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Abstract

Humans can learn several tasks in succession with minimal mutual interference but perform

more poorly when trained on multiple tasks at once. The opposite is true for standard deep

neural networks. Here, we propose novel computational constraints for artificial neural net-

works, inspired by earlier work on gating in the primate prefrontal cortex, that capture the

cost of interleaved training and allow the network to learn two tasks in sequence without for-

getting. We augment standard stochastic gradient descent with two algorithmic motifs, so-

called “sluggish” task units and a Hebbian training step that strengthens connections

between task units and hidden units that encode task-relevant information. We found that

the “sluggish” units introduce a switch-cost during training, which biases representations

under interleaved training towards a joint representation that ignores the contextual cue,

while the Hebbian step promotes the formation of a gating scheme from task units to the hid-

den layer that produces orthogonal representations which are perfectly guarded against

interference. Validating the model on previously published human behavioural data

revealed that it matches performance of participants who had been trained on blocked or

interleaved curricula, and that these performance differences were driven by misestimation

of the true category boundary.

Author summary

Humans can learn multiple tasks over their lifetime with minimal forgetting. In contrast,

machine learning architectures based on artificial neural networks fail to learn multiple

tasks in sequence and require data of all tasks to be present at once. Previous reports sug-

gest that the opposite is true for humans: We learn better when trained on one task at a

time. Here, we sought to identify the basis-set of algorithmic motifs required to mimic

human-like continual learning. We propose a novel training method inspired by insights

into the function of prefrontal cortex of the human brain. The method consists of task
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neurons that carry information over successive trials, and an update step that links those

to other neurons that encode task-relevant information. Together, these two innovations

allow us to model human continual task performance. Analysing how the network repre-

sented task information revealed striking similarities between our network and recent

reports on task representations in the prefrontal cortex of the mammalian brain. Taken

together, our approach describes an effort to bridge insights from machine learning and

neuroscience to advance our understanding of the algorithmic basis of continual learning.

Introduction

Humans have the remarkable ability to learn multiple tasks over their lifespan. New tasks can

be learned in sequence with minimal disruption to previously acquired tasks, a feat that is

known as continual learning. For example, in the case of (supervised) visual categorisation, if

so asked you could learn to successfully categorise fruits by size (crab apple vs. granny smith)

and then by colour (ripe vs. unripe) without the latter learning overwriting the former. Build-

ing neural networks that learn continually has proved challenging in AI research [1, 2]. In neu-

roscience, it remains an open question how the human brain learns continually, and whether

biology can inspire candidate solutions for artificial agents [3–7]. Here, we present a computa-

tional model of human continual learning, which builds on earlier work on cognitive control

and the neural basis of representation learning.

With the advent of deep learning, artificial neural networks are enjoying a renaissance as

models of biological information processing [8, 9]. Despite their architectural simplicity, rep-

resentations that emerge in neural networks bear striking similarities to those observed in

early visual cortex and higher association areas of the human brain [10–14], leading to the pro-

posal that these models can be used as a test-bed for theories about the geometry [15, 16] and

dimensionality of neural representations [17, 18], or the feature selectivity of downstream cor-

tical areas [19]. However, without significant modification, neural networks trained with

vanilla gradient descent fail at tests of continual learning: they are unable to learn multiple

tasks in sequence without suffering from catastrophic forms of forgetting [1, 20, 21]. Interest-

ingly, catastrophic interference is not restricted to simple feed-forward architectures trained

on supervised learning problems but has also been observed in recurrent neural networks [22]

and in the domain of reinforcement learning [23, 24]. The reason for catastrophic forgetting is

well understood, as standard deep learning approaches require training data to be independent

and identically distributed (i.i.d.), a requirement that is violated when several tasks are learned

in succession [20]. Crucially, however, some evidence suggests that humans may sometimes

even perform worse when trained on i.i.d data [6, 25], which challenges the assumption that

standard deep learning architectures can serve as models of the learning dynamics observed in

biological organisms.

Due to the ubiquitous nature of this problem, it has received considerable attention in the

machine learning community, and numerous engineering solutions have been proposed that

wholly or partially prevent forgetting [1, 2, 26], either by preventing task-relevant weights

from changing [24, 27], dynamic architecture growth [28], experience replay [23, 29] or

orthogonalization of representations in the hidden layer [30–32]. While initially devised as

solutions for feed-forward models, many of these approaches have been successfully applied to

recurrent neural networks [22, 33, 34] or other ML domains such as reinforcement learning

[24].
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Some solutions draw loose inspiration from neuroscience, such as experience replay in rein-
forcement learning, which can be related to Complementary Learning Systems theory [35, 36]

or gating approaches, linked to top-down attentional control [37], or regularisation
approaches, which can be related to changes in synaptic plasticity on different timescales [38,

39]. Orthogonalisation approaches in particular have gained attention in neuroscience [31,

33], as more recent investigations of neural geometry have shown that during multi-task per-

formance, mutual interference among tasks is minimised by projecting relevant dimensions

into orthogonal, low-dimensional subspaces [15, 17, 40, 41].

Here, rather than focussing on developing a novel solution, we used a computation model-

ling approach to understand how biological agents may learn multiple tasks in succession. We

draw inspiration from research that has focussed on the implementation of control process in

the prefrontal cortex. In neuroscience, the term “cognitive control” is applied to neural mecha-

nisms that allow a context-appropriate task to be selected and executed with minimal interfer-

ence [42]. Cognitive control has long been associated with the prefrontal cortex (PFC), based

on evidence that prefrontal neurons code for specific tasks, and exert top-down control to

prioritise context-appropriate stimuli and actions [42–47]. In the domain of categorisation, it

has been proposed that the PFC may implement cognitive control by gating (or compressing)

task-irrelevant input dimensions [48–50]. However, in classic models (such as that proposed

by Miller and Cohen [42]) this gating process is implemented by hand. Here, instead, we asked

how this gating process might be learned in a way that allows tasks to be learned with minimal

mutual interference. We also draw upon other work that has proposed gating as a potential

solution to continual learning, in both feedforward and recurrent neural networks, either as

additive bias to the input of a hidden unit, or as multiplicative gate that acts on the unit’s out-

put [37, 51–53]. Again however, in these papers, the gating signals were usually hard-coded. A

key challenge, thus, is to identify a mechanism that can acquire this control signal in a contin-

ual learning setting and could account for the apparent costs associated with learning multiple

tasks from i.i.d. data.

We sought to develop a neural network model inspired by theories on cognitive control

that describes how humans learn to perform multiple categorisation tasks in series. A starting

point for our work is the observation that humans actively benefit when categorisation tasks

are temporally autocorrelated (blocked) during training. For example, consider a validation

task which requires naturalistic stimuli (tree images) to be categorised alternately by dimen-

sions of leaf and branch density. Humans benefit from a training regime consisting of long

training blocks of unidimensional leafy or branchy rules, rather than training blocks in which

leafy and branchy rules are interleaved together [25]. This benefit appears to be particularly

pronounced when exemplars are highly heterogenous within and across tasks [6, 7]. Thus, our

goal was to identify a model that could learn from scratch to capture the benefit of blocking

and the cost of interleaving, as well as the patterns of neural geometry that have been observed

during multitask performance.

There are two key ideas that motivate our model design. The first is that biological neural

circuits have intrinsic time constants of integration which ensure that decisions are driven by

information from the immediate past as well as the present. This principle underlies ubiqui-

tously observed trial history effects in decision tasks [54–56]. The second is that simple learn-

ing based on coincidence detection (such as Hebbian learning) allow groupings of inputs to be

effectively orthogonalised. Our model capitalises on these principles by combining two algo-

rithmic motifs. Firstly, we assume that neuronal responses are “sluggish”: on each trial, inputs

to the network contain some information carried over from previous trials. Carrying over con-

textual cues from previous trials increases task interference (switch costs) in interleaved condi-

tions (where sequential trials may require performance of conflicting tasks) but not in blocked
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conditions (where sequential trials involve the same task). Secondly, we propose that a Heb-

bian learning step follows each supervised parameter update, to strengthen connections

between task signalling units and hidden units that encode task-relevant information. This has

the effect of orthogonalising the weights linking context to hidden units for the two tasks,

allowing tasks to be represented in independent subspaces in the hidden layer [57]. This inter-

vention thus implements a form of context-dependent gating [48, 49]. However, in contrast to

earlier work on cognitive control and related papers that have used gating as a means for con-

tinual learning [37, 50, 53], we demonstrate that this control signal can be acquired by a simple

biologically-inspired mechanism and without direct intervention by the experimenter. Finally,

we show that this model forms highly task-specific neural codes, similar to those reported in a

series of recent studies on the geometry of representations in human and macaque prefrontal

cortex [15, 17, 40, 41].

Results

All simulations described here were developed to model relative performance on a context-

dependent categorisation task following blocked and interleaved training. These results have

been reported in an earlier manuscript, where we subjected human participants to a variant of

the well-established context-dependent decision making task [25]. Here, we reanalysed this

behavioural dataset. In the original task, participants were asked to decide what type of tree

would grow well in two different gardens, which we called the north and south garden respec-

tively (Fig 1A). Unbeknownst to them a priori, trees varied parametrically in terms of their

density of branches (“branchiness”) and leaves (“leafiness”) and only one of the two dimen-

sions was relevant in each task and determined “growth success”, indicated by a numerical

Fig 1. Task design used in [25]. (A) Contextual cues. The two contexts were illustrated as images of gardens, located

either in a snowy (north garden) or desert-like environment (south garden). Participants were asked to learn which

type of trees would grow well (i.e. give a reward for accepting them) in each of the two gardens. (B) Stimulus space and

rules. Stimuli were procedurally generated fractal images of trees that varied parametrically in their density of leaves

(leafiness) and branches (branchiness), spanning a 5x5 grid of possible feature combinations. Participants were asked

to learn a context-dependent mapping from those trees to rewards associated with either accepting or rejecting them

on a trial-by-trial basis. In each of two tasks (called the “north” and “south” tasks), only one of the two feature

dimensions was relevant and determined the reward/penalty received for “accepting” a tree. (C) Trial structure. Each

trial began with the display of a contextual cue that remained on the screen throughout the duration of the trial. After a

short delay, an image of a tree was shown, together with the response contingencies for that trial. Participants could

either “accept” or “reject” an offer to plant the displayed tree in this garden. The chosen response was highlighted.

After a brief delay, numerical feedback was shown for the chosen, as well as the unchosen option. Rejecting a tree was

always associated with a reward of zero. Accepting a tree yielded a reward/penalty that depended on the context and

feature value (see A). (D) Training curricula. Two groups of participants were trained either on a blocked curriculum,

in which the two contexts/gardens were blocked, or in an interleaved curriculum where the two gardens were

randomly interspersed. All participants were subsequently evaluated on a randomly interleaved test phase without

feedback.

https://doi.org/10.1371/journal.pcbi.1010808.g001
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reward/penalty that was associated with planting the tree in a specific garden (Fig 1B). Each

training trial began with an image of either the north or south garden, which served as contex-

tual cue. This was followed by an image of a tree, which participants could choose to plant

(“accept”) or not to plant (“reject”) (Fig 1C). On training trials, participants would then receive

a numerical reward, that depended on the level of leafiness in the north garden and the level of

branchiness in the south garden. Participants were either trained continually on a “blocked”

curriculum, or in an “interleaved” curriculum, where trials from both contexts were randomly

interspersed. Both groups were evaluated on an interleaved test block without feedback

(Fig 1D).

Similar to this trees task, the neural network simulations described here involved binary

categorisation of stimuli according to one of two task rules, which are defined by orthogonal

category boundaries in feature space. In all simulations, the rules are explicitly cued by a con-

textual signal (which we also refer to as “task signal”), and fully supervised feedback is provided

based on the context (task) and stimuli [58]. Thus, one can conceive the model as performing

a task in which trees are categorised by leaf and branch density, or apples by size and colour.

In practice, network inputs were simplified images of Gaussian “blobs”, with the two relevant

dimensions being the location of the peak along the x-and y-axis respectively (Fig 2A). This

allowed us a testbed that matched our domain of interest (e.g., inputs were high-dimensional,

but two cardinal dimensions were relevant) without the potential biases that arise from natu-

ralistic stimuli. We refer to the two “tasks” performed by the neural network as discriminating

the peak of the blob with respect to lines that bisected the horizontal and vertical midlines

respectively (Fig 2A). We achieve very similar results using a reduced version of the trees task,

although this requires a slightly more complicated neural network architecture; this is reported

in the supplementary materials (S1 Methods and S5–S7 Figs).

Blocked vs interleaved training with standard SGD

We began by training and evaluating a model we call the “vanilla SGD” network. The model is

a fully connected feedforward network (multi-layer perceptron or MLP) with a single hidden

layer, Rectified Linear Unit (ReLU) non-linearities and a single output node. We initialized

the network with small random weights (σ = 0.001), placing the network in the “rich” learning

regime [15]. Inputs to the network were flattened images of Gaussian blobs, together with a

one-hot encoded contextual cue signal (e.g. [0 1] for task 1 and [1 0] for task 2; see Fig 2B. The

network is trained using stochastic gradient descent (SGD) either on blocked data, where it is

exposed to one task at a time over a prolonged training block, or on interleaved data where tri-

als from both tasks are randomly interspersed within a single block (Fig 2C). It is then evalu-

ated on both tasks without supervision (i.e., with no further optimisation).

As expected, the vanilla SGD network suffered catastrophic interference when trained on

each task in succession, with the ability to perform the first task overwritten by training on the

second (Fig 2D). Plotting network choices made during validation as a function of the two fea-

ture values (x- and y-location) revealed that the network applied the category boundary of the

second task to the first task, ignoring the task signal (Fig 2E). However, under interleaved

training, the network converged to perfect performance, learning two orthogonal category

boundaries, one per task. Projecting the hidden layer representations observed during valida-

tion into two dimensions confirmed that this network had learned task-specific manifolds

under interleaved training. Each task was represented by a single axis that only encodes task-

relevant information–the location along the x- or y-axis respectively. The axes were orthogonal

to each other and separated by context along the third direction (Fig 2F, upper), a finding we

had already observed in a previous study [15]. In contrast, after blocked training, the network
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represented the first task as if it were the second, and no longer distinguished between tasks

(Fig 2F, lower).

How did the network learn this representation? Previous work suggested that the pattern

observed under interleaved training can be obtained via non-linear gating, if the context signal

acts as additive bias to filter out irrelevant dimensions via context-dependent deactivation of

units that encode task-irrelevant information [15]. In fact, 20% of units in the hidden layer

became task-selective under interleaved training, responding to the relevant (but not irrele-

vant) dimension in one task and being active in the other task (Fig 2G, upper). Under blocked

Fig 2. Task design, network architecture and results of blocked versus interleaved learning. (A) Task design.

Stimuli were two-dimensional Gaussian functions (“blobs”) for which we systematically varied the location of its peak

along the x- and y- dimensions in five discrete steps. Each subpanel visualises the Gaussian blob input image at that

location in the underlying 2D stimulus space. Only one of the two feature dimensions was relevant per task, so that the

reward (y-label) depended on the x-position in the first task (orange) and y-position in the second task (blue). (B) The

network was a simple feed-forward MLP with a single hidden layer with ReLU non-linearities and received the

flattened images of Gaussian blobs together with a one-hot encoded task signal as inputs. (C) The network was trained

either in a fully interleaved curriculum in which trials from both contexts were randomly interspersed, or in a blocked

curriculum in which it was first trained on one task, and then on the other. (D) Under interleaved training, the

network quickly reached 100% training accuracy on both tasks. In contrast, under blocked training, learning the

second task came at the cost of forgetting how to perform the first task. (E) Plotting the choices of the trained network

in two dimensions revealed that under interleaved training, choices were aligned with the ground truth category

boundaries (shown in (A)), whereas under blocked training, the network treated the first task as if it was the second.

(F) Projections of the hidden layer activity into three dimensions via multi-dimensional scaling (MDS) shows

orthogonal representations under interleaved training, where irrelevant information was suppressed, and parallel

representations under blocked training, where the first task is encoded in the same way as the second task. (G) Under

interleaved training, a significant proportion of hidden units were exclusively selective to the relevant dimension in

one task (but not the other), whereas no such task-selectivity was observed under blocked training. (H) Evolution of

correlation between task weights for both tasks during training. Interleaved—but not blocked—training promoted

learning of anti-correlated task weights.

https://doi.org/10.1371/journal.pcbi.1010808.g002
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learning, however, no such task-selective units emerged, suggesting that the network ignored

the task signal (Fig 2G, lower). We have previously observed that the weights from the task

units to the hidden units become anti-correlated over the course of interleaved training, push-

ing the input to the ReLU to positive or negative values depending on the context [15]. For the

current simulations, this effect is shown in Fig 2H. Under blocked learning, this anti-correla-

tion does not emerge, as the network fails to utilise the task signal (Fig 2H).

Taken together, thus, we found that in the vanilla SGD network, the two tasks were repre-

sented by allocating them independent hidden layer units, using context-dependent gating.

This replicates our earlier report [15]. Under blocked training, the network failed to utilise the

task units to implement this gating scheme, as the task signal was not required to solve individ-

ual tasks in isolation.

Modelling the cost of interleaving with “sluggish” neurons

During validation, humans are less accurate after interleaved compared to blocked training on

the visual categorisation task [6, 25]. In other words, they seem to show opposite behaviour to

the vanilla SGD network, which had lower performance on blocked compared to interleaved

training. We thus sought to develop a theory that could account for these discrepancies and

devise algorithmic motifs that would more closely mimic those performance differences

observed in human participants. How does this cost of interleaved training arise? In the real

world, contexts tend to be temporally autocorrelated. Humans spend prolonged periods of

time in one context, and switches occur intermittently (for example, when you leave the office

to head home for the day, or when you leave the motorway and drive through an urban area).

One possibility, thus, is that participants have an inductive bias that tasks should remain the

same over time, in which case it is rational to condition behaviour not just on current task

cues, but those that occurred in the immediate past [56]. This explanation has been offered for

the ubiquitous observation that people are biased by the cues and responses that occurred on

previous trials, and that switching between tasks incurs a cost to accuracy and RT [59]. Here,

we propose that in humans, these choice history biases create interference during interleaved,

but not during blocked learning (see [53] for a related account). Previously, we hypothesised

that this may lead humans to ignore the context signal and effectively apply the same categori-

sation rule irrespective of the context, which optimises for performance on congruent trials

(those with the same responses across tasks.) (Fig 3A, lower) [25]. In contrast to this linear

solution, with blocked training, human participants can effectively factorise the decision prob-

lem and learn one rule per task (Fig 3A, upper).

To model this cost and tendency towards a linear solution, we introduce the concept of

“sluggish” units, that is, neurons that carry information from previous trials over to the current

trial [57]. We model this sluggishness with an exponentially moving average (EMA, see meth-

ods) with the weight on previous trials controlled by a single parameter, α. Setting α = 0, is

equivalent to the vanilla SGD network described above; other models are “sluggish SGD” net-

works. Increasing α has the effect of decreasing performance at validation overall (Fig 3B). In

Fig 3C, we plot psychometric data, i.e., the effect of α on how response probability varies with

relevant and irrelevant information. Visual inspection suggests that the parameter controls the

extent to which information along the irrelevant dimension is factored into the model’s

choices (Fig 3C).

Plotting the choices in two dimensions offers further insights into the effect of sluggishness.

As α increases, the model moves from learning a factorised solution with one boundary per

task to a linear solution with a single category boundary (Fig 3E). Indeed, the factorised model

fit better for low sluggishness values, whereas the linear model fit better for larger sluggishness
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values (Fig 3F). In other words, the sluggishness introduces a congruency effect, whereby the

network performs much better on trials with the same label across tasks (congruent) compared

to trials with task-unique labels (incongruent) (Fig 3D). At the level of neural representation,

we observed a reduction of the proportion of task-selective hidden layer units (with axis

aligned tuning profile) relative to task-agnostic units (selective for congruent trials) (Fig 3G).

Modelling blocked learning with non-linear gating

While the introduction of “sluggish” neurons imposes a cost on interleaved training, it doesn’t

solve the problem of catastrophic forgetting under blocked training. How can we account for

the ability of humans to learn continuously without substantial forgetting? The vanilla SGD

network trained on interleaved data learned a factorised representation where different popu-

lations of hidden units were allocated to the first and second task. This allocation was achieved

via non-linear gating, implemented by the task weights which connected the task-signalling

units to the hidden layer and pushed the hidden layer activity into the negative/positive input

range of the ReLU non-linearities. We wondered whether this simple gating mechanism that

allocates different subsets of units to different tasks may be sufficient to guard against for-

getting. To test this, we first hand-crafted the gating scheme by manually setting the weights

that connect task units to hidden units to anti-correlated values, such that each unit received a

positive bias in one task and a negative bias in the other (Fig 4A and 4B). We then trained the

remaining units end-to-end on a blocked curriculum. This network no longer forgot how to

perform the first task after it was trained on the second (Fig 4C), which suggests that a simple

Fig 3. Modelling the cost of interleaving with a “sluggish” task signal. (A) Illustration of the cost of interleaved training. The factorised model

(top) assumes that two separate category boundaries are learned, one for each task. The linear model (bottom) assumes that the task signal is

ignored, leading to the acquisition of a diagonal category boundary that yields high performance on both tasks. We hypothesised that interleaved

training would promote a solution as predicted by the linear model. (B) Test phase accuracy of neural networks trained on interleaved data with

different levels of “sluggishness” (exponential average of the task signal). The higher the sluggishness, the lower the task accuracy. (C) Sigmoidal

curves fit to the choices of networks described in (B). The solid lines indicate how the choices depend on the relevant dimension and the dashed line

how they depend on the irrelevant feature dimension. As the sluggishness increases, sensitivity to the relevant dimension decreases and to the

irrelevant dimensions increases. (D) Difference in accuracy between congruent and incongruent trials (i.e., those with the same or different

responses across tasks). The congruency effect depends on the amount of sluggishness. (E) Network outputs (choices) for different levels of

sluggishness. As sluggishness increases, the networks move from learning a “factorised” to learning a “linear” solution. (F) Linear regression

coefficients obtained from regressing the outputs shown in (E) against the models shown in (A), confirming that sluggishness controls whether a

factorised or linear solution is learned. (G) Proportion of units in the hidden layer which are task selective. With increasing sluggishness, fewer

units are exclusively selective for one task.

https://doi.org/10.1371/journal.pcbi.1010808.g003
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gating intervention that partitions the hidden layer may be sufficient to guard against cata-

strophic interference. The outputs of the network were axis-aligned, demonstrating that it

learned accurate representations of the two category boundaries (Fig 4E). At the level of hid-

den units, we observed once again orthogonal and low-dimensional manifolds that encoded

task-relevant and suppressed task-irrelevant dimensions in a context-dependent manner, just

like in the vanilla SGD network trained on interleaved data (Fig 4F). Note that [53] describes a

closely-related set of simulations and equivalent results in this handcrafted setting, and the

result described here is consistent with a previous literature proposing gating as a solution to

continual learning [37, 50].

Anti-correlated task weights via Hebbian learning

Ideally, we would like these gating signals to be acquired without intervention by the experi-

menter. Thus, we introduced another algorithmic motif: the use of a Hebbian learning step fol-

lowing supervision. Due to the one-hot representation of the context variable, the context

units are correlated with those hidden units that encode task-relevant information for the

active context. Consequently, the Hebbian step strengthens the connections between the task

context units and those hidden units encoding task-relevant information and weakens the

connection to units coding for irrelevant information. We use a variant of Hebbian learning

with weight-decay, called Oja’s rule [60, 61]. A well-known property of Oja’s rule is that it con-

verges to the first principal component of the inputs when applied to mean-centred data. Cru-

cially, in our simple case of only two tasks, the direction of largest variance in the mean-

centred input space of our Gaussian blob dataset is spanned by the two task signals (Fig 5A

and 5B). Indeed, when performing weight updates with Oja’s rule on a single hidden unit, that

unit recovered the first principal component of the input dataset, which distinguished between

the two contexts. We observed that the two weights between the context units and the hidden

Fig 4. Blocked training with manual context gating. (A) Illustration of how task weights can be set to values with

opposing signs to activate and deactivate units in the hidden layer while the network is trained on the first task. (B) Same

as (A), but for the second task. Manually settings task weights to anti-correlated values (different signs for first and second

task) ensures that different units are active in each task. (C) Learning curves of networks trained with manual gating,

showing that forgetting has been mitigated. (D) As training progresses, task-selective units emerge for both tasks. Gating

protects units selective for the first task during training on the second task. (E) Network outputs are axis-aligned, just as

seen previously under interleaved training. (F) MDS on the hidden layer revealed orthogonal representations where task-

irrelevant dimensions are attenuated.

https://doi.org/10.1371/journal.pcbi.1010808.g004
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unit converged to values with opposing signs, the desired requirement for non-linear gating

(Fig 5C).

We concluded that Hebbian updates with Oja’s rule could be used to establish links

between the task signal units and active units in the hidden layer. To implement this, we

extended this approach to multiple hidden units, so that each of these would learn to receive

task signals via anti-correlated weights. As for the handcrafted solution in Fig 4, when stimuli

were propagated forward through the network to the hidden layer, those units that had posi-

tive outputs for task A had negative outputs for task B and vice versa. Thus, applying a ReLU

nonlinearity partitions a portion of the hidden layer into task A and task B selective units. To

assess whether this Hebbian learning step would be sufficient to guard against catastrophic for-

getting, we devised a new training scheme in which we alternated the supervised SGD update

and the Hebbian update on each training step (methods). We call this model the “Hebbian

Gating” network. Crucially, we found that this intervention was sufficient to alleviate cata-

strophic forgetting. The performance of the network on the first task remained at ceiling, even

after training on the second task (Fig 5D). Just as in the vanilla SGD network trained on inter-

leaved data, we observed that for the Hebbian Gating network the learned task weights were

anti-correlated even for blocked training (Fig 5F). Thus, the hidden layer was partitioned into

task A and task B selective units (Fig 5E) and the representations embedded in the hidden

layer population response became orthogonal, with compression along the irrelevant dimen-

sions (Fig 5H), a factorisation that was also reflected in two accurate category boundaries at

the output level (Fig 5G).

We note that in practice, the solution is somewhat sensitive to the length of the training

block and requires a carefully tuned balance between the learning rates for the supervised and

Hebbian updates. When we repeated the simulations and systematically increased the length

of the training blocks, whilst keeping all other parameters constant, the network forgot more

about the previous task the longer the training blocks were (S1A Fig). However, even when we

Fig 5. Protection against catastrophic forgetting via Hebbian learning. (A) Biplot on training trials. The axis of largest

variation is spanned by the context signal. (B) Schematic showing why the first component is spanned by the context signal

(for zero-centred inputs). (C) Weights from task units to a single hidden unit, trained with Oja’s rule. Over time, weights

with opposing signs emerge. (D) Learning curve of neural networks trained with SGD and Oja’s rule in alternation. The

network no longer forgets how to perform the first task. (E) Task selectivity of hidden layer units. SGD+Hebbian learning

prevents the network from losing units that are selective to the first task. (F) Hebbian learning induces the desired anti-

correlation between task weights. (G) Network outputs are axis aligned under blocked learning, just as previously seen under

interleaved learning. (H) MDS on the hidden layer, revealing orthogonal representations that encode both tasks without

interference.

https://doi.org/10.1371/journal.pcbi.1010808.g005
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doubled the block length, its performance was still superior to the baseline model trained with-

out the Hebbian updates (S1B Fig).

To summarise, we have demonstrated how a variant of Hebbian learning can be used to

learn anti-correlated weights that connect task units to relevant hidden units, and that alternat-

ing between supervised and Hebbian training updates allows a network trained on blocked

data to learn tasks sequentially without forgetting. Representations formed by the network

were identical to those observed under interleaved training in the vanilla SGD network.

Modelling human continual learning with Hebbian context gating

Next, we assessed whether our two algorithmic innovations, the sluggishness and the Hebbian

update step, were sufficient to reproduce error patterns made by human participants who had

been trained on a comparable task. We re-analysed a dataset from a previous study in which

participants learned to accept/reject images of fractal tree stimuli in two different task contexts,

introduced as the north and south garden [25]. Just as for our Gaussian blobs, trees varied

along two different feature dimensions, corresponding to the density of leaves (“leafiness”)

and number of branches (“branchiness”), of which only a single dimension was relevant for

each task. The participants were trained either on a blocked curriculum, or on a randomly

interleaved curriculum. Crucially, participants whose training phase was blocked performed

better at a subsequent interleaved validation phase, compared to those who received an inter-

leaved training curriculum. Further analyses of the error patterns revealed that these partici-

pants had better estimates of the decision boundaries for each task and were less influenced by

variation along the task-irrelevant dimensions. To assess the effectiveness of our approach, we

compared validation performance after blocked or interleaved training between a neural net-

work with both innovations, the sluggishness and the Hebbian updates (called “sluggish Heb-

bian gating network”), and a standard feed-forward neural network that was trained without

any further algorithmic innovations (“vanilla SGD network”). To perform statistical inference

on the neural networks, we collected 50 independent training runs with randomly initialised

networks per training curriculum. We adapted the learning rates of both networks to make it

possible to learn with the same number of trials as the human participants in the previous pub-

lication (200 trials per task). Even with only such a small number of training trials, the net-

works replicated all key observations reported earlier (S2 Fig). Moreover, in contrast to the

baseline MLP, the network equipped with sluggishness and Hebbian update step qualitatively

recreated all key aspects of the human behavioural data.

First, human participants trained on a blocked curriculum had a higher test accuracy than

those trained on interleaved data (T(93) = 2.32, p = 0.022, Fig 6A, left panel). While the oppo-

site was true for the vanilla SGD network, which suffered from catastrophic interference (T
(98) = -95.94, p<0.0001, Fig 6A, middle panel), the sluggish Hebbian Gating network showed

a similar benefit of blocked over interleaved training at test (T(98) = 5.71, p<0.0001, Fig 6A,

right panel). Our modelling of the impact of sluggishness on task performance revealed a con-

gruency effect: The “sluggish” network performed better on congruent than incongruent trials.

Hence, we wondered whether participants showed a similar congruency effect, and whether

this difference would be larger in the interleaved group, where participants tended to use the

same decision boundary for both tasks. Indeed, human participants showed a strong interac-

tion between the training curriculum and the congruency effect, which was larger under inter-

leaved training (congruency blocked vs interleaved: T(93) = -2.74, p = 0.007, Fig 6B, left

panel). Due to catastrophic forgetting, the congruency effect was much larger under blocked

training in the vanilla SGD network (T(98) = 112.07, p<0.0001, Fig 6B, middle panel), while

our novel training procedure for the sluggish Hebbian Gating network recreated the effect
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observed in humans (T(98) = -5.07, p<0.0001, Fig 6B, right panel). Next, we fitted psycho-

metric functions (sigmoid) to the choices made by human participants and by our models, sep-

arately for the relevant and irrelevant feature dimensions. In humans, slopes for the irrelevant

dimension were significantly steeper under interleaved than blocked training, suggesting that

choices of these participants were stronger influenced by task-irrelevant information (blocked

vs interleaved: T(93) = -2.77, p = 0.0068, Fig 6C, left panel). Choices made by the vanilla SGD

network followed the opposite pattern, with more intrusions from irrelevant dimensions

under blocked training (blocked vs interleaved: T(98) = 82.99, p<0.0001, Fig 6C, middle

panel). In contrast, the sluggish Hebbian Gating network was less influenced by irrelevant fea-

ture dimensions under blocked compared to interleaved training (blocked vs interleaved: T
(98) = -7.32, p<0.0001, Fig 6C, right panel).

How did participants learn the two tasks? The original paper suggested that human partici-

pants learned “factorised” representations under blocked, but less so under interleaved train-

ing. To test this, we fit the factorised and linear model described earlier to the choices made by

the models. For human participants, the factorised model explained choices better under

blocked than under interleaved training (T(93) = 3.07, p = 0.0028, Fig 6D, left panel), while

the opposite was true for the linear model (T(93) = -3.12, p = 0.0024, Fig 6D, left panel). As

expected, the opposite patterns were observed for the vanilla SGD network (T(98) = -79.72,

p<0.0001, T(98) = 27.98, p<0.0001, Fig 6D, middle panel), which learned to factorise the

problem under interleaved, but not blocked training. The sluggish Hebbian Gating network

recreated the patterns observed in humans, suggesting that it learned two accurate decision

boundaries under blocked, but not under interleaved training (T(98) = 3.03, p = 0.0044, T(98)
= -9.30, p<0.0001, Fig 6D, right panel).

However, intrusions from the irrelevant dimensions might not have been the only source of

errors. It was also possible that one group made more unspecific errors (lapses), was less sensi-

tive to information along the relevant dimension or exhibited a systematic bias in the offset of

Fig 6. Modelling the benefit of blocked over interleaved training observed in data from human participants. (A) Test

phase accuracy. Humans perform better under blocked compared to interleaved training, while the baseline model performs

better under interleaved training, due to catastrophic forgetting. Our Hebbian network with sluggish task units performs

better under blocked training. (B) Congruency effect. Just like human participants, under interleaved training, our model

performs worse on incongruent compared to congruent trials. (C) Sigmoidal fits of choices made by human participants, the

baseline network, and our network. Our network recreates the intrusion of irrelevant dimensions observed under

interleaved, but less so under blocked training. (D) Fits of the factorised and linear model to human and network choices. In

contrast to the baseline model, our model recreates patterns observed in humans, where the factorised model fits better

under blocked than interleaved training.

https://doi.org/10.1371/journal.pcbi.1010808.g006
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their learned category boundary. Using a psychophysical model with free parameters for the

angle of the learned category boundary, the number of unspecific errors, the slope and offset

of the sigmoidal transducer showed that the length of training blocks predominantly affected

the accuracy of the category boundary estimate [25]. Our reanalysis of the human behavioural

data confirmed this, with larger angular biases in the interleaved compared to the blocked

group and a significant difference in slope, while differences in lapse and offset parameters

were non-significant (bias: T(93) = -2.54, p = 0.0127, lapse: T(93) = -0.41, p = 0.6807, slope: T
(93) = 2.88, p = 0.0049, offset: T(93) = 0.33, p = 0.7419, Fig 7A). The vanilla SGD network had

a significantly larger angular bias in the blocked group, due to catastrophic forgetting of the

first task (bias: T(98) = 16.51, p = 0.0000, lapse: T(98) = 0.73, p = 0.4721, slope: T(98) = 7.57,

p<0.0001, offset: T(98) = -0.49, p = 0.6260, Fig 7B). In contrast, fits to the sluggish Hebbian

Gating network were similar to those observed in human data (bias: T(98) = -3.91, p = 0.0004,

lapse: T(98) = -3.44, p = 0.0014, slope: T(98) = 2.27, p = 0.0289, offset: T(98) = 0.46, p = 0.6512,

Fig 7C). Taken together, these findings demonstrate how two adjustments to the training pro-

cedure, the introduction of sluggish task signals and a Hebbian learning step that is alternated

with SGD updates, are sufficient to protect against catastrophic forgetting and model the cost

of interleaved training observed in human participants.

Fig 7. Fits of Psychometric model to human behaviour and neural networks. (A) Fits of a psychometric model with

four parameters to choices made by human participants, decomposing error patterns into (i) angular bias of category

boundary (ii) lapse rate (iii) slope and (iv) offset of sigmoidal transducer. Both the angular bias and slope differed

significantly between participants trained on blocked and interleaved curricula. (B) Same as (A) but fitted to the vanilla

SGD network. (C) Same as (A), but fitted to the sluggish Hebbian Gating network.

https://doi.org/10.1371/journal.pcbi.1010808.g007
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Very sluggish task estimates under interleaved training bias internal

representations

Why did the “sluggish” task signal lead to intrusions from irrelevant dimensions? In the origi-

nal paper, we hypothesised that humans benefit from blocked training as it aids the formation

of “factorised” representations, while interleaved learning might induce shared representations

[25]. In subsequent neuroimaging work, we found evidence for such factorised and orthogonal

representations in fronto-parietal areas of the human brain after blocked training [15]. How-

ever, it is less clear how interleaved training might shape internal representations. We

hypothesised that while blocked training with Hebbian updates should lead to orthogonal rep-

resentations, interleaved training might induce representations that preferentially encode con-

gruent stimuli, i.e., those that required the same response across tasks and lie on the main

diagonal of the two-dimensional stimulus space.

To test this, we regressed RDMs from the hidden layer of our models trained with large

sluggishness values and either on blocked or interleaved curricula against a set of candidate

RDMs encoding grid-like, “orthogonal”, or “diagonal” representations. The grid model served

as control and assumed that both feature dimensions were encoded in both tasks, forming a

task-agnostic representation. In contrast, the orthogonal model represented the case where,

starting from this grid model, task-irrelevant feature dimensions were filtered out, leaving a

task-specific representation that encodes the relevant dimension in each context, with the two

representations being orthogonal to each other. Lastly, in the diagonal model, representations

of the stimuli were projected onto the main diagonal of the two-dimensional stimulus space

which corresponded to stimuli that required the same response across tasks (methods).

Indeed, while the orthogonal model explained the patterns best under blocked training (grid vs
orthogonal: T(49) = -347.62, p<0.0001; orthogonal vs diagonal: T(49) = 178.67, p<0.0001), the

diagonal model, which represented congruent stimuli, was the best predictor of hidden layer

activity under interleaved training (grid vs diagonal: T(49) = -109.23, p<0.0001; orthogonal vs
diagonal: T(49) = -73.89, p<0.0001, Fig 8A). How were these representations formed? Assess-

ing the task-selectivity of individual units in the hidden layer revealed that while a sizeable

fraction of units was selective to the relevant dimensions of each task under blocked learning

(41.3%), most hidden units of the network trained on interleaved data were task-agnostic

(99.4%, Fig 8B). Lastly, in the model trained on an interleaved curriculum, readout weights

Fig 8. Very sluggish task estimates under interleaved training bias internal representations. (A) Coefficients

obtained by regressing hidden layer RDMs against three model RDMs, encoding grid, orthogonal or diagonal

representations. The orthogonal model fits best under blocked training, whereas the diagonal model fits best under

interleaved learning, suggesting that the latter aligns the representations with stimuli encountered in congruent trials.

(B) Proportion of task selective units under both curricula. Under blocked learning, more units are task-selective than

under interleaved learning. (C) Magnitude of readout weights, showing that under interleaved learning, the network

relies more strongly on task-agnostic units (which encode congruent trials, see also S3 Fig).

https://doi.org/10.1371/journal.pcbi.1010808.g008
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from those task-agnostic units were significantly larger than those reading out from the task-

selective weights (task agnostic vs 1st task: T(49) = 5.52, p<0.0001; task agnostic vs 2nd task: T
(49) = 5.58, p<0.0001, Fig 8C). Together, these analyses suggest that interleaved training

might not only alter the readout, but also the geometry of task-representations, providing ave-

nues for further empirical research.

Discussion

Previous work has shown that humans perform worse after blocked compared to interleaved

training on multiple categorisation tasks [6, 25]. In contrast, to converge, deep neural networks

require training data to be randomly interleaved, as they suffer from catastrophic forgetting

under blocked curricula. This limits both their performance and their viability as a model of

human learning [1, 25]. Here, we propose a neural network model of human continual learn-

ing which captures this benefit of blocked over interleaved training and recreates several obser-

vations made in human participants at the behavioural and neural level. First, we

demonstrated how a “sluggish” task signal introduces biases in the acquired task representa-

tions which leads to worse performance under interleaved training. We note earlier reports

that have previously proposed similar approaches to account for the cost of interleaving [53,

57]. Secondly, we showed how gating, an inherent property of prefrontal cortex function,

could not only be used to control switching between already learned tasks, but might indeed

play an active role in the acquisition of novel tasks without forgetting. We propose that by aug-

menting standard supervised training with a Hebbian update, this gating scheme can be

learned from scratch. Building directly on previous work on representation learning in

humans and neural networks, we illustrated how these two properties shape neural representa-

tions, and how the emerging representational geometry can influence behaviour. Lastly, we

validated our model by fitting it to previously published human behavioural data, allowing us

to recreate the performance difference between blocked and interleaved training. Decomposi-

tion of these differences into different sources of error revealed that in both human partici-

pants and our model, differences were predominantly driven by a misestimation of the

category boundary under interleaved training.

The idea that sluggish neurons could model costs associated with task switching is not new.

In early models of cognitive control, it was assumed that the PFC has a bias to maintain task

information over time [62]. This “active maintenance” of task information would lead to intru-

sions between competing objectives and could explain why humans usually perform worse

immediately after a switch to a different task [63]. Here, we extended this idea and investigated

how switch costs shape credit assignment during learning, demonstrating that interleaved

training impairs the ability to link relevant perceptual information to the correct contextual

cue.

A key component of our model is non-linear gating of internal representations. Early con-

nectionist models have demonstrated how gating could be utilised by PFC to minimise inter-

ference during multi-tasking [42, 48], and follow-up work suggested that basal ganglia could

control the gating of PFC representations [62]. However, with few exceptions such as [43] and

[15], the gating was usually hand-crafted by the experimenters, and it remained unclear how

these control processes might emerge in the first place. Similarly, a handful of studies have

drawn the link to continual learning and investigated how gating could prevent catastrophic

forgetting, but once again, the process was usually implemented by hand [37, 50, 53]. We dem-

onstrate that a simple biologically inspired intervention (Hebbian learning) is sufficient to

implement this gating strategy. At a representational level, the gating effectively orthogonalises

hidden layer representations by enforcing an axis-aligned coding scheme. Interestingly, a

PLOS COMPUTATIONAL BIOLOGY A neural network model of human continual learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010808 January 19, 2023 15 / 32

https://doi.org/10.1371/journal.pcbi.1010808


recent series of papers has provided converging evidence that the brain might use orthogonal

representations to minimise interference between tasks [15, 40, 41, 64] and some of the more

successful recent engineering solutions to Catastrophic Forgetting employ orthogonalization

of gradient updates of internal representations [30–32]. Here, we propose a biologically

inspired model of how these orthogonal representations could be learned.

A possible limitation of our approach is that it requires that the largest principal component

of the input space is the task/context signal. We note that our solution was designed to meet

two objectives: First, to identify the context signal among all inputs, and secondly to use this

signal for context-dependent gating. In the task we studied, the Hebbian update solved both

problems, as it identified the largest PC in the dataset, which happened to be the context, and

linked it to task-selective hidden units. An alternative formulation of the problem would leave

the context discovery to another mechanism. If we had already identified the source of the

context signal, the Hebbian step could still be used to learn the gating procedure. To demon-

strate this, we ran a complementary simulation in which we applied Oja’s rule exclusively to

the weights from the two task-signalling units to the input of the hidden layer. In this case, our

mechanism still learned to gate out task-irrelevant information (S4 Fig). This begs the question

of how the context could be identified if it was not the largest principle component. One possi-

bility is that attentional mechanisms serve as gain modulation that scales up neural activity

coding for parts of the visual input that represents the context.

Our model appears to be strongly related to a recently published conference submission in

which the authors demonstrated that carrying over task-signals from previous trials leads to

lower performance on interleaved curricula [53]. Like in our work, the authors propose an

implementation of “sluggishness” that is inspired by models of switch costs in PFC and suggest

a simple gating mechanism to prevent forgetting. However, while the authors implemented

this gating scheme manually, we propose a Hebbian training step that can learn this scheme

from scratch. Leaving differences in implementational details aside, both studies provide con-

verging evidence that theories on the role of PFC for cognitive control can be readily extended

to the problem of continual learning.

How could the gating scheme be implemented in neural circuits? Our approach, motivated

by the form of gating that is learned by a network with ReLU non-linearities in the interleaved

setting, used a weighted additive input to the non-linearity. Prefrontal gating-like mechanisms

have often been hypothesised to underlie context-dependent behaviour in humans and ani-

mals, including the gating of sensory information [65, 66] and gating of task-relevant activity

[44–46]. Such gating could be realised for example through top-down additive control [48].

However, a recent comparison of alternatives suggests that tuning this architecture, specifically

using multiplicative forms of gating that act on the output of the non-linearity [37, 62], might

result in greater task accuracy and support generalisation across tasks [52]. Multiplicative gat-

ing could be implemented by neural oscillations [67], neurotransmitters [62, 68] or even

through dendritic properties of neurons [69, 70].

There are several clear avenues for future research. We introduced the notion of sluggish-

ness to account for performance costs observed in human participants under interleaved train-

ing. Similar to other recent accounts, we assumed this sluggishness to be an inherent property

of prefrontal function [53]. Future work could investigate the normative basis of such a coding

scheme. For example, under blocked training, the active maintenance of task signals might

protect against noise in the task signal. Under this account, sluggishness would ensure ongoing

task performance under blocked curricula, even if the task signal could not be read out or was

mislabelled on a subset of trials. An even stronger claim, building on previous work on sequen-

tial effects in human decision making [56], would be that sluggishness might adapt to the vola-

tility of the environment. Future work could investigate if the window over which contextual

PLOS COMPUTATIONAL BIOLOGY A neural network model of human continual learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010808 January 19, 2023 16 / 32

https://doi.org/10.1371/journal.pcbi.1010808


information is averaged depends on the amount of time spent in a single context, or the extent

to which task switches are predictable from recent trial history.

The particular problem we studied provided only limited opportunity for cross-task trans-

fer, and an optimal solution was to partition the network in separate sub-networks, one for

each task, and humans appear to learn such a representation with blocked training curricula. It

should be noted that blocked training is not always advantageous, as there seem to be several

cases in which humans benefit indeed from interleaved curricula [71, 72]. The extent to which

either blocked or interleaved learning is advantageous might depend on the similarity between

the to be learned tasks and hence the opportunity for cross-task transfer [21, 73]. In our simu-

lations, we observed that at the level of hidden units, task-selective units formed receptive

fields that were aligned with the task-relevant dimensions, while task-agnostic units appeared

to be selective for congruent trials, i.e., those that afford the same response across tasks (see

also S3 Fig). Interestingly, sluggish task signals promote the formation of shared representa-

tions that don’t arbitrate among tasks and read out from these task-agnostic units. A predic-

tion that arises from these simulations is that sluggish units might help the learner to find

similarities among tasks that are encountered in close temporal proximity. Consequently, it is

likely that whether sluggishness introduces a cost or benefit for learning depends on the simi-

larity between tasks and their transfer demands, and hence the need for shared or separated

representations [3, 74].

Another possible line of enquiry is lifelong learning. We focused on a simple and tractable

context-dependent decision-making problem with only two tasks, using a small feed-forward

neural network. Future work could investigate how this approach extends to additional tasks,

both at the human behavioural level and in artificial neural networks. We note that our Heb-

bian procedure is in essence achieving a temporal clustering of contextual information, with

the active cluster gating on a set of units and inhibiting the rest. This scheme in principle

might work in richer settings with additional tasks. Real lifelong/continual learning, however,

is likely to involve more than a single Hebbian learning mechanism applied to prefrontal gat-

ing signals. For example, a previous study that has investigated the utility of gating for contin-

ual learning at a scale noted that it was insufficient to protect against forgetting as the number

of tasks increased [37]. By combining gating with a regularisation approach that prevented

task-relevant weights from adapting to novel tasks, the authors were able to overcome this lim-

itation. The importance of regularisation schemes was also noted in another recent paper that

investigated the representations that emerge in neural networks trained on many cognitive

tasks [16]. Future work could investigate how these gating processes interact with other extant

solutions to catastrophic interference, such as memory consolidation and replay of previous

experiences during sleep.

We focussed on a simple context-dependent decision-making problem that could be trivi-

ally solved with a standard feed-forward neural network with a single hidden layer. Future

work could investigate how this solution scales to more complex datasets, tasks, and architec-

tures. As a first step, we ran an additional simulation in which we trained a slightly deeper neu-

ral network with two hidden layers on the actual tree images from the original branch/leaf

task. In this setup, context, signalled by one-hot units, was no longer the largest direction of

variance, unless we multiplied it with a very large scalar weight. Even then, the training process

remained quite unstable. To test whether our approach could in principle still work, we

restricted the Hebbian updates to the weights from the two task units to the hidden layer,

which enabled the network to learn both tasks continually without catastrophic forgetting and

produced error patterns and hidden layer representations very similar to those we had

observed with the “blobs” dataset and the smaller network (S5 Fig). Next, we introduced the

sluggishness and performed a qualitative fit to the human behavioural data, which revealed
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that this architecture could still model the benefit of blocked over interleaved training we had

previously observed in humans (S6 and S7 Figs). We take this to imply that the two algorith-

mic motifs, Hebbian learning for context-gating and sluggishness, can be applied to slightly

more complex input datasets and bigger networks. However, gating strategies might be partic-

ularly suitable for context-dependent decision making with orthogonal rules, as the problems

can be trivially solved by filtering out irrelevant dimensions. Related work has shown how reg-

ularisation approaches can be used to learn a much larger variety of cognitive tasks, such as

delayed-match-to-sample and go/no-go paradigms [16]. Future studies could test how our

approach extends to these paradigms and when it might break down. Another line of inquiry

could explore sluggishness and Hebbian gating in more biologically plausible architectures

that involve recurrence. Previous work has demonstrated that hand-crafted gating strategies

[37] and weight orthogonalization procedures [33] can be adapted to RNNs. While the slug-

gishness could trivially be implemented in such an architecture, more work would be required

to adapt the Hebbian update step.

To conclude, we introduced two algorithmic motifs to augment vanilla neural networks

trained with stochastic gradient descent, “sluggish” task signals and a Hebbian update step,

which together are sufficient to model the benefit of blocked over interleaved training previ-

ously observed in humans. Furthermore, investigation of the learned representations suggests

that blocked training might promote the formation of orthogonal representations, like those

observed in biological brains, while interleaved training leads to shared representations that

optimise for congruent trials. Taken together, we provide a biologically inspired model of

human continual learning, grounded in previous work on representation learning and the

function of prefrontal cortex.

Materials and methods

Software

All simulations were implemented in Python 3.9 with the PyTorch 1.71 package. Hyperpara-

meter tuning was carried out with the RayTune 1.10 package. Parallelisation was implemented

with the joblib 1.0.1 package. Stimuli were generated in Python with the NumPy 1.19.2 and

SciPy 1.60 packages. All statistical analyses were carried out in Python with the Pandas 1.2.3,

NumPy 1.19, SciPy 1.60, Statsmodels 0.13 and Scikit-Learn 0.24.1 packages. Figures were gen-

erated with Matplotlib 3.3.2.

Stimulus design

Stimuli were grayscale images of two-dimensional Gaussian functions with isotropic covari-

ance. We varied the mean of these Gaussian “blobs” in five discrete steps along the x- and y-

coordinate, creating a 5x5 grid of possible stimulus locations inside these image patches. The

Gaussian blobs were partially overlapping. This gave the network some information about the

two-dimensional structure of the stimulus space, which would not have been the case with a

conventional one-hot encoding of stimuli.

Task design

We trained feedforward neural networks on a context-dependent decision-making problem,

where only a single dimension of the Gaussian blobs (either the x-or y-location) was relevant

for each task/context. Each task was defined by a category boundary that divided this space

either along the horizontal (first task) or vertical axis (second task). In each task, the network

had to learn to “accept” stimuli from one category and “reject” stimuli from the other category.
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Neural network architecture

For all simulations, we used a feed-forward neural network with 25 input units (for the flat-

tened and downscaled grayscale images) and two additional task units, a hidden layer with 100

Rectified Linear Unit (ReLU) non-linearities and a sigmoidal output unit. Weights from the

input to the hidden layer were initialised with draws from a zero-mean Gaussian distribution

with variance σ2 = 0.01. Readout weights were initialised with draws from a zero-mean Gauss-

ian with variance s2 ¼ 1ffiffiffiffiffiffiffiffiffiffi
nhidden
p . All biases were initialised to zero.

Training procedures

All networks were trained on 10000 trials, 5000 per task. In the interleaved curriculum,

trials from both tasks were randomly shuffled. In the blocked curriculum, the networks

were first trained on all 500 trials from one task, and then on all trials from the other task.

Following our previous publication [25], we used a custom loss function which was -1 times

the reward associated with “accepting” a Gaussian blob. This was implemented by multiply-

ing the output of the network function (which was in the range 0 to 1 due to the sigmoid)

with -R:

JðyÞ ¼ � f ðx; yÞR

Rewards ranged from -2 to 2 in steps of 1, hence covering all 5 levels of the feature value

along the relevant dimension. Hence, the network was encouraged to “accept” rewarding and

“reject” non-rewarding stimuli. At the end of the training phase, we evaluated the network’s

performance on 50 test trials spanning all combinations of task (2), x-position (5) and y-posi-

tion (5) of the stimuli. For each simulation, we collected 50 independent training runs with

randomly initialised neural networks.

Baseline model. The baseline network was trained with vanilla Gradient Descent, applied

via Backpropagation to all network weights after each trial:

Wtþ1  Wt � �rWt Jðxt; yÞ

with a learning rate of � = 0.2 for the interleaved and � = 0.03 for the blocked curriculum.

Sluggishness. We modelled the “sluggishness” property of the task signals with an Expo-

nentially Moving Average (EMA), which was applied to the task units on each trial. The EMA

has the following recursive definition:

xEMA
t ¼

x1 fort ¼ 1

ð1 � aÞxt þ axEMA
t� 1

fort > 1

(

where the hyperparameter α controls the extent to which information from previous trials is

carried over to the current trial. To investigate the impact of the sluggishness on task perfor-

mance, we trained the baseline model (see above) on an interleaved curriculum for a linearly

spaced range of 20 α values ranging from 0 to 0.95 and a fixed learning rate of � = 0.2. We col-

lected 50 independent training runs with randomly initialised networks for each of these

values.

Continual Learning with manual gating. To investigate the impact of non-linear gating

on continual task performance, we manually set the weights connecting the task units with

each hidden unit to values with opposing signs. More specifically, all “odd” hidden units

received a negative bias in the first task and positive bias in the second, whereas all “even”
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hidden units received the opposite:

wh
i ¼

½1; � 1� fori 2 f1; 3; 5 . . . ; n � 1g

½� 1; 1� fori 2 f2; 4; 6; . . . ; ng

(

We trained the remaining weights of the network with vanilla SGD, just as described for

the baseline model above. The learning rate was set to � = 0.01. The network was trained on a

blocked curriculum, and we collected 50 independent training runs.

Continual Learning with Hebbian updates and SGD. To protect against interference

under blocked training, we devised a novel training procedure which consisted of alternating

the standard SGD update and a Hebbian learning step. The Hebbian update enabled the net-

work to strengthen associations between the task units and hidden units that carried task-rele-

vant information, while suppressing the output of units with task-irrelevant information. In

the following, we motivate this solution from well-known first principles. Hebbian learning

strengthens connections between units that are co-activated. Given inputs x and linear hidden

units y connected to the inputs via weight matrix W as follows, where j indexes the hidden unit

and i the input unit:

yjðxÞ ¼
Xn

i¼1

wixi ¼ wT
j x

Hebbian learning performs weight updates proportional to the co-activation of x and yj:

Dwij ¼ Zxiyj ¼ Zxi
Xn

i¼1

wixi

or for the entire vector of weights from inputs to a single hidden unit:

Dwj ¼ Zxyj ¼ Zx
Xn

i¼1

wixi

The weight updates for standard Hebbian learning are unbounded, which means that

weights continue to grow as training progresses. A conventional solution to this problem is to

introduce weight decay, leading to the well-known Oja’s rule [60]:

Dwj ¼ Zyjðx � wjyjÞ

Oja’s rule converges to the first principal component of the dataset, such that w encodes the

first eigenvector and y the first eigenvalue of the input covariance matrix [60]. This can be seen

by slightly rearranging the terms. In the following, for convenience, we re-derive the analogy

between PCA and Oja’s rule for the interested reader. First, in the classical formulation of Heb-

bian learning, we set the learning rate η to 1 and introduce an average over multiple trials.

Below, i indexes a single input unit for which we compute the correlation with a single hidden

unit y, and j is the index running over all input units from 1 to n:

Dwi ¼ hyxii

Dwi ¼ h
Xn

j

wjxjxii ¼
Xn

j

wjhxjxii

Dw ¼ hxxTiw ¼ Cw
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With this formulation, the growth of weights w depends solely on the input-input correla-

tion matrix C. Now recall that the update equation for Oja’s rule is given by

Dw ¼ yðx � wyÞ ¼ yx � y2w

Introducing the average over multiple examples yields

Dw ¼ hyxi � hy2iw

The equilibrium for this equation is reached when the first term on the right is equal to the

second, or in other words, when:

hyxi ¼ hy2iw

Cw ¼ hy2iw

From the definition of eigenvalues, it follows that w is an eigenvector of C and hy2i = σ2 its

corresponding eigenvalue. Further, the dynamics grow fastest in the direction of the eigenvec-

tor with maximal eigenvalue, such that w will converge to the largest principal component of

the input data. Applied to the blobs task, this means that weights from the task units to some

of the hidden units are positive for one task and negative for the other, while the opposite is

true for other units. Together with the supervised learning step, this should allow the network

to strengthen positive weights between the active task units and task-relevant hidden units,

and negative weights between this task unit and task-irrelevant hidden units. Once the net-

work is exposed to a new task, the opposite mapping should be learned for connections

between the second task unit and the hidden layer. We implemented this procedure as follows.

For each trial and corresponding input sample xt, we first applied the standard SGD update via

backpropagation to all network parameters:

Wtþ1  Wt � �rWt Jðxt; yÞ

This was then followed by a Hebbian update to the weights from the task units to the hid-

den layer, where y corresponds to the hidden layer activation of the j-th hidden unit prior to

the non-linearity and each wj corresponds to a vector of weights from all task-units to the j-th

hidden unit:

wtþ1

j  wt
j þ Zyjðxi � wt

jyjÞ

We trained the network on a blocked curriculum as described above, with a learning rate of

� = 0.0377 for the SGD and η = 0.00021 for Hebbian updates with Oja’s rule. We collected 50

training runs with independent random initialisations of all network parameters. One might

object that mean-centring the task-signal introduces knowledge about the second task during

training on the first, as the one-hot inputs [1,0] were converted to [0.5, -0.5]. To overcome

this, we used a one-hot signal for the first task and introduced a mean-centred signal for the

second task during training. Semantically, this would correspond to first learning how to per-

form the first task, and then how to do the second task while suppressing information learned

about the first.

Modelling human continual learning. To model human continual learning, we reduced

the number of training trials to 200 per task and combined the sluggishness and Hebbian

update procedure outlined above as follows: On each trial, The task signal received by the
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network was mixed with the signal carried over from previous trials:

xEMA
t ¼

x1 fort ¼ 1

ð1 � aÞxt þ axEMA
t� 1

fort > 1

(

Next, we performed a forward pass through the network and calculated the loss as -1�R:

JðyÞ ¼ � sðx; yÞ � R

This was then used to perform an SGD update of the network parameters, with a learning

rate of � = 0.0905 for the blocked curriculum and � = 0.0926 for the interleaved curriculum:

Wtþ1  Wt � �rWt Jðxt; yÞ

Lastly, the task weights were updated with Oja’s rule, with a learning rate of η = 0.0026 for

the blocked and η = 0.000327 for the interleaved curriculum:

wtþ1

j  wt
j þ Zyjðxi � wt

jyjÞ

Notably, in all of these comparisons with human data, we trained the neural networks on

the same number of training trials as the human participants from the previous study (200

training trials per task). We performed an extensive hyperparameter search to find learning

rates for which the networks would reliably reach ceiling performance (S2 Fig).

In contrast to the neural network model, Human participants never performed at ceiling

on test trials with novel stimuli, not even after extensive training on the tasks. To model this

residual cost, we introduced decision noise at test by passing the network’s logits through a sig-

moid with temperature parameter T that controlled its sensitivity to changes in the input:

s xð Þ ¼
1

1 � exp � x
T

� �

At test, we sampled 10000 choices per input from the trained model by comparing its out-

put to a random uniform variable X U(0,1):

y ¼
1 forsðx;WÞ � X

0 forsðx;WÞ < X

(

To fit this model to human choices, we performed a grid search over a range of values for

the α and T parameters that controlled the amount of sluggishness and decision noise respec-

tively and chose those values that produced outputs which closely resembled the choices made

by human participants.

Quantification and statistical analyses

Test accuracy. To compute accuracy during training and test, we evaluated whether the

network accepted the rewarding and rejected the non-rewarding trials. Excluding the bound-

ary trials for which the decisions were arbitrary, accuracy was calculated as follows:

p correctð Þ ¼
1

n

X

i

1f ðxi ;WÞ>0:5¼Ri>0

Choice matrices. To visualise the choices made by the network, we averaged outputs

across trials for each of the 50 unique types of test trials (5 x-positions, 5 y-positions, 2 tasks)
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and rearranged these outputs into two 5x5 matrices where each entry corresponds to the frac-

tion of “accept” responses for this type of stimulus.

Task selectivity. We performed a regression-based analysis to determine task-selectivity

of individual neurons. We regressed their activity against four predictors, coding for the value

of relevant and irrelevant feature dimensions of each trial, separately for each task:

yunit ¼ b0 þ b1relDim1sttask þ b2irrelDim1sttask þ b3relDim2ndtask þ b4irrelDim2ndtask

Following procedures explained in detail in [15], we defined a unit as being task-selective if

its output scaled with the feature value along the relevant–but not irrelevant—dimension of

one task, and was zero for the other task. This definition results directly from the rectifying

property of ReLUs, which are linear for positive inputs and return zero for negative inputs. It

only counts those units as task-selective that have receptive fields aligned with task-relevant

information and doesn’t consider units that happen to be active in one task, but not the other.

Hidden layer Representational Similarity Analysis (RSA). We performed representa-

tional similarity analysis (RSA) to investigate the geometry of hidden layer activity patterns of

the trained neural networks. First, we collected activity patterns for all 50 conditions (5 x-posi-

tions, 5 y-positions, 2 tasks), yielding a 50-x-n_hidden matrix of activity patterns for each indi-

vidual training run. Next, we created 50x50 representational dissimilarity matrices (RDMs) by

computing the pairwise Euclidean distance between all 50 patterns. For visualisation purposes,

we then averaged these RDMs across training runs (separately for the blocked and interleaved

curriculum) and projected them down into 3 dimensions using classical Multi-Dimensional

Scaling (MDS). As MDS is rotation-invariant, we manually rotated the resulting projection so

that axes of the projection were aligned with the figure axes, which made it easier to compare

the geometry across conditions (and models). To get quantitative insights into the geometry of

these patterns, we regressed these RDMs against a set of model RDMs that encoded (a) grid-

like, (b) orthogonal or (c) diagonal patterns at the level of individual runs. Let the vectors for

x- and y-position be x = [−2,−1,0,1,2]T and y = [−2,−1,0,1,2]T. Let the task vector be defined as

t = [0,1]T. Let the matrix of all possible ordered tuples of context, x- and y-position be:

X50x3 ¼ fðti; xi; yiÞ : ti 2 t; xi 2 x ^ yi 2 yg

The grid-like RDM was constructed by computing the pairwise Euclidean distances

between all rows of X.

The orthogonal model RDM was obtained by projecting stimuli into task-relevant axes, so

that only the x-position was encoded for the first task, and only the y-position for the second

task, leaving a representation where two orthogonal one-dimensional manifolds were sepa-

rated along a third axis that encoded the task. Let XA be the submatrix for the first task and XB

the submatrix for the second task:

Xgrid ¼
XA

XB

" #

Let YA be the projection matrix for the first task and YB the projection matrix for the second

task:

YA ¼

1 0 0

0 0 0

0 0 1

2

6
4

3

7
5
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YB ¼

1 0 0

0 1 0

0 0 0

2

6
4

3

7
5

Then, the orthogonal model corresponded to stacking XAYA and XBYB:

Xorth ¼
XAYA

XBYB

" #

The diagonal model corresponded to a neural representation that only differentiated

between stimuli along the diagonal from low x- and y-values to high x- and y-values. This

assumed that participants learned a single boundary for both tasks and optimised for a strategy

that led to 70% correct in both tasks. We constructed this diagonal model RDM with the pro-

jection XPT where:

P ¼

1 0

0 cosð45Þ

0 sinð45Þ

2

6
4

3

7
5

Xdiag ¼ XgridP
T

To estimate the extent to which each of these models explained the geometry of representa-

tions in the hidden layers of our neural networks, we performed a multiple linear regression at

the level of individual runs, in which we regressed the hidden layer RDM against the set of

model RDMs, after z-scoring and vectorising the lower-triangular form of each RDM:

RDMhidden ¼ b0 þ b1RDMgrid þ b2RDMorth þ b3RDMdiag

For statistical inference at the group-level, we performed t-tests against zero on each set of

regression coefficients.

Comparison with Human behavioural data. We followed procedures described in [25]

for our re-analysis of the behavioural data. In the original study, there were four groups that

differed in the amount of “blockiness” during training, ranging from a fully blocked curricu-

lum where participants were trained on one task and then the other, to a fully interleaved cur-

riculum in which trials were randomly interspersed. In our re-analysis, we focus on the two

extremes, called the “blocked 200” group and “interleaved” group in the original publication.

As the calculation of the sigmoidal fits, model-based RSA and fits of the psychophysical model

were identical to those described in the original paper, we’re providing an abbreviated version

of the methods below.

Sigmoid fits. To estimate sensitivity of choices made by the networks/human participants

to the relevant and irrelevant feature dimensions, we fit sigmoidal curves at the level of individ-

ual runs/participants. First, responses were averaged across test trials and tasks within each of

the five bins along a given dimension. Next, we fit a sigmoidal curve of the following form to

the data, using the curve_fit function of the SciPy package:

s xð Þ ¼
Lþ ð1 � 2LÞ

1 � expð� kðx � x0ÞÞ

where L controlled the proportion of nonspecific errors (lapses), k the slope and x0 the offset
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of the sigmoid. Statistical inference was performed on the group-level distributions of the indi-

vidually estimated parameters.

Factorised/Linear model. To calculate the extent to which the neural networks/human par-

ticipants learned a factorised solution, comprised of one accurate category boundary per task, or a

linear solution, where the same boundary was applied to both tasks, we performed a model-based

representational similarity analysis on the network outputs / behaviour. First, we created choice

matrices (see above) for each network run / at single subject level. We then constructed two

model choice matrices, the factorised and the linear model. In the factorised model, all entries cor-

responding to rewarding trials were set to 1, and entries corresponding to non-rewarding trials

were set to zero. Category-boundary trials were set to 0.5. In the linear model, we assumed a diag-

onal category boundary distinguishing between trials that were rewarding/non-rewarding irre-

spective of context and set the corresponding entries in the two matrices to 1, 0.5 and 0

respectively. We then concatenated the flattened choice matrices for the first and second task and

constructed RDMs from the resulting vectors using the squareform and pdist functions from the

SciPy package. The empirical RDMs, constructed from the network output / human behaviour

were then regressed against the two model RDMs at the level of single runs / subjects.

Psychophysical model. To decompose errors made by the neural networks / human partici-

pants into different sources, we fit a psychophysical model with five free parameters to individual

runs / participants. The model had parameters for the angles of the decision boundaries in the

two-dimensional stimulus space, as well as the slope, offset and lapse-rate of a sigmoidal trans-

ducer. The model projected the 2D stimulus space onto an axis perpendicular to the decision

boundary and fed the projected values through a sigmoid to generate choice probabilities. Let Xa

and Xb be the 25x2 matrices of coordinates for the stimuli of the first and second task, where each

row corresponds to the x- and y-location of the peak of a Gaussian “blob”. The first two free

parameters θa and θb determined the angle of the line onto which these stimuli were projected:

Xproj ¼
Xa½cosðyaÞ; sinðyaÞ�

T

Xb½cosðybÞ; sinðybÞ�
T

" #

Next, the projected values were passed through a sigmoidal transducer with free parameters

for the lapse rate L, the slope k and the offset x0:

ŷ Xprojð Þ ¼
Lþ ð1 � 2LÞ

1 � expð� kðXproj � x0ÞÞ

We fit this model to empirical data by minimising the following loss function that quanti-

fied the mismatch between the model’s output and the choices made by the network / human

participant:

Jðy; ŷ; y; L; k; x0Þ ¼ �
X

i

logð1 � jyi � ŷiðy; L; k; x0ÞjÞ

Minimisation was performed with the L-BFGS algorithm as implemented in the minimise

function of the SciPy package, with constraints set on the range of parameter values so that

angle theta in [0,359], slope in [0,20], offset in [–1,1] and lapse in [0, 0.5].

Supporting information

S1 Methods. Supplementary methods, explaining how a neural network was trained on

RGB images of fractal trees.
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S1 Fig. Impact of block length on forgetting. (A) Impact of block length on forgetting of the

first task in network trained with SGD and Hebbian updates on blocked curriculum. Hyper-

parameters were optimised for a block length of 200 epochs and kept the same for all other

training lengths. Even with more than twice as many training epochs, the network was still

able to perform the first task well. (B) Same as (A) but for network trained without Hebbian

updates.

(TIFF)

S2 Fig. Replication of key findings with network trained only on 8 episodes. We repeated

the main simulations with the two baseline nets, which were only trained with vanilla SGD,

either on interleaved or blocked data, and the network trained both with SGD + Hebbian

updates on a blocked curriculum. Hyperparameters were optimised for each net separately.

The results show that key findings can be replicated, even if the networks receive as few trials

as human participants in the original study. (A) Training accuracy for the vanilla net, trained

on interleaved or blocked trials, and the Hebbian net, trained on blocked trials. The vanilla net

converges on interleaved data but suffers from catastrophic interference under blocked train-

ing. In contrast, the Hebbian network’s performance on the first task remains at ceiling. (B)

Fraction of units that became purely task selective. While overall, the fractions were much

lower than in the networks trained on 200 episodes, more task-selective units were found in

the vanilla network trained on interleaved data and the Hebbian network trained on blocked

data, compared to the vanilla network that received a blocked training curriculum. (C) Corre-

lation between context weights. Interleaved training with a vanilla network and blocked train-

ing with the Hebbian intervention both induced anti-correlated context weights. The vanilla

network trained on blocked data failed to utilise the context signal. (D) Network responses.

The vanilla network trained on blocked data treated the first task as if it was the second. The

other two networks learned accurate estimates of the category boundaries. (E) MDS on the

hidden layer activity patterns. The vanilla network trained on blocked data filtered out the

dimension that was irrelevant for the second task but applied the same strategy to the first task.

In contrast, the vanilla network trained on interleaved data and the Hebbian network trained

on blocked data formed orthogonal representations, also consistent with our previous reports.

(TIFF)

S3 Fig. Weights from input units to task-selective and -agnostic units in the hidden layer.

(A) Learned weights for vanilla network, trained on interleaved data. Each heatmap shows

averages of the weights from the input layer to hidden units that are selective to either the first

or second task, or task-agnostic, reshaped from a 25x1 vector to a 5x5 matrix to resemble the

dimensionality of the input images. The plots indicate that task-selective units are associated

with weights that select for the task-relevant dimensions (position along the x- and y- axis

respectively), while the task-agnostic units code for stimuli that have the same response across

tasks (= congruent trials). (B) Same as (A) but for network trained additionally with Hebbian

updates on a blocked curriculum. A very similar structure was observed.

(TIFF)

S4 Fig. Continual learning with Hebbian step applied exclusively to task units. Our

approach solves two problems, how to discover the context signal and how to use it to gate out

irrelevant dimensions. The former requires that the context/task signal is the largest principal

component in the dataset. We note, however, that the mechanism still protects against cata-

strophic forgetting if the Hebbian updates are only applied to task units (instead of all inputs)

and it is assumed that the task signal has already been identified among the inputs. This is

shown here. (A) Learning curves for network trained with SGD and Hebbian updates on
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blocked curriculum. (B) Emergence of task-selective units in the hidden layer. (C) Correlation

between weights from task-units in the input layer to the hidden layer. (D) Choices made by

the network at the end of training. (E) Projections of learned hidden layer representations into

three dimensions.

(TIFF)

S5 Fig. Replication with tree images and deeper MLP. (A) Stimuli and task rules. Instead of

Gaussian blobs, we used RGB images of fractal tree images from the original study. Trees var-

ied in five discrete steps in terms of their density of branches (“branchiness”) and leaves (“leafi-

ness”). Only one of the two dimensions was relevant in each context/task. (B) Network

architecture. Once again, we used a feed-forward neural network, but this time with two hid-

den layers with ReLU non-linearities. Inputs were flattened and normalised RGB images of

trees, together with a one-hot encoded task signal that indicated whether the network was

doing the first or the second task. (C) Learning curves for vanilla network trained just with

SGD on either interleaved (top) or blocked (middle) data, and Hebbian network that was

trained on blocked data with SGD and Hebbian updates (bottom). Learning curves were simi-

lar to those observed with the simpler network and Gaussian blobs. (D) Outputs of the three

networks. The vanilla network trained on blocked data treated the first task as if it was the sec-

ond. The other two networks learned accurate category boundary estimates. (E) MDS applied

to patterns in both hidden layers of the three networks. The baseline network, trained on inter-

leaved data formed orthogonal representations in the first hidden layer (1st row, left) and par-

allel representations in its second layer (1st row, right). These parallel representaitons were

obtained by rotating one of the task manifolds from the previous layer by 90 degrees, to bring

both into the frame of reference of the response, so that leafiness of the first task was mapped

onto the same axis as branchiness of the second task. The network trained on blocked data, in

contrast, just represented branchiness, which was relevant for the second task, and did not dis-

tinguish between contexts (2nd row). The network trained with Hebbian updates on blocked

data (3rd row), in contrast, learned similar representations as the baseline network trained on

interleaved data.

(TIFF)

S6 Fig. Comparison of human behavioural results from Flesch et al., 2018 [25] to MLPs

trained on fractal tree images. Same analysis as shown in Fig 5 (main text), but for MLPs that

were trained on the same fractal tree images as human participants. (A) Test phase accuracy.

Both humans and the sluggish network trained with additional Hebbian updates (EMA

+Hebb) perform better under blocked compared to interleaved training (humans: T(93) =

2.32, p = 0.022; EMA+Hebb: T(98) = 3.81, p = 0.0005). The baseline network, only trained

with SGD (“Baseline”) suffered from catastrophic interference (accuracy

blocked < interleaved: T(98) = 73.94, p< 0.0001). (B) Congruency effect. Just like human par-

ticipants, under interleaved training, our model performs worse on incongruent compared to

congruent trials (humans: T(93) = 2.73, p = 0.0075, EMA+Hebb: T(98) = 7.03, p< 0.0001).

(C) Sigmoidal fits of choices made by human participants and the two types of MLPs. The

EMA+Hebb network makes choices similar to human participants, with more intrusion from

irrelevant dimensions under interleaved compared to blocked training (humans: T(93) =

28.25, p< 0.0001, EMA+Hebb: T(98) = 5.13, p< 0.0001). The baseline network doesn’t cap-

ture human choice patterns. (D) Fits of the factorised and linear model to human and network

choices. For humans and the EMA+Hebb model, the factorised model fits better under

blocked than interleaved training (humans: T(93) = 3.07, p = 0.0028, EMA+Hebb: T(98) =

5.14, p< 0.0001), while the opposite was true for the linear model (humans: T(93) = -3.12,

p = 0.0024, EMA+Hebb: T(98) = -4.39, p = 0.0001). Error patterns of the baseline model show
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the opposite pattern (Factorised model blocked < interleaved: T(98) = -40.86, p < 0.0001, lin-

ear model blocked > interleaved: T(98) = 13.06, p< 0.0001).

(TIFF)

S7 Fig. Fits of Psychometric model to human behaviour and MLPs trained on fractal trees

images. (A) Fits of a psychometric model with four parameters to choices made by human

participants, decomposing error patterns into (i) angular bias of category boundary (ii) lapse

rate (iii) slope and (iv) offset of sigmoidal transducer. Both the angular bias and slope differed

significantly between participants trained on blocked and interleaved curricula (bias: T(93) =

-2.54, p = 0.0127, slope: T(93) = 2.88, p = 0.0049). (B) Same as (A) but fitted to the MLP that

was trained on fractal trees images with vanilla SGD. (C) Same as (A), but fitted to the outputs

of an MLP that was trained on the trees images with sluggishness and additional Hebbian

updates. Patterns resembled those observed in human participants (bias: T(98) = -5.47,

p< 0.0001, slope: T(98) = 2.86, p< 0.0001).

(TIFF)
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