, differences between memories that are strikingly dependent 
on hippocampus versus those that are not2; and on the basis of com-
putational properties, for instance, differences between memories 
reliant on pattern-separated3 or distributed neural representations4. 
Many previous theories have tried to align and unify psychological, 

neurobiological and computational memory taxonomies5–8. However, 
none has yet resolved long-standing debates on where different kinds 
of memories are stored in the brain, and, fundamentally, why different 
kinds of memories exist.

Classical views of systems consolidation, such as the standard 
theory of systems consolidation5,9, have held that memories reside in 
the hippocampus before transferring completely to the neocortex. 
Related neural network models, such as the complementary learning 
systems theory, have further offered a computational rationale for 
systems consolidation based on the benefits of coupling complemen-
tary fast and slow learning systems for integrating new information 
into existing knowledge6,10. However, these theories lack explanations 
for why some memories remain forever hippocampal-dependent, as 
shown in a growing number of experiments2,11. On the other hand, more 
recent theories, such as multiple trace theory7,12 and trace transforma-
tion theory13, hold that the amount of consolidation can depend on 
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possible, averaged across the set of past experiences. Alternatively, we 
hypothesize that a major goal of the neocortex is to optimize generali-
zation. This means that the squared difference between the teacher’s 
output and the student’s prediction should be as small as possible, 
averaged across possible future experiences that could be generated by  
the teacher.

Learning starts when the teacher activates student neurons  
(Fig. 1f, gray arrows). The notebook encodes this student activity by 
associating it with a random pattern of sparse notebook activity using 
Hebbian plasticity (Methods; Fig. 1f, pink arrows). This effectively 
models hippocampal activity as a pattern-separated code for indexing 
memories24. The recurrent dynamics of the notebook network imple-
ment pattern completion22,25, whereby full notebook indices can be 
reactivated randomly from spontaneous activity or purposefully from 
partial cues26 (Methods; Fig. 1g). Student-to-notebook connections 
allow the student to provide the partial cues that drive pattern comple-
tion (Fig. 1g, orange arrows). Notebook-to-student connections then 
allow the completed notebook index to reactivate whatever student 
representations were active during encoding (Fig. 1g, blue arrows). 
Taken together, these three processes permit the student to use the 
notebook to recall memories from related experiences in the environ-
ment. Thus, our theory concretely models how the neocortex could 
use the hippocampus for memory recall.

We model systems consolidation as the plasticity of the student’s 
internal synapses (Fig. 1h,i). The student’s plasticity mechanism is 
guided by notebook reactivations (Fig. 1h), similar to how hippocampal 
replay is hypothesized to contribute to systems consolidation27. Slow, 
error-corrective learning aids generalization28, and here we adjust 
internal student weights with gradient descent learning (Fig. 1i). Spe-
cifically, we assume that offline notebook reactivations provide tar-
gets for student learning (Methods), where the notebook-reactivated 
student output is compared with the student’s internal prediction to 
calculate an error signal for learning. We consider models that set the 
number of notebook reactivations to optimize either memory transfer 
or generalization. The integrated system can use the notebook (Fig. 1j) 
or only the learned internal student weights (Fig. 1k) to make output 
predictions from any input generated by the teacher. We will show that 
each pathway has distinct advantages for memory and generalization.

Generalization-optimized complementary learning systems 
(Go-CLS)
We next simulated the dynamics of memorization and generalization 
in the teacher–student–notebook framework to investigate the impact 
of systems consolidation. We first modeled the standard theory of sys-
tems consolidation as limitless notebook reactivations that optimized 
student memory recall (Fig. 2a,c,e; Methods). Learning begins when the 
notebook stores a small batch of examples, which are then repetitively 
reactivated by the notebook in each epoch to drive student learning 
(Methods). In separate simulations, examples were generated by one 
of three teachers that differed in their degree of predictability, here 
controlled by the signal-to-noise ratio (SNR) of the teacher network’s 
output (Fig. 1e; Methods). The notebook was able to accurately recall 
the examples provided by each teacher from the beginning (Fig. 2a,c,e, 
dashed blue lines), and we showed mathematically that recall accuracy 
scaled with the size of the notebook (Supplementary Information Sec-
tion 5.2). Notebook-mediated generalization (student in → notebook 
→ student out) was poor for all three teachers (Fig. 2a,c,e, dashed red 
lines), as rote memorization poorly predicts high-dimensional stimuli 
that were not previously presented or memorized (Supplementary 
Information Section 5.3). The student gradually reproduced past exam-
ples accurately (Fig. 2a,c,e, solid blue lines), but the signal in each exam-
ple was contaminated by whatever noise was present during encoding 
and repetitively replayed throughout learning. Therefore, although the 
generalization error decreased monotonically for the noiseless teacher 
(Fig. 2a, solid red line), noisy teachers resulted in the student eventually 

memory content, but they do not provide quantitative criteria for what 
content will consolidate, nor why this might be beneficial for behavior.

One possible way forward is to see that memories serve not only 
as veridical records of experience but also to support generalization in 
new circumstances14. For instance, individual memorized experiences 
almost never repeat exactly, but they allow us to identify systematic 
relationships between features of the world, such as ‘ravines predict 
the presence of water,’ which are common and important for behavior.

Here we introduce a mathematical neural network theory of sys-
tems consolidation founded on the principle that memory systems 
and their interactions collectively optimize generalization. Our theory 
mathematically defines the generalization performance of an algo-
rithm as its expected error for any possible future input, whether these 
inputs have been seen in the past or not. This definition is widespread 
in statistics and machine learning, and it resonates with the intuitive 
notion that generalizations apply regularities inferred from specific 
instances to new circumstances. The resulting theory offers new 
perspectives on diverse experimental phenomena and explains why 
interaction between multiple brain areas is beneficial. Accurate gen-
eralizations require consistent relationships within the environment, 
and our theory optimizes generalization by using the predictability of 
memorized experiences to determine when and where memory traces 
reside. Our results overall propose a quantitative and unified theory of 
the organization of memories based on their utility for future behavior.

Results
Formalizing systems consolidation
We conceptualize an animal’s experiences in the environment as 
structured neuronal activity patterns that the hippocampus rapidly 
encodes and the neocortex gradually learns to produce internally6,10,15,16  
(Fig. 1a). We hypothesize that systems consolidation allows neocorti-
cal circuits to learn many structured relationships between different 
subsets of these active neurons. Focusing on one of these relationships 
at a time, neocortical circuitry might learn through many experiences 
(Fig. 1b) to produce the responses of a particular output neuron from 
the responses of other input neurons (Fig. 1c). For example, in a human, 
an output neuron contributing to a representation of the word ‘bird’ 
might receive strong inputs from neurons associated with wings and 
flight. In a mouse, an output neuron associated with behavioral freezing 
might receive strong inputs from neurons associated with the sound of 
an owl, the smell of a snake or the features of a laboratory cage where 
it had been shocked.

We first sought to develop a theoretically rigorous mathemati-
cal framework to formalize this view of how systems consolidation 
contributes to learning. Our framework builds on the complementary 
learning systems hypothesis6,10, which posits that fast learning in the 
hippocampus guides slow learning in the neocortex to provide an 
integrated learning system that outperforms either subsystem on 
its own. Here we formalize this notion as a neocortical student that 
learns to predict an environmental teacher, aided by past experiences 
recorded in a hippocampal notebook (Fig. 1d). Note that although the 
theory is centered around hippocampal–neocortical interactions, the 
core theoretical principles can be potentially applied to other brain 
circuits that balance fast and slow learning17–19.

We modeled each of these theoretical elements with a simple 
neural network amenable to mathematical analyses (Fig. 1e; Meth-
ods). Specifically, we modeled the teacher as a linear feedforward 
network that generates input–output pairs through fixed weights with 
additive output noise, the student as a size-matched linear feedfor-
ward network with learnable weights20,21 and the notebook as a sparse 
Hopfield network22,23. The student learns its weights from a finite set 
of examples (experiences) that contain both signal and noise. We 
modeled the standard theory of systems consolidation by optimizing 
weights for memory. This means that the squared difference between 
the teacher’s output and the student’s prediction should be as small as 
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generalizing poorly (Fig. 2c,e, solid red lines). From a mathematical 
point of view, this is expected, as the phenomenon of overfitting to 
noisy data is well appreciated in statistics and machine learning29,30.

The implications of these findings for psychology and neurosci-
ence are far-reaching, as the standard theory of systems consolidation 
assumes that generalization follows naturally from hippocampal mem-
orization and replay; it does not consider when systems consolidation 
is detrimental to generalization. For example, previous neural network 
models of complementary learning systems focused on learning sce-
narios where the mapping from input to output was fully reliable5,6. 
Within our teacher–student–notebook framework, this means that 
the teacher is noiseless and perfectly predictable by the student archi-
tecture. In such scenarios, standard systems consolidation continually 
improved both memorization and generalization in our model (Fig. 2a, 
solid red line). However, for less predictable environments, our theory 
suggests that too much systems consolidation can severely degrade 
generalization performance by leading the neocortex to overfit to 

unpredictable elements of the environment (Fig. 2c, solid red line). 
In highly unpredictable environments, any systems consolidation at 
all can be detrimental to generalization (Fig. 2e, solid red line). If the 
goal of systems consolidation is full memory transfer, then our theory 
illustrates that the system pays a price in the reduced ability to general-
ize in uncertain environments.

What systems consolidation strategy would optimize generaliza-
tion? Here we propose a new theory—Go-CLS—which considers the 
normative hypothesis that the amount of systems consolidation is 
adaptively regulated to optimize the student’s generalization accu-
racy based on the predictability of the input–output mapping (Fig. 
2b,d,f). For the teacher with a high degree of predictability, the student’s 
generalization error always decreased with more systems consolida-
tion (Fig. 2b, solid red line), and the student could eventually recall all 
stored memories (Fig. 2b, solid blue line). Memory transfer, therefore, 
arises as a property of a student that learns to generalize well from  
this teacher’s examples. In contrast, a finite amount of consolidation 
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Fig. 1 | Neural network model of systems consolidation. a, Our theoretical 
framework assumes that the neocortex extracts and encodes environmental 
relationships within the weights between distributed neocortical neurons in a 
process mediated by hippocampal reactivation. b, Individual experiences or 
memory reactivations are represented as columns of neuronal activations. We 
color the output neuron in red, and its activity is determined by the purple input 
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c, Learning modifies weights between the input and output neurons to reproduce 
each past experience. d, Cartoon of the teacher–student–notebook formalism; 
subscripts ‘i’ and ‘o’ refer to input and output layers. e, Neural network model 
architecture used in most simulations, unless otherwise noted. The teacher is 

a linear, shallow network with fixed weights that transforms an N-dimensional 
input into a scalar y, with a noise term ε added to vary the signal-to-noise ratio of 
the teacher. The student is typically a size-matched network to the teacher, with 
trainable weights w. The notebook is a Hopfield network that is bidirectionally 
connected to the student that serves as a one-shot learning module for 
memory encoding and replay (see Methods for details). f–k, Stages of learning 
and inferences in the model. The student is activated by each of the teacher-
generated examples while the notebook encodes this example through one-shot 
Hebbian plasticity (f). The notebook can reactivate the encoded examples offline 
and reactivate the student (g). The notebook can reactivate previously encoded 
memories offline to induce memory recall in the student (h) and drive student 
learning (i). The student can use either the notebook or internal weights for 
inference (j and k). T, teacher; S, student; N, notebook.
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(here modeled by a fixed number of notebook reactivations) was neces-
sary to minimize the generalization error when the teacher had limited 
predictability (Fig. 2d,f), and our normative hypothesis is that systems 
consolidation halts at the point where further consolidation harms gen-
eralization (Fig. 2d,f, vertical black dashed line). The resulting student 
could generalize nearly optimally from each of the teachers’ examples 

(Fig. 2d,f, solid red lines and Supplementary Information Section 7.2), 
but its memory performance was hurt by incomplete memorization of 
the training data (Fig. 2d,f, solid blue lines). Nevertheless, the notebook 
could still recall the memorized examples (Fig. 2b,d,f, dashed blue lines). 
Go-CLS thus results in an integrated system that can both generalize 
and memorize by using two systems with complementary properties.
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Fig. 2 | The predictability of experience controls the dynamics of systems 
consolidation. a–h, Dynamics of student generalization error, student 
memorization error, notebook generalization error and notebook memorization 
error when optimizing for student memorization (a, c, e and g) or generalization 
(b, d, f and h) performance. The student’s input dimension is N = 100, and the 
number of patterns stored in the notebook is P = 100 (all encoded at epoch = 1; 
epochs in the x axis correspond to time passage during systems consolidation). 
The notebook contains M = 2,000 units, with a sparsity a = 0.05. During each 
epoch, 100 patterns are randomly sampled from the P stored patterns for 
reactivating and training the student. The student’s learning rate is 0.015. 
Teachers differed in their levels of predictability (a and b, SNR = ∞; c and d, 
SNR = 4; e and f, SNR = 0.05; g and h, SNR ranges from 2−4 to 24). i–n, Methods 
for regulating consolidation. i, Using a validation set to estimate optimal early 

stopping time (SNR = 4, P = N = 100, 10% of P are used as validation set and not 
used for training). Filled red dot marks the generalization error at the optimal 
early stopping time (optimal ES), and dashed red dot marks the generalization 
error at the early stopping time estimated by the validation set (estimated 
ES). The vertical gray dashed line marks the estimated early stopping time. j, 
Generalization errors at optimal (solid red lines) vs estimated early stopping 
time (dashed red lines), as a function of the validation set fraction, SNR and 
α (P/N). The blue shading indicates the validation set fraction from 10% to 
20%. k, Illustration of maximum likelihood estimation (MLE; Supplementary 
Information Section 9.2). l, MLE predicts SNR well from teacher-generated data. 
m, Initial learning speed monotonically increases as a function of SNR. n, Initial 
learning speed serves as a good feature for estimating true SNR in numerical 
simulations (P = N = 1,000).
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These examples show that the dynamics of systems consolida-
tion models depend on the degree of predictability of the teacher. 
Therefore, we derived analytical results to comprehensively compare 
the standard theory of systems consolidation to the Go-CLS theory for 
all degrees of predictability (Supplementary Information Sections 6 
and 7). Standard systems consolidation eventually consolidated all 
memories for any teacher (Fig. 2g, blue). As anticipated by Fig. 2a–f, 
the generalization performance varied dramatically with the teacher’s 
degree of predictability (Fig. 2g, red). Generalization errors were higher 
for less predictable teachers, and optimal consolidation amounts were 
lower. Therefore, Go-CLS removed the detrimental effects of overfit-
ting (Fig. 2h, red) but ended before the student could achieve perfect 
memorization (Fig. 2h, blue, nonzero error). Both the generalization 
performance and the memory performance improved as the teacher’s 
degree of predictability increased (Fig. 2h).

Fully implementing this strategy for Go-CLS requires a supervisory 
process capable of estimating the optimal amount of consolidation 
(Supplementary Information Section 9). One conceptually simple way to 
do this is to directly estimate the generalization error dynamics (Fig. 2i,j), 
which would not require explicit inference of the teacher’s predictability. 
For instance, the supervisor could divide the notebook’s memorized 
examples into a training set that drives student learning and a valida-
tion set that does not. Because the student’s error on the validation set 
is an estimate of the generalization error, the supervisor could regulate 
consolidation by stopping student learning when the validation error 
starts increasing (Fig. 2i). This strategy works best for relatively small 
validation sets, as this permits learning from many examples (Fig. 2j).

Another strategy to regulate consolidation is to estimate the pre-
dictability of the teacher (Fig. 2k–n). For instance, the supervisor could 
statistically estimate the teacher’s degree of predictability as the one 
that maximizes the likelihood of the teacher-generated examples 
(Fig. 2k). This amounts to comparing the input–output covariance of 
the teacher-generated data to theoretical expectations, which vary 
in predictable ways with SNR (Supplementary Information Section 
9.2). Alternatively, the supervisor could use the simpler heuristic that 
the initial learning speed (for a given sized dataset) correlates with 
predictability (Fig. 2m and Supplementary Information Section 9.3). 
Each of these methods provides a reasonably accurate estimate of 
the teacher’s degree of predictability (Fig. 2l,n), which could be used 
to estimate the optimal early stopping time (Supplementary Fig. 4). 
Such estimates rely on prior knowledge relating data statistics to the 
teacher’s degree of predictability, which for more complex environ-
ments could be established by meta-learning over developmental, 
lifelong and evolutionary timescales31.

Relating Go-CLS to diverse experimental results
Experimental literature on the time course of systems consolidation 
and time-dependent generalization provides important constraints on 
our theory. We thus sought to model these effects by translating mean 
square errors (Fig. 2g,h) into memory or generalization scores, where 
0 indicates random performance and 1 indicates perfect performance 
(Fig. 3a–d; Methods). Our framework can use either the student or the 
notebook to recall memories or generalize (Fig. 1j,k). Here we model 
the combined system by making predictions with whichever subsys-
tem is more accurate (Methods). This assumption is not critical, as the 
combined memory (Fig. 3a,b) and generalization scores (Fig. 3c,d) 
often map onto the notebook and student performances, respectively, 
but this assumption allows the combined system to switch between 
subsystems over time (Supplementary Information Section 6.1). Other 
models might implement more complex memory system selection 
policies or combine both pathways to obtain statistically better pre-
dictions throughout learning. We simulated hippocampal lesions by 
preventing the combined system from using notebook outputs and 
ending systems consolidation at the time of the lesion (Fig. 3a,b, cyan). 
As it takes time for the student to learn accurate generalizations, our 

systems consolidation models exhibited time-dependent generaliza-
tion (Fig. 3c,d, purple). In contrast, the notebook permitted accurate 
memory retrieval from the start (Fig. 3a,b, black).

Standard systems consolidation and Go-CLS theory make strik-
ingly different predictions for how retrograde amnesia depends on 
the teacher’s degree of predictability (Fig. 3a,b). Researchers usually 
classify hippocampal amnesia dynamics according to whether memory 
deficits are similar for recent and remote memories (flat retrograde 
amnesia), more pronounced for recent memories (graded retrograde 
amnesia), or absent for both recent and remote memories (no retro-
grade amnesia; Fig. 3e). As expected9, notebook lesions always pro-
duced temporally graded retrograde amnesia curves in the standard 
theory (Fig. 3a). When systems consolidation was instead optimized 
for generalization, the effects of notebook lesions depended strongly 
on the predictability of the teacher (Fig. 3b). Therefore, Go-CLS the-
ory can recapitulate a wide diversity of retrograde amnesia curves  
(Fig. 3e). High- and low-predictability experiences lead to graded and 
flat retrograde amnesia, respectively (Fig. 3b,e, solid lines). A period 
of prior consolidation of highly predictable experiences decreases the 
slope of graded retrograde amnesia (Fig. 3e, dashed light-blue lines), 
and it’s possible to see no retrograde amnesia at all when the prior 
consolidation was extensive (Fig. 3e, dashed orange line; Methods). 
This conceptually resembles schema-consistent learning32.

Experiments on time-dependent generalization can also differenti-
ate between the Go-CLS theory and the standard theory. Diverse gener-
alization curves resulted from either model of systems consolidation 
(Fig. 3c,d), with maximal generalization performance increasing with 
the predictability of the teacher. However, student overfitting meant 
that only Go-CLS maintained this performance over time. Standard 
systems consolidation could even result in a student generalizing 
maladaptively, resulting in worse-than-chance performance where 
the trained student interpolates noise in past examples to produce 
wildly inaccurate outputs (Fig. 3c). Most fundamentally, Go-CLS theory 
predicts that memory transfer and generalization improvement should 
be correlated with each other (Fig. 3f), as systems consolidation leads 
to both. Unpredictable experiences should not consolidate because 
this would cause maladaptive generalization. Such memories are thus 
left in their original form and susceptible to strong retrograde amnesia 
following hippocampal lesion. In contrast, predictable experiences 
should consolidate and be associated with weak retrograde amnesia 
and useful learned generalizations.

Go-CLS potentially resolves apparent conflicts in the literature 
as arising from differing degrees of predictability in the underlying 
experimental paradigms (Supplementary Information Section 11). 
This hypothesized correspondence between past experiments and 
their predictability is intriguing but inconclusive, as it is not yet clear 
how to quantify the degree of predictability for arbitrary experiments 
and real-world scenarios. In other words, the theory is consistent with 
existing findings in principle, but its postdiction of them requires plau-
sible assumptions that may be wrong. Future experiments are critical 
(see Supplementary Information Section 12 for detailed discussions of 
experimental tests). Our core theoretical prediction is that the brain 
optimizes for generalization by regulating the amount of systems 
consolidation based on the predictability of experience. Direct tests 
of this prediction require experimental task designs that intention-
ally vary the degree of predictability and assess the effect on systems 
consolidation33. In addition, experiments that identify the biological 
mechanisms of predictability estimation and consolidation regulation 
would be required to establish a comprehensive picture of the neural 
correspondence of the Go-CLS theory.

Normative benefits of complementary learning systems for 
generalization
Our framework also provides theoretical insights into the comple-
mentary learning systems hypothesis, which posits that hippocampal 
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and neocortical systems exploit fundamental advantages provided by 
coupled fast and slow learning modules6,10. We first investigated its 
basic premise by comparing generalization in the optimally regulated 
student–notebook network (Fig. 4a) to what is achievable with isolated 
student (Fig. 4b) and notebook networks (Fig. 4c). Because the student 
models the neocortex and the notebook models the hippocampus, 
these isolated student and notebook networks model learning with 
only neocortex or only hippocampus, respectively.

Both the degree of predictability and the amount of available 
data impact the time course of systems consolidation in the student–
notebook network (Supplementary Information Sections 6 and 7), 
so we used our analytical solutions to systematically examine how 
late-time memory and generalization jointly depend on the amount 
of training data and degree of predictability (Supplementary Fig. 2). 
With just a student (Fig. 4b), the system must learn online from each 
example with no ability to revisit it. This limitation prevented the 
optimal student-only network from generalizing as efficiently from 
predictable teacher-generated data as the optimal student–notebook 
network (Fig. 4d, orange versus black curves), despite modulating 
its learning rate online to achieve best-case generalization perfor-
mance (Supplementary Information Section 4.2). We also confirmed 
that both student-containing networks generalized better than the 
notebook-only network (Fig. 4d). This is expected because in high 
dimensions any new random pattern is almost always far from the 
nearest memorized pattern (Supplementary Information Section 5.3); 
this is the so-called ‘curse of dimensionality.’

The generalization gain provided by the student–notebook net-
work over the student-only network was most substantial when the 
teacher provided a moderate amount of predictable data (Fig. 4d,e, 
dashed vertical line). This result follows because the student–notebook 
network was unable to learn much when the data were too few or too 
noisy, and notebook-driven encoding and reactivation of data was 

unnecessary when the student had direct access to a large amount of 
teacher-generated data (Supplementary Information Section 4 and 7). 
Hence, an integrated dual memory system was normatively superior 
when experience was available, but limited, and the environment was 
at least somewhat predictable.

The notebook’s ability to replay examples was most advanta-
geous when the number of memorized examples equaled the num-
ber of learnable weights in the student (Fig. 4e, dashed vertical line). 
Remarkably, this amount of data was also the worst-case scenario for 
overfitting to noise in standard systems consolidation (Fig. 4f,g, dashed 
vertical line, and Supplementary Fig. 2c). This is similar to the ‘double 
descent’ phenomenon in machine learning20,34,35, where overfitting is 
worst at an intermediate amount of data related to the network size. 
Intuitively, neural networks must tune their weights most finely when 
the number of memorized patterns is close to the maximal achievable 
number (capacity). This often requires drastic changes in weights to 
reduce small training errors, producing noise-corrupted weights that 
generalize poorly. The optimal student–notebook network avoided 
this issue by regulating the amount of systems consolidation according 
to the predictability of the teacher. We propose that the brain might 
similarly regulate the amount of systems consolidation according to 
the predictability of experiences (Discussion).

Many facets of unpredictability
Our simulations and analytical results show that the degree of pre-
dictability controls the consolidation dynamics that optimize gen-
eralization. We emphasized the example of a linear student (Fig. 5a) 
that learns from a noisy linear teacher (Fig. 5b). However, inherent 
noise is only one of several forms of unpredictability that can cause 
poor generalization without regulated systems consolidation. For 
example, when the teacher implements a deterministic transforma-
tion that is impossible for the student architecture to implement, the 
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unmodellable parts of the teacher mapping are unpredictable and act 
like noise (Supplementary Information Section 10). For instance, a lin-
ear student cannot perfectly model a nonlinear teacher (Fig. 5c). Simi-
larly, when the teacher’s mapping involves relevant input features that 
the student cannot observe, the contribution of the unobserved inputs 
to the output is generally impossible to model (Fig. 5d). This results 
in unpredictability from the student’s perspective and favors large 
student networks with enough features to represent the teacher. These 
sources of unpredictability all consist of a modellable signal and an 
unmodellable residual (noise; Supplementary Information Section 10),  
and they yield similar training and generalization dynamics in our 
model (Fig. 5e,f). The real world is noisy and complicated, and the 
brain’s perceptual access to relevant information is limited. Realistic 
experiences thus frequently combine these sources of unpredictability.

All the above-mentioned cases can be generally understood within 
the framework of approximation theory36. The unmodellable part rep-
resents a nonzero optimal approximation error for the teacher–student 

pair. For all these types of generalization-limiting unpredictability, 
generalization is optimized when systems consolidation is limited 
for unpredictable experiences. Notably, not all unpredictability limits 
generalization (Supplementary Information Section 8). For example, 
independent noise during inference can actually promote generaliza-
tion, such as in dropout regularization37.

Previously we have focused on the scenario of learning a single 
mapping. All real-life experiences are composed of many components, 
with relationships that can differ in predictability. Therefore, many 
relationships must be learned simultaneously, and these representa-
tions are widely distributed across the brain. For instance, the same 
input features may have different utilities in predicting several outputs 
(Fig. 5g). Furthermore, neocortical circuits may cross-predict between 
different sets of inputs and outputs (Figs. 1a and 5h), for example, pre-
dicting auditory representations from visual representations and vice 
versa. In this setting, each cross-prediction has its own predictability 
determined by the noise, the complexity of the mapping, and the fea-
tures it is based upon. Predictability may also depend on overt and/or 
covert attention processes in the student. For example, a student may 
selectively attend to a subset of the inputs it receives (Fig. 5i), mak-
ing the predictability of the same external experience dependent on 
internal states that can differ across individuals. This might partially 
underlie the individual variability in memory consolidation seen in ani-
mal behavior38. For all the above-mentioned scenarios, Go-CLS theory 
requires the student to optimize generalization by regulating systems 
consolidation according to the specific degree of predictability of each 
modeled relationship contained in an experience. The theory thereby 
provides a new predictive framework for quantitatively understanding 
how diverse relationships within memorized experiences should dif-
ferentially consolidate to produce optimal general-purpose neocortical 
representations.

Discussion
The theory presented here—Go-CLS—provides a normative and quan-
titative framework for assessing the conditions under which systems 
consolidation is advantageous or deleterious. As such, it differs from 
previous theories that sought to explain experimental results without 
explicitly considering when systems consolidation could be counter-
productive5,6,9,11–13. The central premise of this work is that systems 
consolidation from the hippocampus to the neocortex is most adaptive 
if it is regulated to improve generalization, an essential ability enabling 
animals to make predictions that guide behaviors promoting survival 
in an uncertain world. Crucially, we show that unregulated systems 
consolidation results in inaccurate predictions by neural networks 
when limited data contain a mixture of predictable and unpredictable 
components. These errors result directly from the well-known overfit-
ting problem that occurs in artificial neural networks when weights are 
fine-tuned to account for data containing noise and/or unmodellable 
structure20,21,29,30,34,35.

For example, consider the experience of a girl spending a day at the 
lake with her father (Fig. 5j,k). It may contain predictable relationships 
about birds flying, swimming and perhaps even catching fish, as well 
as predictable relationships about fresh-picked strawberries tasting 
sweet. Our theory posits that these relationships should be extracted 
from the experience and integrated with memories of related experi-
ences, through regulated systems consolidation, to produce, reinforce 
and revise predictions (generalizations). On the other hand, unpredict-
able co-occurrences, such as the color of her father’s shirt matching the 
color of the strawberries, should not be consolidated in the neocortex. 
They could nevertheless remain part of an episodic memory of the day, 
which would permanently depend on the hippocampus for retrieval.

An important but subtle point is that relationships in the environ-
ment can be both arbitrary and predictable. For example, consider the 
case of semantic facts, such as Paris is the capital of France. Although 
each component of this knowledge is arbitrary, perfect generalization 
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performance is possible. Past experiences indicating that Paris is the 
capital of France would allow the brain to predict this exact and reliable 
relationship in future experiences. The learning of reliable semantic 
facts should be modeled as infinite SNR in our teacher–student–note-
book framework.

Go-CLS highlights the normative benefits of complementary 
learning systems, reveals key concepts that may reconcile previous 
experimental results (Supplementary Information Section 11) and 
makes testable predictions that could support or refute the theory 
(Supplementary Information Section 12). A critical insight from Go-CLS 
theory is that gradual consolidation of past experiences benefits gen-
eralization performance most when experience is limited and rela-
tionships are partially predictable (Fig. 4), mirroring ethologically 
realistic regimes experienced by animals living in an uncertain world. 
This benefit occurs in a regime where the danger of overfitting is the 
highest20,21,34,35, highlighting the need for a regulated systems consoli-
dation process.

Previous theories have also sought to reconcile these and other 
experimental observations. For example, multiple trace theory12 and 
trace transformation theory13 posit that episodic memories are con-
solidated as multiple memory traces, with the most detailed compo-
nents permanently residing in the hippocampus. Contextual binding 
theory11 posits that items and their context remain permanently bound 
together in the hippocampus. These theories emphasize the role of the 
hippocampus in the permanent storage of episodic details2,11–13, with 
the neocortex storing less detailed semantic components of memo-
ries. In contrast, Go-CLS posits that predictability, rather than detail, 
determines consolidation. Similarly, Go-CLS favors predictability over 
frequency, feature overlap or salience as the central determinant of 
systems consolidation39–41.

Our theory has many interesting connections to recent research 
in artificial intelligence. Go-CLS defines predictability through the 
optimal approximation error36 of a teacher–student pair (Fig. 5a–f). 
This is distinct from whether optimal student weights can be learned 
in practice. For example, gradient descent learning dynamics can get 
stuck in local minima or transiently degrade generalization perfor-
mance34,42,43, but this does not imply that the teacher is unmodellable 
by the student architecture. Our analytically tractable student cleanly 
dissociates the optimal approximation error from learning dynamics, 
but this theoretical distinction becomes impractical when analyzing 
complex student architectures. Because overfitting is also observed 
in more complex student architectures (Supplementary Informa-
tion Section 10.2), as well as in modern deep learning models34, we 
expect that the essential concepts presented here will also apply to 
broader model classes. However, future research will be needed to 
determine how the student’s architecture, student’s learning rule 
and teacher jointly determine the memorization and generalization 
dynamics achievable by regulated systems consolidation. Similarly, 
some machine-learning methods can interpolate training data and 
generalize well44, so it would also be interesting to search for student 
architectures and learning rules that could reduce tension between 
memorization and generalization. Finally, we’ve focused on simple 
supervised learning problems; future work should address optimal 
consolidation in settings that exhibit richer generalization dynamics, 
such as reinforcement learning45 and emergent few-shot learning in 
large language models46.

The fact that an experience’s predictability is a priori unknown has 
important conceptual implications for regulated systems consolida-
tion. Here we have shown that it’s sometimes possible to accurately 
infer predictability from data (Fig. 2). This capability allows accurate 
generalization that is likely critical for building high-fidelity models of 
the world. However, we do not expect that the brain explicitly imple-
ments the schemes as shown in Fig. 2. For instance, it would be surpris-
ing if the brain sets aside validation data that never drives learning. 
Moreover, many studies suggest that the brain relies on suboptimal 

heuristics for decision-making and other cognitive tasks47, and regulat-
ing systems consolidation based on inaccurate heuristics could lead 
to mis-generalization and departures from the predictions of Go-CLS 
theory. For example, an interesting prediction of Go-CLS theory is 
that frequent misinformation should be consolidated less than rare 
gems from a wise source, but this prediction would fail if brains used 
frequency as a simple heuristic for predictability. Extreme misregula-
tion of consolidation could relate to disorders, such as post-traumatic 
stress disorder (PTSD)48. Modeling regulated systems consolidation 
in real-world scenarios thus requires a precise understanding of the 
brain’s predictability estimation algorithm. Targeted experimental 
tests of Go-CLS theory could avoid this issue by focusing on tasks where 
animals generalize accurately.

Go-CLS theory does not specify the biological mechanisms by 
which memory consolidation should be regulated. Given the promi-
nent role of replay in existing mechanistic hypotheses about systems 
consolidation27,49, this would be a natural target for regulation50–53. 
One possibility would be that memory elements reflecting predictable 
relationships could be replayed together, while unrelated elements 
are left out or replayed separately. Another would be that entire expe-
riences are replayed, while other processes (for example, attention 
mechanisms enabled by the prefrontal cortex[54) regulate how replayed 
events are incorporated into neocortical circuits that store gener-
alizations. Neuromodulators are also likely to have important roles. 
Norepinephrine is hypothesized to represent unexpected changes in 
the environment55, so it could cue the brain to re-estimate the predict-
ability of relationships in the environment. Acetylcholine is proposed 
to promote memory encoding56, suppress replay57 and represent sto-
chasticity in the environment55. Acetylcholine could, therefore, enable 
the hippocampus to preferentially encode memories of unpredictable 
experiences, which would require long-term hippocampal memory 
traces in Go-CLS theory. Intriguingly, dopamine is known to tag hip-
pocampal memories of rewarding experiences for enhanced replay and 
consolidation58,59. It will be important to determine if acetylcholine or 
another neuromodulator can similarly tag memories of unpredictable 
experiences for reduced replay and systems consolidation.

The proposed principle that the degree of predictability regu-
lates systems consolidation reveals complexities about the traditional 
distinctions between empirically defined episodic and semantic 
memories1. Most episodic memories contain both predictable and 
unpredictable elements. Unpredictable coincidences in place, time 
and content are fundamentally caused by the complexity of the world, 
which animals cannot fully discern or model. Memorizing such unpre-
dictable events in the hippocampus is reminiscent of previous pro-
posals suggesting that the hippocampus is essential for incidental 
conjunctive learning60, associating discontiguous items61, storing 
flexible associations of disparate and distinct elements62, relational or 
configural information63 and high-resolution binding64. However, our 
theory holds that predictable components of these episodic memories 
would consolidate separately to form semantic memories that inform 
generalization. We anticipate that psychologists and neurobiologists 
will be motivated by the Go-CLS theory to test and challenge it, with the 
long-range goal of providing new conceptual insight into the organiza-
tional principles and biological implementation of memory.
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Methods
Teacher–student–notebook framework
Please refer to the Supplementary Information for a detailed descrip-
tion of the teacher–student–notebook framework. The following 
sections provide a brief description of the framework and simula-
tion details.

Architecture
The teacher network is usually a linear shallow neural network generat-
ing input–output pairs (xμ, yμ), μ = 1,···, P, through yμ = w̄xμ + εμ , as 
training examples. Components of the teacher’s weight vector, w̄, are 
drawn i.i.d. from 𝒩𝒩𝒩0,σ2w); components of the teacher’s input patterns, 
xμ, are drawn i.i.d. from 𝒩𝒩𝒩0, 1/N), where 𝒩𝒩  is the input dimension and 
εμ is a Gaussian additive noise drawn i.i.d. from 𝒩𝒩𝒩0,σ2ε). The SNR of the 
teacher’s mapping is SNR = σ2w/σ2ε  and we set σ2w + σ2ε = 1  to generate 
output examples of unit variance. For the simulations in Figs. 2–4, the 
student is a linear shallow neural network whose architecture matches 
the teacher (both with input dimension = 100 and output dimen-
sion = 1). We relaxed this requirement in Fig. 5 to allow mismatch 
between the teacher and student architectures (Generative models for 
diverse teachers). Components of the student’s weight vector, w, are 
initialized as zeros (that is, tabula rasa), unless otherwise noted. The 
notebook is a sparse Hopfield network containing M binary units (states 
can be 0 or 1, M = 2,000–5,000 unless otherwise noted). The input and 
output layers of the student network are bidirectionally connected to 
the notebook with all-to-all connections.

Training procedure
All simulations were performed either using MATLAB (2019b) or Python 
3. Training starts with the teacher network generating P input–output 
pairs, with certain predictability (SNR), as described above. For each of 
these P examples, the teacher activates the student’s input and output 
layers via the identity mapping; at the same time, the notebook ran-
domly generates a binary activity pattern, ξμ, μ = 1,···, P, with sparsity a, 
such that exactly aM units are in the ‘1’ state for each memory. At each 
of the example presentations, all of the notebook-to-notebook recur-
rent weights and the student-to-notebook and notebook-to-student 
interconnection weights undergo Hebbian learning (Supplementary 
Information Section 1). This Hebbian learning essentially encodes ξμ 
as an attractor state and associates it with the student’s activation  
(xμ, yμ), for μ = 1,···, P.

After all P examples are encoded through this one-shot Hebbian 
learning, at each of the following training epochs, 100 notebook- 
encoded attractors are randomly retrieved by initializing the notebook 
with random patterns and letting the network settle into an attractor 
state through its recurrent dynamics. Notebook activations are 
updated synchronously for nine recurrent activation cycles, and we 
found that each memory was activated with near uniform probability. 
Once an attractor is retrieved, it activates the student’s input and out-
put layers through notebook-to-student weights. Because the number 
of patterns is far smaller than the number of notebook units (P < < M) 
in our simulations, the Hopfield network is well below capacity, and 
most of the retrieved attractors were perfect recalls of the original 
encoded indices. The reactivation of the student’s output through the 
notebook, ỹμ, is then compared to the original output activated by the 
teacher, yμ, to calculate how well the reactivation resembles the original 
experience, quantified as the mean squared error. For error-corrective 
learning, the student uses the notebook reactivated x̃μ and ỹμ. By com-
paring the student output that is generated from the reactivated input, 
̂ỹμ= wx̃

μ, and the reactivated student output for all P examples, the 

student updates w using gradient descent with 1
P
∑P

μ=1𝒩ỹμ − ̂ỹμ)
2

 as the 

loss function. The weight update follows:

∆w = learnrate × (ỸX̃T −wX̃X̃T) ,

where X̃  and Ỹ  are the column-wise stacked matrix form of the 100 
reactivated input and output data points, respectively. Training con-
tinues for 500–5,000 epochs, and learnrate ranges from 0.005 to 0.1. 
In our simulations, as long as learnrate is sufficiently small (0.1 or 
smaller), the results stay qualitatively constant, and the main results 
do not depend on the specific choices of learnrate. The Ptest number of 
additional teacher-generated examples, typically 1,000, is used to 
numerically estimate the generalization error at each time step by 
1

Ptest
∑Ptest

μ=1 𝒩ytest
μ −wxtest

μ)2. For some simulations, we have applied optimal 
early stopping regularization, where we stop the training when the 
estimated generalization error reaches a minimum.

Retrograde amnesia curves
We draw the following connections from network performance in 
terms of mean squared error to memory and generalization scores, 
which are typically measured by behavior responses in a task designed 
to test memorization or generalization performances. When the stu-
dent weights are zero, the network error corresponds to chance perfor-
mance in a task, which is typically set as the zero of a memory retrieval 
metric. As the error decreases with training, the error is related to the 
memory retrieval score as follows: score = (E0 − Et)/E0, where E stands 
for memorization error or generalization error and the subscripts 
0 and t indicate a zero weight student and a student at time t during 
training, respectively. This is stating that the memory retrieval score 
at each time point is negatively correlated to the error at that time 
and normalized into the range of 0 and 1, where 0 indicates chance 
performance and 1 indicates perfect performance. During memory 
retrieval (or generalization), the system chooses whichever available 
module has a lower memorization error (or generalization error). To 
simulate notebook lesioning at time t, the system starts to use only the 
student for memory recall; in addition, the student’s memory score 
will remain unchanged with time due to the lack of notebook-mediated 
systems consolidation. In Fig. 3e, both the SNR and amount of prior 
learning were varied to produce the diverse shapes of retrograde 
amnesia curves. For the control simulation, SNR was set to ∞. For the 
solid retrograde amnesia curves, SNR values were 0.01, 0.1, 0.3, 1 and 
8. SNR was set to 50 for the dotted lines simulating the effect of prior 
consolidation. Each line is a different simulation with the amount of 
prior consolidation ranging from 8 epochs to 2,000 epochs (learn-
rate = 0.005). The student size was N = 100 and notebook size was 
M = 5,000. For the varying SNR simulations, P = 100, and for varying 
prior consolidation simulations, P = 300.

Generative models for diverse teachers
To explore different ways unpredictability can exist in the environment, 
we generalize the teacher–student–notebook model by relaxing the 
linear and size-matched settings to allow for more complex teachers 
as generative models for producing training data. For the nonlinear 
teacher setting, a nonlinear activation function is applied to the lin-
ear transformation to generate the teacher’s output. A sine function 
was chosen for the simulation in Fig. 5e. The corresponding noisy 
teacher’s SNR is numerically determined from the complex teacher’s 
nonlinearity, as detailed in Supplementary Information Section 10. 
For the partially observable teacher, the input layer is larger than the 
student’s, and the student can only perceive a fixed subregion of the 
teacher input layer. The exact size of the partially observable teacher 
is set to match the calculated equivalent SNR of the complex teacher.

Statistics and reproducibility
We provide code to reproduce all simulation results. We did not col-
lect any experimental data for this theoretical study. Therefore, no 
statistical method was used to predetermine sample size, no data were 
excluded from the analyses, the experiments were not randomized and 
the investigators were not blinded to allocation during experiments 
and outcome assessment.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The MNIST65, CIFAR-10 (ref. 66) and Tiny ImageNet67 datasets (used in 
Supplementary Fig. 5) are publicly available from http://yann.lecun.
com/exdb/mnist/, https://www.cs.toronto.edu/~kriz/cifar.html and 
https://www.kaggle.com/c/tiny-imagenet, respectively.

Code availability
Code reproducing the results is available at GitHub (https://github.
com/neuroai/Go-CLS_v2) and archived at Zenodo (https://doi.
org/10.5281/zenodo.7941122).
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