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Finding parameters that minimise a loss function is at the core of many machine learning meth-
ods. The Stochastic Gradient Descent algorithm is widely used and delivers state of the art results
for many problems. Nonetheless, Stochastic Gradient Descent typically cannot find the global min-
imum, thus its empirical effectiveness is hitherto mysterious. We derive a correspondence between
parameter inference and free energy minimisation in statistical physics. The degree of undersam-
pling plays the role of temperature. Analogous to the energy-entropy competition in statistical
physics, wide but shallow minima can be optimal if the system is undersampled, as is typical in
many applications. Moreover, we show that the stochasticity in the algorithm has a non-trivial cor-
relation structure which systematically biases it towards wide minima. We illustrate our argument
with two prototypical models: image classification using deep learning, and a linear neural network
where we can analytically reveal the relationship between entropy and out-of-sample error.

INTRODUCTION

Methods in machine learning typically involves find-
ing model parameters that minimize a measure of dis-
agreement between model predictions and training data,
known as the loss function. Suppose we performed P
measurements of independent variables xi ∈ RNi and de-
pendent variable yi. Given a parametric model f(xi,θ)
where θ ∈ RN are the parameters, we can define a
loss function L({xi}Pi=1,θ) = R(θ)+ 1

P

∑
i li(yi, f(xi,θ)),

where R is a regularising function. The Stochastic Gradi-
ent Descent (SGD) algorithm minimises the loss function
by going down the direction of the steepest gradient es-
timated using random subsets of the data [1–3]:

θt+1 = θt − ηt∇θ

(
1

|Bt|
∑
i∈Bt

li(xi,θ) +R(θ)

)
, (1)

where we have abbreviated our notation for the loss func-
tion by hiding the dependent variables yi, and defined
ηt as the learning rate, and Bt as a randomly selected
batch of training data. Models routinely used in ma-
chine learning can contain N = O(107) parameters and
are non-convex, thus finding the global minimum is com-
putationally intractable. Nonetheless, it is empirically
known that SGD yields state of the art results in ma-
chine learning, in the sense that the parameters SGD
finds can give accurate predictions outside the training
set (so-called generalisation/testing accuracy) [4–8]. It is
highly implausible that SGD finds the global minimum,
and it is mysterious why minima that SGD converges to
tend to be generalisable.

There is a growing literature that sheds light on this
mystery by focusing on the topology of the loss function.
For Gaussian random functions, critical points with a
loss function much larger than the global minimum are
exponentially likely to be saddle points in the high di-
mensional limit [9, 10]. Therefore the value of the loss

function at most local minima is similar to the global
minimum, and some argue that this is why most local
minima are “good enough” [11, 12]. In fact, it can be
analytically shown that for some simple network archi-
tectures [13–15], there are no local minima and all critical
points are either saddle points or the global minimum.

However, this theoretical picture, grounded on the
topology of the loss function, has several shortcomings.
First, the ultimate metric in machine learning is the gen-
eralisation accuracy rather than minimising the loss func-
tion, which only captures how well the model fits the
training data. With vastly more parameters than sam-
ples, it is not difficult to completely fit the training data
[16]. Therefore, theoretical results about the value of the
loss function at local minima give limited insights about
the effectiveness of SGD, which is its ability to find gener-
alisable parameters. Second, it is known empirically that
deeper minima have lower generalisation accuracy than
shallower minima [12]. In fact, stopping SGD before com-
plete convergence (“early stopping”) can yield parame-
ters with higher generalisation accuracy compared to a
converged SGD iteration [17, 18]. Those empirical ob-
servations show that the local minimum that SGD finds
is not only “good enough”, but also better than deeper
minima or even the global minimum that SGD misses.

Rather than focusing on the topology of the loss func-
tion, another strand of the literature focuses on the width
of the minima. Pioneering works show that flatter min-
ima lead to lower generalisation error [19–21]. The in-
tuition is that a sharp minimum correspond to a more
complex, likely overfitted, model because the parame-
ters need to be accurately specified to define the mini-
mum. Recent empirical studies have focused on the role
of stochasticity on SGD: decreasing the batch size causes
SGD to converge to wider minima and lead to better
generalisation accuracy [22, 23], and in fact just adding
Gaussian noise on top of SGD improves generalisation
accuracy [24]. An explicit term can also be added to bias
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SGD in favour of wider minima [25, 26]. However, defini-
tions of minima width in the literature are phenomeno-
logical and not reparametrization-invariant, leading to
the critique that wide minima could be made arbitrarily
sharp by simply rescaling the model parameters [27].

In this paper, we will first analytically characterise the
stochasticity in SGD. Our analysis will show how batch
size affects stochasticity, and show that the noise has
a non-trivial correlation structure which systematically
biases SGD towards wide minima. We will then use a
Bayesian approach to derive a correspondence between
parameter inference and free energy minimisation in sta-
tistical physics with the degree of undersampling playing
the role of temperature. Analogous to the energy-entropy
competition in statistical physics, wide but shallow min-
ima can be optimal if the system is undersampled. We
will then apply our theoretical insight to study two pro-
totypical non-convex models in machine learning: a nu-
merical experiment of image classification using a deep
neural network, and a linear neural network where we
can derive analytical insights that explicitly relates out-
of-sample error and entropy.

STOCHASTIC GRADIENT DESCENT AND
ENTROPY-ENERGY COMPETITION

To facilitate an analytic treatment of SGD, we can
take the continuum limit and write Equation (19) as a
Langevin equation:

dθ

dt
= −∇θL+ η(t), (2)

where

η(t) = ∇θ

[
1

N

∑
i

li(xi,θ)− 1

|Bt|
∑
i∈Bt

li(xi,θ)

]
(3)

is the stochastic noise. It is evident that 〈η(t)〉 = 0,
where the average is performed over batches of data.
However, unlike thermal noise, the SGD noise has a non-
trivial correlation structure. Extending the results of
[28], for a constant batch size |Bt| = b and P → ∞,
after some cumbersome algebra yields:

〈ηµ(t)ην(t)〉 =
1

b

(
1− b

P

)[〈
∂l

∂θµ

∂l

∂θν

〉
−

〈
∂l

∂θµ

〉〈
∂l

∂θν

〉]
,

(4)

where 〈f〉 = N−1
∑
i fi denotes the average over samples.

Two insights can be gained from Equation (4). First,
the variance of the noise increases as O(1/b). There-
fore, decreasing the batch size increases the stochastic-
ity, explaining the numerical observation of [22]. Second,
the noise is highly anisotropic and biases SGD towards
wide minima. To fix ideas, we consider the noise near
a minima, where 〈∂l/∂θµ〉 ≈ 0 for all µ. In the set-
ting where the loss is the negative log probability of the

parameters and data, the first term of Equation (4) is
simply the Fisher information, which equals the Hessian
Hµν =

〈
∂2l/(∂θµ∂θν)

〉
. Suppose we reparametrise the

system such that the Hessian is diagonal. Equation (4)
shows that “stiff” directions [29], directions in the Hes-
sian with larger curvature thus larger eigenvalue, is forced
with a higher noise, whereas sloppier direction are forced
with a lower noise by SGD. This is the opposite of many
optimisation methods such as the Newton method where
smaller steps are taken along stiffer directions. The net
consequence of taking larger steps across stiff direction
is that the algorithm can easily escape narrow basin and
be trapped in wide basins.

Why might wide basins be generalisable? We consider
a model regression problem, where

yi = f(xi,θ
∗) + εi, (5)

In general this ε noise can be thought of as arising from
degrees of freedom which our model f(x,θ) does not cap-
ture because it does not have sufficient degrees of free-
dom to represent the true “teacher”. In other words, the
noise reflects the approximation error of our model. θ∗

thus represent the best possible (unknown) parameters
for the model to match the true teacher function. For
simplicity and generality, we now approximate the dis-
tribution of the approximation error or noise to be Gaus-
sian: εi ∼ N (0, σi), which is a reasonable assumption if
it is composed by summing many random, independent
components. We also assume the data points are inde-
pendently sampled, so that the likelihood is:

p({xi}Pi=1|θ) ∝ exp

(
−

P∑
i=1

(f(xi,θ)− yi)2

2σ2
i

)
. (6)

Applying a Gaussian prior p(θ) = exp
(
−λ||θ||22/2

)
over

parameters, the posterior is

p(θ|{xi}Pi=1) =
1

Z
exp

(
−

P∑
i=1

(f(xi,θ)− yi)2

2σ2
i

− λ||θ||22
2

)
.

(7)
where Z is a normalising constant. Statistical physics
insights can be uncovered by first writing Equation (7)
in terms of intensive quantities, i.e. quantitates that do
not scale with the size of the data set P or the number
of parameters N . To this end, we define the mean error,
which can be interpreted as an “internal energy”

u(θ) =
1

P

P∑
i=1

(f(xi,θ)− yi)2

2σ2
i

, (8)

and

h(θ) =
λ

N

||θ||22
2

. (9)
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Given a new data point x̂, the goal is to predict the
output ŷ. The expected ŷ is given by:

〈ŷ〉 =

∫
p(θ|{xi}Pi=1)f(x̂,θ) dθ. (10)

Machine learning problems where SGD have been suc-
cessfully applied can be characterised by the asymptotic
limit where number of data points P →∞, but the num-
ber of parameters is still vast and the data-to-parameter
ratio P/N = α = O(1); this is often referred to as the
high dimensional limit [30]. For example, in image recog-
nition challenges, the number of samples P = O(107)
but the number of parameters in a deep neural network
N = O(108) [7]. In this limit, it is justified to perform
the Laplace approximation,

〈ŷ〉 ≈ 1

Z

∑
q

exp
[
−P (u(θq)− 1

αh(θq))
]√

detH(θq)
f(x̂,θq). (11)

where θq are the local minima of the loss function,

∇θL({xi}Pi=1,θq) = ∇θ
(
u(θq)− 1

α
h(θq)

)
= 0, (12)

and H(θq) is the Hessian matrix. The prefactor with the
determinant of the Hessian can be written as

1√
detH(θq)

= exp

(
−1

2

N∑
i=1

log λi(θq)

)
, (13)

where λi are eigenvalues of the Hessian matrix. If the log
eigenvalues are all of the same order of magnitude (note
that the logarithm compresses scales), the sum is O(N)
and therefore the corresponding intensive quantity is

s(θq) = − 1

2N

N∑
i=1

log λi(θq). (14)

The function s(θq) can be interpreted as the entropy as-
sociated with that minimum. Geometrically, s is related
to the “width” of a minimum — the wider a minimum
is, the larger is the entropy function s at that minimum.
We note that we have assumed the eigenvalues to be non-
zero — this assumption is not necessarily true in deep
neural networks that have more parameters than train-
ing data [31], and we stress that a full analysis of basin
volume [32] is required to characterise the entropy of flat
minima. Moreover, we have made a further assumption
that the numerical minimisation algorithms can actually
find minima – minimisation algorithms are often stuck
in saddle points [11]. Our numerical experiments below
suggests that for singular Hessian or saddle points, our
argument still holds qualitatively if we truncate the sum
in Equation (14) to include only large and positive eigen-
values.

All in all, 〈ŷ〉 is approximately

〈ŷ〉 ≈ 1

Z

∑
q

e−PF (θq)f(x̂,θq), (15)

where

F (θq) = u(θq) +
1

α
(h(θq)− s(θq)) (16)

is the effective free energy. When P →∞ and α is fixed,
the minimum that dominates is not the global minimum
in u(θ), but rather the minimum with the lowest effec-
tive free energy. The free energy, Equation (16), has a
transparent physical interpretation. The degree of un-
dersampling 1

α is analogous to the temperature, and the
mean error and width of the minimum is analogous to the
internal energy and entropy. The prior on the parame-
ters, in the case of a Gaussian distribution, is analogous
to an entropic spring that pulls the parameters towards
the origin. Crucially, the definition of the entropy, which
is derived from an asymptotic analysis of the posterior
distribution, is based on the determinant of the Hessian
thus is invariant to reparameterization. This overcomes
one critique in the literature on the correlation between
basin width and model performance [27].

We are now in a position to qualitatively understand
why the Stochastic Gradient Descent algorithm works –
in the high dimensional limit, wide minima, in the sense
of large s, are preferable over narrow ones even at the
expense of higher error in-sample error u. The extent to
which wide minima are preferable is dependent on the
degree of undersampling and approximation noise. Wide
local minima are of course easy to find via a gradient de-
scent algorithm, and the noise in SGD specifically biases
the search toward wider minima, thus partially explain-
ing the unreasonable effectiveness of SGD.

NUMERICAL EXPERIMENTS

Two testable predictions that emerge from our theory
are: (1) The anisotropic noise in stochastic gradient de-
scent forces it to converge to wider minima, and (2) sub-
ject to constant training error (“energy”), wider minima
are more likely to have a low out-of-sample error com-
pared to narrower minima. We will use a prototypical
problem in machine learning, the CIFAR-10 challenge
[33], to test the extent to which those predictions are
borne out in realistic datasets.

The CIFAR-10 dataset consists of 60000 32×32 colour
images of 10 different classes of objects (e.g. airplane,
automobile, bird etc.), with 6000 images per class. The
original machine learning problem is to parameterise a
model that can classify an unseen image into one of
those 10 classes. For numerical simplicity, we consider
a stripped-down version of this problem where we only
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consider the binary classification problem of determining
whether an image is an airplane or automobile. More-
over, we down sample the images to 10 × 10. Those
simplifications are needed because numerically comput-
ing the Hessian for industrial scale models is numerically
challenging.

We use a fully-connected neural network with three
hidden layers and 10 units per layer. In mathematical
terms, we flatten the image into a vector x ∈ R100, and
pose the model

yi = σ1(W5σ(W4σ(W3σ(W2σ1(W1xi))))) (17)

where W1 ∈ R10×100, W2 ∈ R10×10, W3 ∈ R10×10,
W4 ∈ R10×10 and W5 ∈ R10×2 are model parameters
that we need to infer from the data, σ(x) = max(0, x) is
known as the relu function in the literature and σ1(x) =
(1+e−x)−1 is the sigmoid function . yi can be interpreted
as a predicted probability – the model is certain that the
ith image is an airplane/automobile if yi = 0/1. The
appropriate loss function for a classification problem is
the so-call cross-entropy function

li = −ti log yi − (1− ti) log(1− yi) (18)

where ti is the true label (0 for airplane, 1 for automobile)
and yi is the predicted probability.

We have 12000 images of airplanes and automobiles in
the dataset and 1320 parameters in our model. We will
consider the case where we randomly choose 500 images
as the training set. We restrict the number of images in
the training data so that we can perfectly fit the model
to training data (i.e. the “energy” u = 0). The model
suffers from overfitting, but the upshot is that we can fo-
cus solely on the entropy as the energy of every minimum
is zero.

To verify whether the anisotropic noise in stochas-
tic gradient descent forces the algorithm to converge to
higher entropy minima, we compare the entropy of the
critical points found via SGD with an alternative model
of Langevin dynamics where the noise has the same mag-
nitude as SGD but we remove the correlation structure.
Concretely, we consider the Langevin dynamics

θt+1 = θt − ηG(θ) + ζ(t) (19)

where G(θ) = ∇θ (L+R(θ)) and the uncorrelated noise
ζ(t) is drawn from

ζ(t) ∼ N (0,diag(σ1(t), σ2(t) · · · , σp(t))), (20)

with

σi(t)
2 =

1

10

10∑
m=1

(G(i)
m (θ)− Ḡ(i)(θ))2, i = 1, ..., p (21)

and we estimate σ2
i , the variance in the gradient in ith

variable, by randomly splitting the sample into 10 mini-
batches of 50 samples each, estimate the minibatch gra-
dient, and compute the variance of the gradient in the
ith variable across the 10 minibatches.
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FIG. 1. SGD finds larger entropy solutions compared to
Langevin dynamics or gradient descent. The plot shows a
histogram of the entropy of the solutions found by the differ-
ent optimization algorithms for a three-layer neural network
trained on the binary classification problem of airplane and
automobile images from CIFAR-10 datasets. The histogram
is generated by 50 independent runs starting with random
initial parameters.

To converge to a critical point, we run SGD with
a minibatch size of 50 for 8000 epochs (full iteration
through the dataset), followed by steepest descent min-
imisation until the gradient at each direction is less than
3 × 10−5. Similarly, for the Langevin dynamics experi-
ments, we run the modified Langevin dynamics for 80000
iterations, followed by steepest descent minimisation un-
til the gradient at each direction is less than 3 × 10−5.
For the full gradient descent without noise experiments,
we run the full gradient descent for 80000 iterations and
collect the data when the gradient at each direction is
less than 3× 10−5. We start with a different initial con-
dition for each run, with parameters drawn from a Gaus-
sian distribution N (0, 0.1). The learning rate η for both
SGD and our modified Langevin dynamics is 0.1. In both
cases, a small regularisation of λ = 10−7 is used.

The Hessian matrix contains a small number of small
negative eigenvalues (approximately 10%), as well as pos-
itive eigenvalues close to zero. It is numerically challeng-
ing to differentiate whether those small negative or small
positive eigenvalues are due to numerical noise masking
a true minimum, a saddle point, or a degenerate mini-
mum where the zero eigenvalues are masked by numerical
noise. To make further progress, we use a phenomeno-
logical “cleaning” procedure where eigenvalues less than
the magnitude of the most negative eigenvalue is ignored.
This cleaning procedure is motivated by the intuition
that the most negative eigenvalue gives an indication of
the “scale” of numerical error.
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FIG. 2. Solutions with higher entropy are have lower out-
of-sample error. We consider a a three-layer neural network
trained and binary classification problem of airplane and au-
tomobile images discussed in the main text. The plot is gen-
erated by performing 50 independent runs of SGD starting
from random initial weights. Note that the neural network is
overparameterised, thus the in-sample error of the model is
zero but the different solutions differs by their out-of-sample
error.

Figure 1 shows that the mean entropy of minima found
via SGD is larger than the mean entropy found using
Langevin dynamics with the same level of noise, con-
firming our hypothesis that the anisotropy of the noise
biases SGD towards higher entropy minima.

We next consider the correlation between entropy and
the testing error, the error when the model is applied to
images outside the training set. Using the same proce-
dure discussed above, we locate critical points by run-
ning SGD for 8000 epochs followed by gradient descent
minimisation. We compute the out-of-sample error by
applying the model to 2000 images that are not in the
training set. Figure 2 shows a discernible negative corre-
lation between entropy and testing error. In other words,
the larger the entropy is, the more likely the model can
perform well outside the training set. Note that the er-
ror of the model in the test set is zero, therefore the only
difference between the different solutions is entropy.

ENTROPY IN DEEP LINEAR NETWORKS

As another view onto the relationship between entropy
and generalization performance, we examine the behavior
of deep linear neural networks. Deep linear networks pro-
vide a simple model class that nevertheless retains impor-
tant features of the learning problem faced in nonlinear
deep networks. In particular, the optimization problem
is nonconvex [34], and solution dynamics can be highly
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FIG. 3. Results of SGD in underdetermined deep linear
networks, out-of-sample error correlates with entropy (left),
the trace of the Hessian (middle) and the total weight norm
(right). Correlation coefficients are given in each panel. We
also demonstrate in the third panel the theoretical predic-
tion (34) for the average scaling of the generalization er-
ror with weight norm fits the data well. Other parameters:
Ni = 10, Nh = 7, P = 5, σe = 10−4.

nonlinear [34]. We consider a three-layer deep linear net-
work which computes the output

ŷi = W2W2xi (22)

where W1 ∈ RNh×Ni and W2 ∈ R1×Nh . We train
these networks in a student-teacher setting (see e.g.
[35, 36]), where a teacher labels random input examples
x ∼ N (0, 1

Ni
I) as y = W̄x + ε. The teacher’s parameters

W̄ are drawn independently from a unit variance Gaus-
sian distribution, and the noise variance (representing
approximation error) is 〈ε2〉 = σ2

e . In this way a dataset
of P examples can be drawn and collected into an input
matrix X ∈ RNi×P and target vector y ∈ R1×P . We as-
sume a quadratic loss function so that the network aims
to minimize L =

∑
i(ŷi − yi)2, and in our simulations,

update weights with stochastic gradient descent.
The generalization behavior of such networks is depen-

dent on the amount of training data they receive [36]. In
the overdetermined case where data is plentiful (P ≥ Ni),
minimizers of the training error must compute identical
input-output functions and attain identical generaliza-
tion performance. However in the underdetermined case
where P < Ni, minimizers of the training error all attain
zero error on training samples, but need not compute
identical input-output functions and therefore can gener-
alize differently to new test samples. Intuitively, this is
because the behavior of the input-output map is uncon-
strained in directions which contain no training data. We
thus tested whether the correlation between entropy and
generalization performance holds in the underdetermined
regime. Fig. 3 confirms this correlation for deep linear
networks. Here as before, eigenvalues of the Hessian that
are exactly zero have been discarded. We note that for
this linear case, the number of nonzero eigenvalues is sim-
ply min(P,Ni) and hence by sorting the eigenvalues and
taking the top min(P,Ni), issues of numerical precision
are avoided.

In the overdetermined setting, there is a manifold of
global minima where the product of the weights is equal
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to the least squares solution, W2W1 = Σyx(Σx)−1

where Σyx = yXT and Σx = XXT are the input-output
covariance and input covariance respectively. All net-
works that attain this minimum must have the same
input-output function and generalize identically. Even in
this simple setting, however, the Hessian at every mini-
mum has zero eigenvalues corresponding to directions in
parameter space which point along the manifold of min-
ima. In particular, a network with Nh hidden units will
have Nh(Ni + 1)−Ni zero eigenvalues.

As the simplest example, a deep linear chain with
scalar weights w2 and w1 (i.e. Ni = Nh = 1) has Hessian

H =

[
w2

2σ
x 2w2w1σ

x − σyx
2w2w1σ

x − σyx w2
1σ

x

]
, (23)

yielding eigenvalues λ1 = w2
2σ

x+w2
1σ

x and λ2 = 0 on the
manifold of global minima. Hence the spectral norm of
the Hessian coincides with the trace of the Hessian and is
simply λ1. Further, our entropy measure corresponds to
taking the negative log of λ1. The manifold of global min-
ima is defined by the hyperbola w1w2 = σyx/σx. Substi-
tuting this into λ1, we have λ1 = (σyx)2/(σxw2

1) +w2
1σ

x

on the solution manifold, which retains a dependence on
w1. In particular, taking w1 to infinity or zero will cause
the entropy to go to infinity; but all points on the so-
lution manifold implement the same function and gener-
alize identically. Thus a question remains: why do we
observe a strong correlation between entropy and gener-
alization error in typical training settings in spite of the
parameter dependence of these Hessian-based metrics?

Some insight can be gained by examining the trace of
the Hessian, which for these deep linear networks we find
to be

trH = ‖W2‖22 ‖X‖
2
F + ‖W1X‖2F , (24)

where F denotes a Frobenius norm. As we show in Fig-
ure 5, the negative log of the trace of the Hessian closely
tracks the entropy, and correlates about equally well with
the generalization performance (Figure 3 middle), so un-
derstanding the behavior of the trace can yield insight
into the entropy measure as well. (We note, for instance,
that in the linear chain considered above the entropy is
exactly equal to − log(trH)). With this in mind, the rea-
son for the correlation becomes evident: standard train-
ing procedures initialize the norm of each layer’s weights
to be approximately equal, and when so initialized, this
persists through training. That is, under batch gradi-
ent descent learning (where every sample is used in each

update |B| = N), the difference ‖W2‖22 − ‖W1‖2F is an
invariant of the dynamics.

We can prove this fact by deriving the dynamics
for this setting in the continuous limit by computing
the derivatives of the loss function with respect to the
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FIG. 4. Results of SGD in networks with extremely imbal-
anced initial weights (‖W2‖22 ≥ ‖W1‖2F or vice versa), the
correlation between out-of-sample error and entropy (left) or
the trace of the Hessian (center) decreases, but the correla-
tion with total weight norm remains unchanged (c.f. Fig. 3).
Weights were initialized with random asymmetries between 1
and 100. Other parameters as in Fig. 3.

weights. This yields the coupled differential equations:

τ
d

dt
W1 = WT

2 (Σyx −W2W1Σ
xx) , (25)

τ
d

dt
W2 = (Σyx −W2W1Σ

xx) WT
1 . (26)

We can write our invariant as:

d

dt

(
‖W2‖22 − ‖W1‖2F

)
=

d

dt
Tr
(
WT

2 W2

)
− d

dt
Tr
(
W1W

T
1

)
.

(27)
Applying the derivative yields

Tr
(
WT

2 Ẇ2 − Ẇ1W
T
1

)
+Tr

(
ẆT

2 W2 −W1Ẇ
T
1

)
= 0,

(28)
where the final equality holds by substituting (25) and
(26) into the LHS of the expression above.

Batch gradient descent is equivalent to SGD for small
learning rates and so this invariance can be expected to
approximately hold in that setting. It follows that a bal-
anced initial condition implicitly restricts the ultimate
solution to be balanced as well, resolving the dependence
of the trace and entropy metrics on the asymmetry in
weight norms. Balanced solutions can still vary widely
in norm, and from Equation (24), solutions with lower
norm will have lower trace and entropy. For the linear
networks considered here, the optimal out-of-sample er-
ror is attained by the minimum norm solution. Hence
for deep linear networks, the correlation between entropy
and generalization performance is stronger for balanced
initial conditions (which are standard in practice). To
demonstrate this, in Figure 4 we modify our initializa-
tion procedure to introduce asymmetry, yielding a re-
duced correlation.

The exact generalization error is given by eg =
1
Ni

∥∥W̄ −W2W1

∥∥2
2

+ σ2
e . Now consider splitting these

matrices into the component in the subspace of the train-
ing data, and the component perpendicular to the train-
ing data. We thus have

eg =
1

Ni

∥∥∥W̄‖ + W̄⊥ −W2W
‖
1 −W2W

⊥
1

∥∥∥2
2

+σ2
e . (29)
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FIG. 5. The negative log of the trace of the Hessian correlates
strongly with entropy.

If training is successful, then W̄‖ −W2W
‖
1 ≈ 0. There-

fore

eg ≈
1

Ni

∥∥W̄⊥ −W2W
⊥
1

∥∥2
2

+ σ2
e . (30)

Given P examples, and Ni input units, the dimension of
the null space of the data covariance will be Ni−P . Also,
there will be no correlation between W̄⊥ and W2W

⊥
1

because the student weights are initialized randomly and
are exposed to no information about the true weights in
the direction orthogonal to the data. It follows that:

〈eg〉 =
1

Ni

〈
‖W̄⊥‖22

〉
+

1

Ni

〈
‖W2W

⊥
1 ‖22

〉
+ σ2

e . (31)

To relate the previous expression to the norm of the prod-
uct of the weights, we use the fact that

‖W2W1‖22 = ‖W2W
‖
1 +W2W

⊥
1 ‖22 ≈ ‖W̄‖+W2W

⊥
1 ‖22.
(32)

Rearranging and averaging the expression above yields:〈
‖W2W

⊥
1 ‖22

〉
= −

〈
‖W̄‖‖22

〉
+
〈
‖W2W1‖22

〉
. (33)

Substituting this into our expression for generalization
error yields:

〈eg〉 =
1

Ni

(〈
‖W̄⊥‖22

〉
−
〈
‖W̄‖‖22

〉)
+

1

Ni

〈
‖W2W1‖22

〉
+σ2

e .

(34)
Thus, we have an expression for how the generalization
performance of this student network is linearly related to
the norm of its weights. The fit of this prediction may
be seen in simulations in Figure 3.

In the under-determined setting of a deep linear net-
work, when the Hessian has many zero directions, we
have shown that high entropy solutions are correlated
with lower test error. In this simple setting, the reason

for this connection is that the higher entropy solutions
tend to have lower weight norms, and the weight norm
is strongly correlated with the test error. In more com-
plex non-linear networks, a similar mechanism may play
a role, but there may also be additional causes behind
why the entropy metric is related to generalization per-
formance.

CONCLUSION

We showed that the SGD algorithm, a workhorse min-
imisation algorithm in machine learning, preferentially
finds minima that are wide because the noise is corre-
lated and anisotropic. By performing a Laplace approx-
imation, we show that the training error and log deter-
minant of the Hessian matrix plays the role of energy
and entropy in statistical physics, whilst the degree of
undersampling plays the role of temperature. In the un-
dersampled, “high temperature”, regime the Bayes op-
timal parameters are determined by a balance between
the training error and the basin width. This provides a
physical justification of why stochastic gradient descent
can train a model with low out-of-sample error despite
almost certainly not finding the global minimum in the
loss function. We tested the energy-entropy competition
hypothesis with two prototypical machine learning mod-
els: a simple image classification problem and a linear
neural network. The numerical experiments show that:
(1) SGD locates minima with higher entropy compared to
gradient descent with white noise (Langevin dynamics)
or gradient descent without noise; (2) subject to constant
training error, higher entropy solutions enjoy lower test-
ing error. For the linear neural network model, we can
analytically explain the relationship between entropy and
test error.

However, our analysis thus far focused on an harmonic
expansion around minima, leading to a characterisation
of entropy based on the log determinant of the Hessian
matrix. There are two shortcomings with this character-
isation. First, as is shown in the linear case, the Hessian
matrix is singular for overparameterised systems, and
zero eigenvalues are present also in overparametrised non-
linear neural networks models [31]. Although we heuristi-
cally justified our phenomenological clipping of low eigen-
values in the regime of balanced weight initialisation, a
more nuanced metric is needed to characterise flat min-
ima with singular Hessian matrices. Second, the har-
monic expansion approximation ignores higher order geo-
metric features of the basins of attraction. The molecular
physics community has developed a rich framework for
describing energy landscapes [37], and techniques from
molecular simulations that can compute the basin vol-
ume of high dimensional energy landscape will likely yield
significantly greater insights into the connection between
basin volume and test error [32, 38].
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A perhaps more vexing issue is that neural networks
seldom converge to a minima – in fact, it can be shown
analytically that the number of saddle points proliferates
in high dimensional energy landscape functions [11, 12].
Therefore, an open question is to go beyond character-
ising minima and develop a statistical framework that
relate geometric properties of saddle points to the out-
of-sample performance of machine learning models.

It is our pleasure to dedicate this work to Daan Frenkel
on the occasion of his 70th birthday. Alpha Lee is par-
ticularly indebted to Daan for his continuing scientific
inspiration and mentionship, from his first interactions
with Daan as a teaching assistant in Park City to be-
ing colleagues in Cambridge. AAL is supported by the
Winton Programme for the Physics of Sustainability, and
AMS and MSA are supported by the Swartz Program in
Theoretical Neuroscience.
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