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SUMMARY
How do neural populations code for multiple, potentially conflicting tasks? Here we used computational sim-
ulations involving neural networks to define ‘‘lazy’’ and ‘‘rich’’ coding solutions to this context-dependent
decision-making problem, which trade off learning speed for robustness. During lazy learning the input
dimensionality is expanded by random projections to the network hidden layer, whereas in rich learning hid-
den units acquire structured representations that privilege relevant over irrelevant features. For context-
dependent decision-making, one rich solution is to project task representations onto low-dimensional and
orthogonal manifolds. Using behavioral testing and neuroimaging in humans and analysis of neural signals
from macaque prefrontal cortex, we report evidence for neural coding patterns in biological brains whose
dimensionality and neural geometry are consistent with the rich learning regime.
INTRODUCTION

Humans and other primates can exhibit versatile control over

behavior in rapidly changing contexts (Passingham and Wise,

2012). For example, we can switch nimbly between sequential

tasks that require distinct responses to the same input data, as

when alternately judging fruit by shape or size and friends by

gender or age (Roy et al., 2010; Mante et al., 2013; Saez et al.,

2015; Takagi et al., 2020). Human studies havemapped the brain

regions that exert control during task performance (Koechlin

et al., 2003; Kerns et al., 2004; Yeung et al., 2006; Cole et al.,

2016) or measured the processing costs incurred by task

switches (Monsell, 2003; Brown et al., 2007). However, how

the neural representations that support context-dependent

task performance are acquired remains a key open question

for cognitive and neural scientists (Gao and Ganguli, 2015; Mas-

trogiuseppe andOstojic, 2018; Cueva et al., 2020; Dubreuil et al.,

2020; Badre et al., 2021; Freund et al., 2021).

One recently popular theory proposes that stimulus and

context signals are projected into a high-dimensional neural

code, permitting linear decoding of exhaustive combinations of

task variables (Fusi et al., 2016). Indeed many neurons, espe-

cially in prefrontal and parietal cortex, exhibit nonlinear mixed

selectivity, multiplexing information over several potentially rele-

vant task variables (Rigotti et al., 2013; Raposo et al., 2014; Tang

et al., 2019) with errors heralded by a collapse in dimensionality

(Rigotti et al., 2013). This high-dimensional randommixed selec-
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tivity offers great behavioral flexibility because it maximizes the

potential for discrimination among diverse combinations of in-

puts but also implies that neural codes should be relatively un-

structured and task agnostic. An alternative theory states that

neural representations are mixed selective but structured on a

low-dimensional and task-specific manifold (Ganguli et al.,

2008; Sadtler et al., 2014; Gao and Ganguli, 2015; Chaudhuri

et al., 2019; Cueva et al., 2020) where correlated patterns of firing

confer robustness on the population code (Zohary et al., 1994).

Representations may adapt so that irrelevant task information

is wholly or partially filtered out in ways that minimize interfer-

ence between tasks (Cohen et al., 1990; Miller and Cohen,

2001), consistent with accounts emphasizing that neural codes

are sculpted by task demands (Duncan, 2001) or through atten-

tion to scenes and objects (Çukur et al., 2013). The question of

whether neural codes are task agnostic or task specific speaks

to core problems in neural theory with widespread implications

for understanding the coding properties of neurons and neural

populations (Yuste, 2015; Saxena and Cunningham, 2019).

Here we studied the dimensionality and geometry of neural co-

des supporting sequential context-dependent task performance

in both neural networks and the human brain. We first formalized

a continuum of solutions to the problem using the framework

provided by feedforward neural networks. An emergent theme

in machine learning research is that neural networks can solve

nonlinear problems in two distinct ways, dubbed the ‘‘lazy’’ and

‘‘rich’’ regimes, which, respectively, give rise to high- and
lished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Task design and behavioral findings
(A) Illustration of the 2D stimulus space. Each image shows the category boundary (dashed line) and reward or penalty (red-green color) for choosing to plant in a

specific context (signaled by blue frame and orange frame).

(B) Example trial sequence. Participants were asked to ‘‘accept’’ (plant) or reject a tree by pressing one of two buttons. Frame color signaled context. Participants

received rewards and penalties for planting trees.

(C) Mean accuracy improved from baseline to scan. Each dot is a participant.

(D) Choicematrices show themean probability of choosing ‘‘plant’’ for each tree (defined by a level of leaf and branch density) in each context for both the baseline

(top) and scanner (bottom) sessions.

(E) Parameters of the psychophysical model between baseline and scan: offset, slope, angular bias, and lapse rate. Each dot is a participant. **p < 0.01.

(F) Fits of linear and factorized model at baseline and scan. Each dot is a participant. Error bars indicate SEM. See also Figure S1.
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low-dimensional representational patterns in the network hidden

units (Chizat et al., 2018; Jacot et al., 2018; Arora et al., 2019; Lee

et al., 2019;Woodworth et al., 2020). In the lazy regime, which oc-

curs when weights in the hidden layers are initialized with draws

from a distribution with high variance, the dimensionality of the

input signals is expanded via random projections to the hidden

layer such that learning is mostly confined to the readout weights.

In the rich regime, which occurs under low initial variance, the hid-

den units instead learn highly structured representations that are

tailored to the task demands (Saxe et al., 2019;Geiger et al., 2020;

Woodworth et al., 2020; Paccolat et al., 2021). We used neural

network simulations to characterize the nature of these solutions

for a canonical context-dependent decision-making setting and

employed representational similarity analysis to explore their neu-

ral geometry. Subsequently, we compared these observations to

BOLD (blood-oxygen-level-dependent) data recorded when hu-

mans performed an equivalent task and to neural signals previ-

ously recorded from macaque prefrontal cortex (PFC) during

context-dependent decisions (Mante et al., 2013). In humans,

we found that dorsal portions of the PFC and posterior parietal

cortex share a neural geometry and dimensionality with networks

that are trained in the rich regime. This solution involves repre-
senting distinct tasks as low-dimensional and task-specific neural

manifolds in a way that minimizes interference and maximizes

robustness among potentially competing responses (Koay

et al., 2019). Task-relevant features were mapped onto orthog-

onal dimensions in neural state space. Relative to these, task-

irrelevant features were strongly attenuated, suggestive of a rich

encoding scheme. Neural signals in the twomonkeys were heter-

ogenous but we see strong support for these orthogonal mani-

folds in one animal, with neural signals in the other strongly biased

toward a single input dimension as previously reported (Mante

et al., 2013; Aoi et al., 2019).

RESULTS

We focus on a canonical paradigm involving context-dependent

classification of D-dimensional stimuli xði; jÞ˛RD, which vary

along two underlying dimensions i and j, for which correct deci-

sions depend on i in task A and j in task B. Healthy human par-

ticipants (n = 32) categorized naturalistic (tree) stimuli, with the

correct class given by ‘‘branch density’’ in one context and

‘‘leaf density’’ in the other (Figures 1A, 1B, and S1). We varied

these two dimensions parametrically to generate an n-by-n
Neuron 110, 1258–1270, April 6, 2022 1259
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Figure 2. Neural network architecture and effect of weight scale on learning speed and robustness

(A) In each context, the network had to predict either the x- or y-position of the mean of two-dimensional Gaussian blobs.

(B) Norm of the hidden weights at convergence (upper) and overall change in weights from input to hidden layer (lower), both varied with initial weight scale (x axis

and green-blue color scale).

(C) Same as (B), but for hidden-to-output weights.

(D) We trained a feedforward neural network with a single hidden layer of ReLU nonlinearities on the tasks. Inputs were flattened images of Gaussian blobs and a

one-hot encoded context cue.

(E) Variance explained after the retention of 1–10 principal components of hidden layer activity (x axis) under different initial weight scales.

(F) Network accuracy as a function of retained components. Note that the rich networks (lower initial weight scale) are more robust to compression.

(G) Episodes to convergence as a function of initial weight scale. Lazy networks converge faster.

(H) Network performance with differing levels of input noise. Rich networks are more resilient to noise. See also Figure S2. All error bars indicate SEM.
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grid of unique stimuli in which the density of branches and leaves

were independent by design. The dimensions were a priori un-

known to participants (Flesch et al., 2018). Accuracy increased

with training, jumping from 64% ± 2% to 88% ± 2% between

an initial baseline and a final test conducted in the fMRI scanner

(t29 = 11.1, p < 0.001; Figure 1C). Using a psychophysical model

to decompose errors into distinct sources, we found that this

improved performance was due neither to a steepening of the

psychometric curve (slope: p = 0.120), nor to a reduction in de-

cision bias (offset: p = 0.319), although the scan session was

characterized by fewer generic lapses (lapse: Z = �3.5, p <

0.001; Figure 1E). Instead, the fitted estimation error for the cate-

gory boundary fell from 27� to 7� (angular bias: Z = �4.1, p <

0.001; Figure 1E). In a previous study (Flesch et al., 2018), we

quantified behavioral response patterns in this trees task by

fitting a model that made choices according to the two orthog-

onal ground truth boundaries (Flesch et al., 2018). This ‘‘factor-

ized’’ model fit better than a ‘‘linear’’ model that learned a single

boundary for both tasks, a finding we replicate here (Figure 1F;

scan phase: factorized > linear t29 = 17.61, p < 0.0001, phase

3 model interaction: t29 = �10.84, p < 0.0001). In other words,

despite having no prior knowledge of the tasks or stimulus
1260 Neuron 110, 1258–1270, April 6, 2022
space, participants learned over the course of training to apply

the orthogonal category boundaries appropriately in each

context (Figure 1D).

The initial weight scale of a neural network controls a
trade-off between learning speed and robustness
To understand the evolution of neural codes supporting this

behavior, we trained neural networks with gradient descent to

perform a simplified version of the context-based categorization

task. For simplicity, we replaced trees with stylized images (con-

taining Gaussian ‘‘blobs’’) that were classified according to their

mean x or y coordinate in two interleaved contexts (task A and

task B) and signaled to the network via unique input nodes (Fig-

ures 2A and 2D). As expected from theoretical results (Chizat

et al., 2018; Woodworth et al., 2020), the norm of the weights

at convergence (Figure 2B, upper) and overall change in input-

to-hidden layer weights over learning (Figure 2B, lower) de-

pended strongly on initial connection strengths (Kruskal-Wallis

test on whidden: H = 235.269, p < 0.0001; Kruskal-Wallis test on

Dwhidden: H = 234.51, p < 0.0001), while the change of readout

weights was substantial and differed only slightly across training

regimes (Kruskal-Wallis test on wout: H = 199.5, p < 0.0001;



A

D E F

C

0.0 0.5 1.0 1.5 2.0 2.5 3.0
init w

0.0

0.5

1.0

es
tim

at
e
(a
.u
.) grid model

orthogonal model
parallel model

(rich) (lazy)

Model RSA on hidden layerMDS: Hidden layer, rich regime ( = 0.01)B

mds dim 1

m
ds

di
m
2

mds dim 2

m
ds

di
m
3

Task A
Task B

x-position
y-position

mds dim 1

m
ds

di
m
2

mds dim 2

m
ds

di
m
3

MDS: Hidden layer, lazy regime ( = 3.0)

0.01 0.1 0.2 0.3 0.4 1.0 2.0 3.0
initial σw

−1

0

1
Task A
Task B

lo
g(

)
co
m
pr
es
si
on

re
le
va
nt

irr
el
ev
an
t

co
m
pr
es
si
on

0.01 0.1 0.2 0.3 0.4 1.0 2.0 3.0
initial σw

−90

−60

−30

0

30

60

90
ro
ta
tio
n
(°
)

0.01 0.1 0.2 0.3 0.4 1.0 2.0 3.0
initial σw

0

1

2

co
nt
ex
to
ffs
et
(a
.u
.)

Figure 3. Geometry of representations in hidden layer of trained neural network

(A) 3D representation of hidden layer representations for each stimulus feature (x- and y-position, dot color, and size) in each context (connecting lines, orange,

and blue) after training in the lazy regime.

(B) Same as (A) but for training in rich regime. Note the emergence of orthogonal manifolds that compress along the irrelevant dimension aligned with dimensions

1 and 2.

(C) Fits of RDMs encoding grid, orthogonal, and parallel representational schemes to the neural network data as a function of initial weight scale. The orthogonal

model (dark blue line) fits best in the rich regime, and the grid model (cyan line) fits best in the lazy regime.

(D–F) Estimates for compression, rotation, and offset of the parameterized RSA model. The best-fitting RDM is characterized by parametrically varying

expansion or contraction of representation on the relevant or irrelevant dimension (D), context-dependent rotation of the stimulus axes from native space into

the reference frame of the response (i.e., from orthogonal to parallel model; E), and separation between contexts (F). See also Figure S6. All error bars

indicate SEM.
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Kruskal-Wallis test onDwout: H = 172.077, p < 0.0001; Figure 2C).

Hereafter, we refer to the extremes along the continuum of

weight variances as rich (s = 0.01) and lazy (s = 3.0) regimes.

Applying principal-component analysis (PCA) to the hidden layer

patterns revealed that the final representations were more low-

dimensional under rich learning, with just six principal compo-

nents needed to explain 95% of the variance under rich learning

and nine under lazy learning (Figure 2E). Critically, however, the

rich regime proved more tolerant to a challenge that reduced the

dimensionality of hidden unit activity: only three out of six com-

ponents were needed to maintain ceiling performance, whereas

eight out of nine were required under lazy learning (Figure 2F).

Although learning was up to ten times faster in the lazy regime

(convergence speed lazy > rich: t29 = 125.846, p < 0.0001; Fig-

ure 2G), the highly structured representations acquired during

rich learning conferred robustness, also making performance

more tolerant to the addition of Gaussian input noise (accuracy

rich > lazy: t29 = 14.55, p < 0.0001; Figure 2H). In other words,

networks initialized in the lazy regime rapidly learned to solve

the task by reading out from an approximately fixed nonlinear

high-dimensional random representation, whereas those initial-

ized in the rich regime converged more slowly but exhibited

strong representation learning in the input-to-hidden weights.

These solutions offer complementary costs and benefits for rep-
resentation learning (speed versus robustness) of task-related

variables.

Neural network simulations suggest two possible
representational schemes for context-dependent
decision making
Next, we used representational similarity analysis (RSA) and

multidimensional scaling (MDS) to visualize the neural geome-

try of the network hidden units at convergence under either

regime (Figures 3A and 3B). During lazy learning (s = 3.0) the

similarity is mostly driven by the structure of the input space

(including the task context) (Figure 3A); this is expected

because the input weights remain close to their initial values

and random high-dimensional projections approximately pre-

serve distances between inputs (Gao et al., 2017). However,

during rich learning (s = 0.01) hidden unit activity varies with

context: in task A, neurons code for dimension x but not y,

with the converse true for task B. In other words, task-irrele-

vant features were attenuated in each context, transforming

the neural ‘‘grid’’ into two manifolds, each coding for a task-

relevant dimension. Specifically, each context has a com-

pressed and an uncompressed axis, forming a rectangle in

the plane, and we hereafter call the geometry ‘‘orthogonal’’

when the respective compressed and uncompressed axes
Neuron 110, 1258–1270, April 6, 2022 1261



ll
OPEN ACCESS Article
are perpendicular across tasks. Thus, the network learned to

transform the inputs in a way that might minimize intrusions

from irrelevant features in each context (Figure 3B) (Koay

et al., 2019). This was confirmed by fitting model representa-

tional dissimilarity matrices (RDMs) to the hidden unit patterns

at convergence (Figure S2A): a grid model that encoded the

space spanned by the two feature dimensions and context

fit best for lazy solutions and an orthogonal model that en-

coded only task-relevant dimensions along orthogonal axes

fit best for rich solutions (grid model, lazy > rich: t29 = 29.02,

p < 0.0001; orthogonal model, rich > lazy: t29 = 20.26, p <

0.0001; Figure 3C). Both models explained the patterns better

than a parallel model that represented an encoding of the

value of stimuli along two parallel planes, obtained by rotating

one of the task manifolds from the orthogonal model by 90 de-

grees (grid model > parallel model: t29 = 74.69, p < 0.0001;

orthogonal model > parallel model: t29 = 82.61, p < 0.0001,

Figure 3C). We also used RSA in conjunction with a parametric

model-fitting approach. Rather than fitting models encoding

extremes of compression, rotation, and context separation,

now we built RDMs by varying these factors continuously.

Fitting this parameterized model to the neural network data

confirmed that compression along irrelevant dimensions was

larger under rich than lazy learning (t29 = 49.77, p < 0.0001;

Figure 3D). The estimated rotation parameter was close to

zero (Figure 3E), which suggests that information was kept in

the frame of reference of the inputs, yielding orthogonal and

grid-like representations in the rich and lazy regimes, respec-

tively. In both regimes, a third dimension encoded context,

indicated by a non-zero offset parameter (Figure 3F). Net-

works trained in the rich or lazy regime converged at different

rates, suggesting that the chosen learning rate might have an

impact on the representations acquired by the networks. How-

ever, repeating the simulations for a range of different learning

rates revealed that while this hyperparameter choice had

some impact on the weight change, the overall difference in

weight changes and representations between rich and lazy

learning was independent of learning rate (Figures S2B–

S2D). Taken together, a simple neural network can solve the

tasks either by employing high-dimensional and task-agnostic

or low-dimensional and task-specific representations. The

variance of weights at initialization determines how learning

dynamics shape representational geometry.

Human fMRI reveals task-specific representations
consistent with those predicted by the rich training
regime
How, then, are task representations structured in biological

brains? Our simulations furnished predictions about the neural

geometry we should expect to see in BOLD data acquired during

the final phase of our experiment. Univariate tests replicated

standard findings, including the heightened BOLD signal in PFC

on task switch relative to stay trials (Figures S3A and S3B), the

correlation between BOLD signal and decision certainty in poste-

rior parietal (Tosoni et al., 2008) and medial orbitofrontal cortex

(Basten et al., 2010) (Figures S3C and S3D), and an encoding

of choice value (Boorman et al., 2011) in ventromedial prefrontal

cortex (vmPFC), anterior cingulate cortex (ACC), and the striatum
1262 Neuron 110, 1258–1270, April 6, 2022
(Figure S3E). However, to investigate neural geometry, we once

again turned to amore powerful multivariate analysis of the activ-

ity patterns (RSA). We used model RDMs encoding grid, orthog-

onal, parallel, and various control patterns to predict brain activity

using a spherical searchlight across the whole brain (Figures S2A

and S4A). Crucially, we observed strong correlations with the

‘‘orthogonal’’ model in threemajor foci: the dorsolateral prefrontal

cortex (DLPFC; t30 = 9.79, p < 0.001 corrected, peak [46 14 24]),

the mid-cingulate cortex (MCC; t30 = 9.51, p < 0.001 corrected,

peak [8 21 49]), and the posterior parietal cortex (PPC; t30 =

8.87, p < 0.001 corrected, peak [39�45 45]; Figure 4A). A similar

effect was observed in a left prefrontal region that the univariate

analysis had revealedwas sensitive to task switches, but the fit of

the orthogonal model did not differ between switch and stay trials

(Figure S4E). In early visual regions, neural data RDMs were best

predicted by amodel in which dissimilarities dependedmainly on

branch density (t30 = 6.98, p < 0.001 corrected, peak

[22�84�3]), but no other models explained a significant amount

of variance in the neural RDMs (Figure 4A). Repeating this RSA

with independently defined regions of interest (ROIs) confirmed

that the branchiness model fit best in early visual cortex (EVC)

(Bonferroni-corrected a = 0.0071; Grid: t30 = 3.46, p = 0.0008;

Rotated Grid: t30 = 0.93, p = 0.1809; Orthogonal: t30 = 1.76, p =

0.0442; Parallel: t30 = �0.75, p = 0.7692; Branchiness: t30 =

4.74, p < 0.0001; Leafiness: t30 = �3.43, p = 0.9991; Diagonal:

t30 =�1.20, p = 0.8805; Figure 4E) whereas the orthogonal model

fit best in DLPFC (Grid: t30 = 0.60, p = 0.2758; Rotated Grid: t30 =

�0.19, p = 0.5746; Orthogonal: t30 = 8.18, p < 0.0001; Parallel:

t30 =�1.31, p = 0.8999; Branchiness: t30 = 0.19, p = 0.4259; Leaf-

iness: t30 =�1.59, p = 0.9388; Diagonal: t30 =�1.28, p = 0.8949),

PPC (Grid: t30 = 1.31, p = 0.1007; Rotated Grid: t30 = �0.56, p =

0.7086; Orthogonal: t30 = 7.77, p < 0.0001; Parallel: t30 = �1.41,

p = 0.9149; Branchiness: t30 = �0.35, p = 0.6354; Leafiness:

t30 = �2.19, p = 0.9816; Diagonal: t30 = �2.73, p = 0.9947), and

MCC (Grid: t30 = 1.08, p = 0.1448; Rotated Grid: t30 = 0.82, p =

0.2093; Orthogonal: t30 = 7.17, p < 0.0001; Parallel: t30 = �1.88,

p = 0.9648; Branchiness: t30 = �0.50, p = 0.6908; Leafiness:

t30 = �1.26, p = 0.8914; Diagonal: t30 = �2.18, p = 0.9815; Fig-

ure 4E). To verify that EVC encoded both dimensions irrespective

of the task, whereas fronto-parietal regions employ partially

compressed and orthogonal representations, we fit a support

vector machine (SVM) with linear kernel and binary outputs to

the relevant feature dimensions (high versus low for branchiness

and leafiness) in each region and assessed the cross-validated

decoding performance along the relevant and the irrelevant

dimension in the same and other tasks. In all regions, decoding

accuracy along the relevant dimension of the task that the

decoder had been trained on was significantly above chance

(Bonferroni corrected a = 0.0125; EVC: t30 = 8.99, p < 0.0001;

DLPFC: t30 = 4.41, p = 0.0001; MCC: t30 = 5.54, p < 0.0001;

PPC: t30 = 4.13, p = 0.0003; Figure S4C). The same dimension

in the other task could be reliably decoded in EVC but not in

the other regions, again suggesting that those regions attenuated

irrelevant dimensions relative to the relevant ones (Bonferroni

corrected a = 0.0125; EVC: t30 = 8.44, p < 0.0001; DLPFC: t30 =

2.32, p = 0.0275; MCC: t30 = 1.22, p = 0.232; PPC: t30 = 1.85,

p = 0.0736; Figure S4C). To statistically compare representations

in these regions, we conducted a Bayesian model comparison
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Figure 4. Task representations in human fMRI and macaque unit recordings

(A) Results from searchlight RSA. Left: voxel regions where neural similarity patternsmatched the branchiness RDM. Right: voxels where neural similarity patterns

matched the orthogonal RDM. All data are corrected for multiple comparisons.

(B) Data from parametric RDM fits. Error bars indicate SEM.

(C) Low-dimensional projections of fMRI data from within ROIs taken from visual, parietal, and frontal regions, reconstructed from coefficients of regression

model described in (B).

(D) Correlation between neural task factorization (fits of orthogonal model to neural data) and behavioral axis alignment (fits of factorized model to choice

matrices). Each dot is a participant.

(E) Results from fitting the seven model RDMs to four independently defined ROIs, showing task-agnostic encoding in EVC and task-specific encoding in fronto-

parietal areas. Error bars indicate SEM.

(F) MDS projection of data from monkey A. Stimulus features are now color and motion; data from Mante et al. (2013).

(G) Fits of orthogonal, grid, and control RDMs to data frommonkey A. Error bars indicate ± 2 standard deviation of RSA on shuffled data (1,000 permutations). See

also Figures S3 and S4. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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(RFX BMS) of linear regressions with andwithout the branchiness

or orthogonal model RDM, fit separately to EVC, DLPFC, PPC,

and MCC. Protected exceedance probabilities that quantify

how likely it was that the same model explained patterns in

EVC and DLPFC/PPC/MCC were extremely low (EVC and

DLPFC: pep = 0.000329, EVC and MCC: pep = 0.0029, EVC

and PPC: pep = 0.000191). RFX BMS within each region

confirmed again that the branchiness model explained most of

the patterns in EVC, while the orthogonal model yielded the

best fit in DLPFC/MCC/PPC (Table S1 and Figure S4B). To

summarize, in fronto-parietal areas, neural codes were largely
structured as predicted by rich learning, with representations

in each context projected onto orthogonal neural axes that

are elongated along the relevant feature dimension and com-

pressed along the irrelevant feature dimension. In contrast,

representations in early visual areas were largely unaffected by

context.

Fronto-parietal representations in the human brain are
task-specific and low-dimensional
Next, we fit the parametric RSA model to the neural data within

each independently defined ROI to quantify the extent to which
Neuron 110, 1258–1270, April 6, 2022 1263
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irrelevant information was attenuated in each context. This

confirmed that in DLPFC/PPC/MCC, the neural code was com-

pressed along irrelevant relative to relevant dimensions and re-

mained in the naive (input) space rather than being rotated into

the frame of reference of the response (‘‘accept’’ versus

‘‘reject’’ irrespective of context) (EVC Compression Leafiness

Task: z = 2.25, p = 0.0242; Compression Branchiness Task:

z = 4.10, p < 0.0001; Offset: z = 4.86, p < 0.0001; Rotation:

z = 1.49, p = 0.1364; DLPFC Compression Leafiness Task:

z = 4.53, p < 0.0001; Compression Branchiness Task: z =

4.86, p < 0.0001; Offset: z = 4.86, p < 0.0001; Rotation: z =

1.14, p = 0.2557; MCC Compression Leafiness Task: z =

4.84, p < 0.0001; Compression Branchiness Task: z = 4.80,

p < 0.0001; Offset: z = 4.86, p < 0.0001; Rotation: z = 0.27,

p = 0.7838; PPC Compression Leafiness Task: z = 4.80, p <

0.0001; Compression Branchiness Task: z = 4.84, p <

0.0001; Offset: z = 4.86, p < 0.0001; Rotation: z = 0.53, p =

0.5967; Figure 4B). When we used MDS to visualize the best-

fitting model RDMs for each region in three dimensions, the

task-specific encoding of relevant dimensions along orthog-

onal manifolds in dorsal stream regions of interest can be

clearly seen (Figure 4C). Finally, in neural networks rich learning

is characterized by a low-dimensional neural code. Interest-

ingly, PCA on the neural data suggested that patterns in

fronto-parietal regions were higher dimensional than in EVC

(number of principal components [PCs] needed to explain

95% of variance: EVC/DLPFC/PPC/MCC: 9/15/19/19; Fig-

ure S4F). However, by systematically removing components

from the data using PCA on the BOLD patterns within each

candidate ROI and repeating the RSA on this reduced space,

we revealed that reliable correlation with the orthogonal mani-

folds RDM required just two components in each region of in-

terest and that there was no measurable benefit in maintaining

more than six PCs in total (Figure S4D). Similar patterns were

seen for the grid model in EVC (Figure S4D). In other words,

the neural representations seem to be embedded in a low-

dimensional subspace focused on task-relevant stimuli, as

predicted by rich learning.

Neural task factorization predicts behavioral axis
alignment
Next, we attempted to link these neural patterns to behavior. In

theory, if participants had learned to filter out irrelevant dimen-

sions, one would expect that their category judgements

showed fewer signs of intrusions from those dimensions. The

factorized model that was fit to human choices quantified

the extent to which these were aligned with the ground truth

category boundaries. This yielded an ‘‘axis alignment’’ score

for each participant, which was correlated with the orthogo-

nality of neural task representations across the cohort in

PPC (Kendall’s taua = 0.27, p = 0.038), MCC (Kendall’s

taua = 0.36, p = 0.005), and DLPFC (Kendall’s taua = 0.38,

p = 0.003; Figure 4D). In other words, the category judgements

of participants with more factorized neural representations re-

spected more orthogonal category boundaries, suggesting a

link between the extent to which task information is embedded

in orthogonal manifolds and the ability to avoid mutual interfer-

ence between tasks.
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NHP single-cell data exhibits representations as
predicted by rich learning
BOLDdata offers at best an indirect window on neural coding, so

we additionally capitalized on a freely available dataset

describing single-neuron activity in frontal eye fields (FEF) while

macaques performed an equivalent context-dependent decision

task on stimuli with varying color and motion coherence (Mante

et al., 2013; Aoi et al., 2019). We focus on the results from mon-

key A because our analyses (and those reported previously) indi-

cate that FEF neurons recorded from monkey F were only very

weakly sensitive to motion even when it was decision-relevant

(Aoi et al., 2019) (Figure S5D). First, we built a pseudo-population

from all the recorded neurons and visualized its neural geometry

in two dimensions withMDS. This revealed two orthogonal mani-

folds, each coding for one of the two task-relevant axes, similar

to the ones observed in BOLD data and predicted by neural net-

works trained in the rich regime (Figure 4F). Indeed, when we fit

the candidate RDMs used above to the dataset, the orthogonal

RDM fit best for monkey A (grid model: p = 0.027, orthogonal

model: p < 0.0001, only color model: p = 0.006; Figure 4G); an

RDM coding for color alone fit best for monkey F (grid model:

p = 0.004, orthogonal model: p < 0.0001, only color model: p <

0.0001; Figure S4I). Training a linear SVM on the patterns re-

corded in monkey A confirmed that the task-relevant, but not

the task-irrelevant, dimension could be reliably decoded (same

task, relevant dimension: p < 0.0001; other task, irrelevant

dimension: p = 0.064; Figure S4G). We also tested dimension-

ality of these neural geometries using a similar PCA-based

approach to the one above; the ability to decode orthogonal

manifolds dropped sharply when fewer than three components

were retained, suggesting that directions of highest variance

were aligned with the task-relevant dimensions of context, color,

and motion (Figure S4H). This analysis suggests that the orthog-

onal manifolds identified with the RSA lie embedded in a very

low-dimensional manifold and indicates that the effect observed

in human BOLD may generalize across species and recording

methods.

Task-specific representations can be achieved via non-
linear gating
How does this neural coding scheme prevent interference

among tasks? Early work on attention and cognitive control sug-

gests that a gating mechanism could be employed to selectively

activate units that encode information that is relevant for the task

(Miller and Cohen, 2001). The classic model of cognitive control

implements this gating with hard-coded biases that move activ-

ity in and out of the linear range of sigmoidal nonlinearities in the

network’s hidden layer (Cohen et al., 1990). In contrast to this

earlier work, our neural network is trained end-to-end on the

task without enforcing the gating scheme by hand. How then

do task-specific representations emerge under rich learning?

We reasoned that orthogonal manifolds could emerge if the

weights linking each context unit to the hidden layer were anti-

correlated. Anticorrelated weights ensure that distinct subsets

of hidden units are active in each context because neurons

that receive negative net input in one context (and that therefore

are inactive because of the rectified linear [ReLU] activation func-

tion) will receive positive net input (and be active) in the other. By
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wiring only the task-relevant stimulus dimension to the active

population in each context, information along the irrelevant

dimension is thus effectively zeroed out by the nonlinearity,

creating an independent subspace for each task (Figure 5A).

This would allow the network to factorize the problem, encoding

the task-relevant information in away that avoidsmutual interfer-

ence (Figures 5B–5D).

Empirical evidence in neural networks and NHP
recordings supports gating theory
This theory makes several testable predictions. First, it implies

that most neurons should be mixed selective, responding to

combinations of stimuli and task variables. Second, however, it

implies that this mixed selectivity should be structured in the

rich regime, with most units in the hidden layer responding spe-

cifically to the combination of task-relevant stimulus dimension

and task. Indeed, we observed that up to � 60% of hidden units

responded exclusively under one task or the other during rich

learning (Figure 6A). Visualizing the receptive fields of the hidden

layer units revealed that under rich learning, weights into task-

specific units were aligned with the relevant feature dimensions,

whereas under lazy learning, more heterogenous selectivity pat-

terns were observed (Figure S5A). Investigating themagnitude of

the readout weights confirmed that the network relied mostly on

those task-specific units to make predictions (Figure S5B). Inter-

estingly, when we conducted a comparable analysis for non-hu-

man primate (NHP) data, we found that the majority (� 65%) of

significantly responsive units were also selective to either color

in the color task or motion in the motion task, although there

was strong bias toward the color task (Figure 6E). Third, the the-

ory predicts that in neural networks the context weights should

be anticorrelated. This is indeed the case on average in the

rich regime (Figure 6B) and especially for most task-specific neu-

rons (Figure 6C), which became anticorrelated as training pro-

gressed. In contrast, those neurons that converged to being

task-agnostic were those that received strong, positively corre-

lated input from two context units at random initialization, and

this input remainedpositively correlated after training (Figure 6D).

It thus seems likely that the initial sign of the connections from

the context units to each hidden unit determines whether it is
destined to be a task-agnostic or task-specific unit during

training. We cannot test this in NHP data, but we can compare

the response profiles of neurons defined as task-agnostic and

task-specific in both model systems, revealing how their re-

sponses vary with stimulus input in either context. The theory

predicts that task-specific units show a coding preference for

relevant feature dimensions (with irrelevant features mapped

onto units that are deactivated by the ReLU). This is exactly

what is seen in both the neural network (Figures 6F–6G; factor-

ized model > linear model: z = 4.781, p < 0.0001, d = 0.873)

and the NHP data, where the responses of task-specific units

are aligned to the two choice axes (Figures 6I–6J; factorized

model > linear model: z = 4.643, p < 0.0001, d = 0.558). By

contrast, in neural networks the remaining �35% of active units

coded for a residual policy that collapses across both contexts

(‘‘task agnostic’’), resembling the ‘‘linear’’ model described

above (Figures 6F–6G; linear model > factorized model z =

4.781, p < 0.0001, d = 0.873). Very similar task-agnostic

response patterns were observed in NHP neurons that re-

sponded significantly to stimuli but did not differentiate substan-

tially between dimensions (Figure 6I). Just as in the neural

network simulations, responses of these single units were best

explained by the linear model (Figure 6J; linear model > factor-

ized model: z = 4.033, p < 0.0001, d = 0.749). A final prediction

of this theory is that, in the rich regime, performance depends

critically on the task-specific neurons but not on those displaying

task-agnostic selectivity. In the neural network, we thus con-

ducted an ablation study in which the output of either the task-

agnostic or task-specific neurons was set to zero at evaluation.

Performance was unimpaired by the loss of task-agnostic units

but dropped to �70% after task-specific units were removed,

consistent with the use of a single linear boundary across the

two contexts (Figure 6H). In contrast, under lazy learning, there

was no substantial difference between ablating task-specific or

task-agnostic units (Figure S5C). How did performance depend

on these units? The analyses of the receptive fields suggest that

under rich learning—but not under lazy learning—removing task-

selective units should only impair performance on one task, not

on the other task for which units were not selective. This is in fact

what we observed (Figure S5C). As task-agnostic units ignored
Neuron 110, 1258–1270, April 6, 2022 1265
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Figure 6. Neural network and NHP data in support of gating theory

(A) Proportion of task-agnostic and task-specific units in the neural network as a function of initial weight scale.

(B) Distribution of empirically observed correlation coefficients among context unit weight vectors in the neural network.

(C and D) Same as (B) but separated out by ‘‘task-specific’’ and ‘‘task-agnostic’’ units as defined in (A). Note the anticorrelation in task-specific units (and overall).

(E) Distribution of selectivity of single units in monkey A, using similar criteria as in (A).

(F) Hidden unit selectivity for each relevant and irrelevant stimulus feature in each context. Note that task-specific units (lower panels) are mostly sensitive to

relevant versus irrelevant dimension, whereas task-agnostic units code for an interaction between features.

(G) Quantification of results in (F) using fits of linear versus factorized model. The factorized model fits best to task-specific units, and the linear model to task-

agnostic units.

(H) Results of ablation study. Ablating task-specific, but not task-agnostic, units is detrimental to performance.

(I) Same as (F), but for example units from monkey A.

(J) Same as (G), but for monkey A. See also Figure S5. All error bars indicate SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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the context under rich learning, removing the task-specific units

should impair performance on incongruent, but not on

congruent, trials. Again, this was confirmed by our simulations

(Figure S5E). We noticed a subtle congruency effect in human

behavior (Figure S5F), in line with the small angular bias in their

decision boundaries and the observation that irrelevant informa-

tion was not fully filtered out. Together, these findings support a

model of context-dependent decision-making whereby the

network learns to gate information into orthogonal subsets of

hidden units (of a neural network) or subspaces in PFC (of hu-
1266 Neuron 110, 1258–1270, April 6, 2022
mans and NHPs) in a way that minimizes mutual interference.

This scheme emerges when context input weights are

anticorrelated.

DISCUSSION

The work described here makes three distinct contributions. The

first is to formalize solutions to the learning of a canonical

context-dependent classification paradigm using a feedforward

connectionist (or ‘‘deep learning’’) framework (Richards et al.,
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2019; Saxe et al., 2021). We do this by drawing upon recent work

in machine learning research, which distinguishes among the

learning regimes that occur when deep networks are initialized

with high-variance (lazy) or low-variance (rich) weights (Rigotti

et al., 2013; Fusi et al., 2016; Chizat et al., 2018; Jacot et al.,

2018; Arora et al., 2019; Lee et al., 2019; Geiger et al., 2020;

Woodworth et al., 2020). We derive predictions from these re-

gimes for the context-dependent classification task, a paradigm

that has been well studied before using both single-neuron elec-

trophysiology (Mante et al., 2013; Aoi et al., 2019) and neuroi-

maging (Takagi et al., 2020) methods.

The second contribution is to assess these predictions using

behavioral testing and functional neuroimaging in human partic-

ipants and reanalysis of a dataset recorded frommacaque mon-

keys performing an equivalent task. In humans, we find that, over

the course of training, participants learned about the structure of

the stimulus space and correctly inferred the orientation of the

two category boundaries. After training, we observe a stylized

neural geometry in the parietal and prefrontal cortices that

closely matches the predictions of the ‘‘rich’’ regime, wherein

stimuli are projected onto orthogonal subspaces on a low-

dimensional manifold. A similar pattern was observed in the

NHP data. Together, these data speak to a debate about

whether humans and other primates learn to solve complex

tasks by forming high-dimensional (and task-agnostic) or low-

dimensional (and task-specific) neural codes and offer striking

evidence for comparable coding principles in humans, non-hu-

man primates, and artificial neural networks.

The third contribution is an insight into the computational prin-

ciples that allow the context-dependent decision task to be

solved. We show that a combination of anticorrelated context in-

puts and ReLU (or ReLU-like) nonlinearities allows the network to

effectively learn to gate task information according to context.

This allows us to predict how mixed-selective neurons code for

relevant and irrelevant features in both neural networks and

NHPs and to anticipate the effects of silencing task-agnostic

versus task-specific neurons on performance. We note that for

the NHP task, where inputs arrive over time, our simple theory

models the representation at late times after stimulus presenta-

tion. Adding recurrent connectivity yields a model exhibiting a

‘‘late selection’’ mechanism and fixed stimulus input directions

across contexts, two key hallmarks identified in prior analyses

(Mante et al., 2013; Aoi et al., 2019) (see Figures S5G–S5J).

There has been a recent resurgence of interest in neural net-

works (or ‘‘deep learning models’’) as computational theories

of biological brains (Richards et al., 2019; Saxe et al., 2021). A

common approach is to use linear methods to examine similar-

ities between the representations formed in biological systems

(e.g., multi-neuronal or multivoxel patterns) and in the hidden

units of deep networks. One corollary of our findings is that the

relationship between representations formed in biological and

artificial networks can critically depend on the variance of the

weights at initialization. For example, when the initial weight

scale is large, the similarity structure of encoded representations

will closely match their input structure. This is what we saw in

BOLD data from visual cortex (in our case, a more ‘‘grid-like’’

pattern, with higher sensitivity to variations in shape than in co-

lor). This may partly explain why previously reported improve-
ments in model fit of trained over untrained networks tend to

be relatively modest, as if the visual cortex mainly recapitulates

the input data through random high-dimensional projections

(G€uçl€u and van Gerven, 2015; Schrimpf et al., 2018).

In our data, the nature of the neural code observed in parietal

and prefrontal cortex, however, was very different. Here, task-

irrelevant features were compressed in each context, converting

the neural ‘‘grid’’ into orthogonal manifolds, each coding pre-

dominantly for a task-relevant axis. This is quite striking,

because conflicting reports have suggested that task-irrelevant

information is retained or discarded during context-dependent

decision-making (Mante et al., 2013; Takagi et al., 2020). More

generally, the diverse representational structure that can emerge

in the rich and lazy regimes, and its variablemapping to the brain,

may shed light on why emerging representation structure can be

heterogenous in trained neural networks (Mehrer et al., 2020).

We note that manipulating the variance of weights at initialization

should be understood as method to generate a broad range of

representational geometries, rather than a model of synaptic

connectivity. Crucially, instead of imposing constraints on the

way in which neurons are initially connected, the same results

can be achieved by adding an L2 regularizer to a network initial-

ized in the lazy regime, which suggests that weight decay mech-

anisms could control whether neural populations adopt one

regime or the other (Figure S4E).

Previous analyses of single-cell data from macaque PFC have

emphasized that neural selectivity is mixed and representations

are high dimensional, in seeming contradiction to the findings re-

ported here (Rigotti et al., 2013; Fusi et al., 2016). One possibility

is that, over prolonged training, the dimensionality of neural rep-

resentations is tailored to the transfer demands of the paradigm

(Musslick et al., 2017). Structured, low-dimensional representa-

tionsmay be favored in settingswhere information can be shared

across tasks or stimuli, such as our trees task, where all stimuli

were unique but sampled from the same underlying generative

process, hence permitting generalization of latent features

across tasks. By contrast, high-dimensional neural codes may

emerge by preference in tasks with minimal need for generaliza-

tion, such as recall and recognition of a small set of unrelated

images (Barak et al., 2013; Rigotti et al., 2013). Indeed, our rich

neural networks were more tolerant to degradation through

compression and/or input noise than those in the lazy regime.

However, the relationship between the generalization ability of

the two regimes described here remains an open question.

Another possibility is that training duration and/or task instruc-

tions influence representational geometry. Our participants had

to infer task-relevant dimension from trial-wise feedback alone

and were given extensive training prior to the scanning session.

Future studies could explore whether representations consistent

with lazy learning would be observed when participants were

made aware of the task-relevant dimensions a priori and

received less training.

At first glance, our findings might appear to diverge from

previous analyses of the same data, in that we emphasize that

irrelevant information is at least partly compressed in FEF (Mante

et al., 2013; Aoi et al., 2019). However, our analysis of the NHP

data focused on a relatively late epoch (300–600 ms post-

stimulus). In fact, when we repeated the model-based RSA
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separately for early, middle, and late time windows following

stimulus onset, we found that representations were more grid-

like early on (encoding of both feature dimensions) but became

highly task-specific in the second half of the trial (Figure S5G).

Crucially, we can explain this temporal evolution of task repre-

sentations with an extension of our gating theory that incorpo-

rates recurrence into the neural network model (Figure S5H).

Under this account, feature-selective units keep integrating mo-

tion and color information throughout the stimulus presentation

period, but the irrelevant dimension is integrated at a slower

rate, giving rise to a gradual progression from grid-like to orthog-

onal representations. In the following delay period, the context

cue continues to act as inhibitory bias on the unit encoding irrel-

evant features, gradually suppressing its activity just enough so

that by the time of a response, only task-relevant information is

preserved, leaving a fully orthogonal and task-specific represen-

tation (Figure S5I). When we visualized the geometries sepa-

rately for early, middle, and late windows within the stimulus

interval, we observed a similar temporal evolution from grid-

like to more orthogonal representations in both the recurrent

neural network and monkey recordings (Figure S5J). Notably,

similar evolutions of representational geometries over the time

course of a trial have recently been reported in the context of

working memory tasks (Panichello and Buschman, 2021).

Another recent paper has emphasized that the neural geome-

try for distinct tasks in macaque PFC can become aligned along

parallel manifolds, with representations for common action or

outcome associations aligned in neural space (Bernardi et al.,

2020). An equivalent effect in our paradigm would be that tree

representations are rotated into a frame of reference of ‘‘plant-

worthiness’’—whether the tree should be accepted for planting

or not—which we tested with a ‘‘parallel model’’ RDM but failed

to find evidence for in either neural data or the network hidden

units. One important difference in our work is that, in order to

separate decision andmotor activity, in the fMRI study we varied

the motor contingencies from trial to trial, meaning that there is

no real benefit to representing the decision directly in the

response frame in our task. In fact, further neural network simu-

lations revealed that, in a two-layer neural network, orthogonal

representations dominated in the first hidden layer, but more

parallel representations could be enforced in the subsequent

layer, more consistent with the findings of Bernardi et al. (2020)

(Figures S2F–S2I). We take this to imply that in a task where

response contingencies were not randomized from trial to trial,

we might see parallel representations emerge in a putative

downstream stage—for example, premotor cortex—but this

contention remains to be tested.

Our simple neural network model and Gaussian ‘‘blob’’ tasks

introduced a considerable gap in model and data complexity be-

tween our simulations and the fMRI experiment with human par-

ticipants. One concern that remains is whether our findings

generalize to more complex model architectures and datasets.

To address this, we trained deep convolutional neural networks

(CNN) directly on the trees task and investigated the representa-

tions formed in the hidden layers under rich and lazy learning

(Figure S6A). This confirmed that rich learning induces highly

structured representations that progressively transform the in-

puts from grid-like representations in the early layer to orthog-
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onal representations in the intermediate layer to parallel repre-

sentations in the deep layers (Figure S6B), whereas under lazy

learning, all hidden layers exhibited task-agnostic representa-

tions (Figure S6C). Future work could investigate how the

context signal is extracted from visual information alone and

used to guide feature selection in these more complex

architectures.

On a related note, it remains unclear how the context signal

could be implemented in the biological brain. The CNN simula-

tions suggest that a feedforward architecture can extract context

cues even if they are just presented as visual cues (colored rect-

angles), in contrast to individual one-hot units. In reality, howev-

er, the notion of ‘‘context’’ is much richer, as it can be provided

by either visual or auditory cues and either explicitly via instruc-

tion or implicitly via temporal statistics of the training curriculum.

While our work suggests how context signals could be used to

form task-specific representations, the mechanisms that extract

these signals from percepts and utilize them to sculpt represen-

tational geometry are avenues for future work.

This concern speaks to a broader question of how the human

brain uses context to partition experiences and how the specific

training regime we subjected our participants to shapes neural

representations. In previous work, we demonstrated that hu-

mans learn better under blocked curricula, where one task is

learned at a time, compared to interleaved curricula where

both tasks are randomly interspersed (Flesch et al., 2018). For

the fMRI study, we subjected our participants to a blocked cur-

riculum. Future work would be required to investigate how the

temporal statistics of training samples shape the geometries of

task representations.

Taken together, our findings suggest striking similarities be-

tween representations of task rules in biological and artificial

neural networks. It indicates that for context-dependent decision

tasks learned sequentially via trial and error, the human brain ap-

pears to utilize a coding scheme that minimizes representational

overlap between these tasks, like the one adopted by a neural

network trained in the rich regime on interleaved data.
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due to disruption of their internet connection, leaving 30 participants for all behavioral analyses. All participants gavewritten informed

consent prior to taking part in the study. The experiment received approval from the ethics board of the University of Granada. Par-

ticipants were compensated for their time with 38V. The experiment consisted of several sessions completed on three successive

days (Figure S1A). All participants completed a pre-screening study on day 1 that assessed their eligibility for the main experiment.

The main experiment consisted of a browser-based training session on day 2, and a refresher and scanning session on day 3, which

took place at the fMRI institute of the University of Granada.

Nonhuman primate data
NHP results were based on a reanalysis of data recorded from monkey frontal eye fields (FEF) during performance of comparable

context-based decision-making tasks. These data have already been intensively scrutinised in past work (Mante et al., 2013; Aoi

et al., 2019). In the experiment, two monkeys were asked to discriminate between distinct levels of motion direction and color of

random dot stimuli, with only one dimension being relevant in each context, just as in our experiments. Stimuli spanned a similar

2D grid (motion directions varying from left to right, color gradient from green to red) as our trees and Gaussian blobs. Further details

are available in ref (Mante et al., 2013).

METHOD DETAILS

Human behavioral / fMRI experiment
Stimuli

Participants performed a virtual gardening task for which they had to discover rules that determined growth success of tree stimuli in

two different gardens. Trees were generated by in house-code and were built to vary parametrically in five discrete steps along two

different dimensions, the density of leaves (‘‘leafiness’’) and the density of branches (‘‘branchiness’’), yielding 25 unique class. We

generated multiple stimuli per level of leafiness and branchiness and sampled these exemplars randomly without replacement for

training and test sessions at the level of individual participants so that nophysical stimuluswaspresented twice during the experiment.

Pre-screening session (Day1)

We previously showed that learning is mediated by an a priori tendency to factorise tree space into dimensions of leafiness and

branchiness (Flesch et al., 2018). To measure this prior in our participants we first used an online task in which participants moved

tree exemplars within a circular open arena via drag and drop on the screen, attempting to arrange them so that distance between

trees was proportional to their perceived dissimilarity (Figure S1B). Participants completed six arrangement trials of 25 trees, with

trees sampled from the whole 5x5 grid of branchiness and leafiness on each trial. At the beginning of each trial, the trees were

randomly arranged in an attempt to minimize other sources of bias. The allocation of exemplars to trials was randomized across sub-

jects. We correlated the dissimilarity matrices derived from the arrangements with a model matrix that represented a perfect grid-like

arrangement to compute a ‘‘grid score’’ for each participant. We planned to exclude participants who failed to reach the median grid

score reported in the previous study where participants were recruited online (Flesch et al., 2018), but no participants met this cri-

terion (Figure S1C).

Training session (Day2)

On day 2, participants took part in an online training session in which they learned to perform the task. On each trial participants first

viewed a cue indicating the context (or ‘‘garden’’), which was a blue or orange rectangular frame presented for 1000ms. Next, a tree

was displayed for 1500ms within the frame, together with the response contingencies (‘‘plant’’ or ‘‘don’t plant’’) which were indicated

by left and right arrow buttons on either side of the tree stimulus. These contingencies (i.e., whether ‘‘plant’’ wasmapped onto the left

or right button) were varied randomly from trial to trial. The stimulus and response interval were always set to 1500ms. A response

provided within this interval was highlighted by a rectangle drawn around the chosen option (‘‘plant’’ versus ‘‘don’t plant’’). Partici-

pants were asked to learn to plant trees that grew successfully. Tree growth success depended on leafiness in one context and

branchiness in another and was signaled by a numerical reward, ranging in five steps from �50 to +50. For example, for a given

participant, trees occurring within the orange frame might grow successfully if they had fewer leaves, whereas trees occurring within

the blue framemight grow successfully if they hadmore branches. Feedback, where available (see below) was presented for a period

of 500ms (800ms for missed trials) and consisted of a numerical reward (if the tree grew successfully) or penalty (if it did not) for

planting a tree, and always a reward of zero for not planting a tree. At the beginning of the feedback period, the tree stimulus was

replaced by a fixation cross and the response contingencies were replaced by numeral rewards. These rewards/penalties weremap-

ped onto the relevant dimension (branchiness/leafiness) and hence varied in five discrete steps from �50 to +50. Rewards (values

above 0) were displayed in green, whereas penalties (rewards below zero) were displayed in red. Rewards of zero were displayed in

black. Again, the chosen option was highlighted by a rectangle, with its color matching the color of the reward value (red/green/

black). For training sessions, the intertrial interval (ITI) had a duration of 1000ms. The directionality of the rewards (more versus

less leafy/branchy trees grow better) and the task order during the main training phase were fully counterbalanced across

participants.

The training session consisted of three different blocks in which contexts could be either blocked or interleaved. Blocked means

that all trials of one context were presented first, followed by all trials in another context, with the order counterbalanced over

participants. Interleaved means that trials were shuffled so that they occurred in random order, but with exactly the same number
e2 Neuron 110, 1258–1270.e1–e11, April 6, 2022
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in each context. Participants underwent a brief interleaved familiarisation phase with feedback (50 trials), followed by an inter-

leaved baseline test (200 trials, no feedback). There was then a long main training session which was blocked (900 trials) (Fig-

ure S1A). The purpose of the baseline training and test was to familiarise the subjects with the task and to assess the effectiveness

of the main training.

Scanning session (Day3)

The test session consisted of a brief refresher phase (interleaved, 50 trials, feedback) and the main test phase (interleaved, 600 trials,

no feedback). The refresher was completed on the experimenter’s laptop and was identical to the baseline training on day 2. For the

test phase inside the scanner, we used a jittered ITI of 2000-6000ms (uniform) during which only the gray background was displayed.

The total length of all ITIs was restricted such that all runs had equal length.

fMRI acquisition

Magnetic resonance images were recorded with a 3T Siemens scanner with a 32-channel head coil. A high-resolution T1-weighted

structural image (voxel size = 1x1x1mm, 176x256x256 grid, TR = 1900ms, TE = 2.52ms, TI = 900ms) was acquired for each participant

prior to the task. Each fMRI image contained 32 axial echo-planar images (EPI) in descending sequence (3.5x3.5x3.5mm isotropic, slice

spacing 4.2mm, TR = 2000ms, flip angle = 80, TE = 30ms). We collected fMRI data in six independent runs of 345volumes each.

fMRI pre-processing

Pre-processing was conducted in MATLAB with SPM12 and custom scripts. For each participant, functional scans were first real-

igned to the first scan. As EPIs were acquired in descending sequence, we applied a slice time acquisition correction with the middle

slice (TR/2 = 1 s) as reference. Next, the structural scan was co-registered to the mean EPI. Anatomical scans were normalized to

standard Montreal Neurological Institute (MNI) 152 template. EPIs were normalized to the template using tissue probability maps

for gray matter, white matter, and cerebrospinal fluid. The EPIs were resliced to 3x3x3mm resolution. For univariate analyses, we

applied smoothing with a full width half maximum (FWHM) Gaussian kernel of 8mm.

Neural network simulations
The simulations were implemented and results analyzed in Python using the NumPy, SciPy, Pytorch and Scikit-Learn packages. Due

to the simplicity of the architecture, gradients and optimization procedures for the simple feedforward MLPs were derived by hand

and implemented in raw NumPy. The more complex simulations with auxiliary RDM loss were implemented in Tensorflow.

Task design

We replaced the fractal tree images with two-dimensional isotropic Gaussian ‘‘blobs.’’ The stimulus space was spanned by para-

metricmodulation of the x and y coordinates of these blobs in five discrete steps. Inside this 5x5 grid, neighboring blobswere partially

overlapping, allowing the network to infer similarity structure based on co-activation of input units. We used a similar context-depen-

dent decision-making task as for our human participants. There were two contexts, in each of which only one feature dimension

(either the x- or y-location) was diagnostic of the correct output (the other being an irrelevant dimension) and mapped onto a numer-

ical reward ranging from �2 to 2. The network was trained to predict the reward received in each situation. To assess performance

and representational geometries, we fed trials covering all combinations of the two feature dimensions (x/y location) and context into

the network and recorded hidden layer activity patterns as well as network outputs for each stimulus.

Neural network architecture

Our model was a feed-forward network architecture with a single hidden layer. Input units encoded pixel intensities of vectorised and

normalized images of Gaussian blobs. Each image had a down-sampled resolution of 5x5 pixels, hence resulting in 25 stimulus input

units. Two additional one-hot encoded inputs (1 or 0) signaled the context to the network. All 27 inputs were projected into a hidden

layer with 100 units, which were in turn passed through Rectified Linear Unit (ReLU) nonlinearities. The hidden units projected onto a

single linear output unit.

Weight initialisation

All network parameters were initialised with random draws from Gaussian distributions with a mean of zero. To control whether the

network operated in the rich or lazy regime, we modified the variance of these distributions systematically, ranging from 0.01 (rich

regime) to 3 (lazy regime). We call this ‘‘initial weight scale’’ in the main text. These values were derived empirically by observing their

impact on the relative change of the weight norm and shape of the loss trajectories during training. Weights to the output unit were

instead initialised with a variance scale of 1/
ffiffiffiffiffi
nh

p
where nh is the number of hidden units. All biases were initialised to zero.

Training

We collected 30 independent runs (unique random initialisations) per initial weight scale condition. On each run, the network was

trained with minibatch gradient descent (batch size 50, interleaved data, learning rate 0.001, SGD optimizer) on 10000 iterations.

Themodelwas trainedon theMean-Squared-Error (MSE-Loss) between the true andpredicted rewardassociatedwith each stimulus:

JðWÞ = 1

n

Xn

i = 1

ðyi � fðxi;WÞÞ2

Addition of Gaussian input noise

We investigated the robustness of different training regimes to additive Gaussian noise in the inputs. The model architecture and

training procedures were identical to the ones described above. Again, we collected 30 independent runs per weight scale, ranging
Neuron 110, 1258–1270.e1–e11, April 6, 2022 e3
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from 0.01 to 3 in eight steps. However, this time, we added Gaussian noise drawn from a standard normal distribution to the input

units at test. The strength of this noise was varied parametrically in 10 steps from 0 to 0.1, allowing us to investigate the impact of

different noise levels on performance.

Impact of learning rate

We tested whether the learning rate push the network into either the rich or lazy regime. Starting from a lazy (weight scale 3) or rich

(weight scale 0.01) initialisation, we trained the networkwith 20 independent runs per learning rate, which ranged from 0.001 to 0.01 in

10 steps. The values were chosen to ensure that learning dynamics remained stable.

Controlling the learning regime via L2-regularization

We investigated whether a network initialised in the lazy regime could be pushed into the rich regime by adding a regularisation term

that favored small weights. For this, we added an L2 regulariser to the loss function:

JðWÞ = 1

n

Xn

i = 1

ðyi � fðxi;WÞÞ2 + l kWk22

The hyperparameter l controlled the regularisation strength. We initialised the network in the lazy regime (weight scale 3) and

collected 30 independent runs per regularisation strength, which ranged from 0 to 0.1.

Controlling the hidden layer representations via auxiliary loss function
To test whether a network with a single hidden layer could in principle learn a parallel representation, we carried out a new set of

simulations in which we introduced an auxiliary loss function that controlled hidden layer representations. On each training step, a

minibatch of all 50 stimulus types was passed into the network. In the hidden layer, this yielded a 100x50 activity matrix Yhidden.

We computed a 50x50 RDM from these activity patterns (Euclidean distance) as follows:

G = YT
hiddenYhidden
RDMhidden = diagðGÞ+diagðGÞT � 2G

We then calculated the mean squared error between this RDM and a target RDM, which was chosen to be either the grid, orthogonal

or parallel model RDM described above. The total loss of the network was a weighted sum of the standard supervised objective (the

MSE between the network’s output and the target label) and this RDM loss:

JðWÞ = 1

n

Xn

i = 1

ðyi � fðxi;WÞÞ2 + b

2

�
vec

�
RDMtarget

�� vecðRDMhiddenÞ
�2

This encouraged the network to learn the task while being pressured to acquire the representation imposed through the RDM loss.

We performed a random search to find hyperparameters that allowed the network to learn the taskwith a parallel representation in the

hidden layer. As this was unsuccessful, we then introduced a second hidden layer (100 ReLUs) to the network to increase its capacity

and repeated the procedure with the RDM loss applied to the second layer.

Convolutional neural network simulations
To test whether the findings reported with a small MLP generalize to more realistic settings, we trained a deep convolutional neural

network (a variant of AlexNet) on the trees task. The network received the same tree images (with orange/blue frame to signal the

context) as inputs as the human participants.

Dataset and task design

The dataset consisted of 20000 training and 10000 test RGB images (96x96x3 pixels) of fractal trees, pasted on a gray background

and surrounded by an orange rectangle in context A, or blue rectangle in context B. Just like in the original trees task, the appearance

of the trees was varied parametrically, spanning a 5x5 grid of different levels of branchiness and leafiness. In each context, the

network was tasked to predict the level of the relevant feature dimension, just like in the MLP simulations explained above.

Architecture

The CNN is a variant of AlexNet and consists of a series of five convolutional layers with/without max-pooling (1st Conv2d: 64 filters,

size 11, stride 4, padding 2, ReLU, max-pooling size 3, stride 2; 2nd Conv2d: 192 filters, size 5, padding 2, ReLU, max-pooling size 3,

stride 2; 3rd Conv2d: 384 filters, size 3, padding 1, ReLU; 4th Conv2d: 256 filters, size 3, padding 1, ReLU, 5th Conv2d: 256 filters, size

3, padding 1, ReLU) followed by a fully-connected layer (512 units, ReLU) and a single linear readout unit.

Training procedure

The CNNwas trained with minibatch gradient descent (batch size 128) for 200 epochs. We used an AdamOptimizer (learning rate 1e-

4).We trained the network in the lazy and rich regime by changing the variance of weights and hence their overall norm at initialisation.

For each regime, we collected 30 independent training runs.
e4 Neuron 110, 1258–1270.e1–e11, April 6, 2022
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Recurrent neural network extension
Let x1ðtÞ˛½�1; 1� be the signed motion coherence over time in a trial, and x2ðtÞ˛½�1; 1� be the signed color level over time, which can

be stacked into the column vector input xðtÞ = ½x1ðtÞ x2ðtÞ�T . Let uðtÞ˛R2 be the task context input encoded as a one hot vector (+1 in

the first element for context A, +1 in the second element for context B).

The network contains four neuron classes, and the overall architecture is depicted in Figure S7B. In particular, these comprise a

pair selective for positive/negative motion and task, and an pair selective for positive/negative color and task. Each neuron receives

stimulus input through the input-to-hidden weights:

Wx =

2664
1 0
�1 0
0 1
0 �1

3775
Each neuron class also receives task input, with the motion neurons receiving inhibitory input in the color task and the color neurons

receiving inhibitory input in the motion task. The task-to-hidden weights are

Wu =

2664
0 �w
0 �w
�w 0
�w 0

3775
where w is a parameter controlling the strength of context-driven inhibition.

The network has recurrence, whichwe assume has an autapse structure such that each neuron has self recurrencewith weight one

to enable persistent activity.

We emphasize that all four neuron classes are mixed selective, in the sense that their response depends on a combination of stim-

ulus and task. However, this mixed selectivity is not random, rather it is highly structured.

The neural activity dynamics are given by the standard firing rate equations

d

dt
hðtÞ = � hðtÞ+ fðhðtÞ + WxxðtÞ + WuuðtÞÞ

where fð ,Þ is the firing rate nonlinearity, which here we take to be the ReLU function ðfðvÞ = maxfv;0gÞ.
Finally the output of the network r is computed through readout weights Wo = ½1 � 1 1 � 1�, i.e., by summing or subtracting the

relevant hidden unit activity,

rðtÞ = WohðtÞ

Input dynamics

We now describe the temporal structure of a trial. We assume that between trials, neural activity resets such that we have the initial

condition hð0Þ = 0. We assume that input stimuli arrive with a temporal profile pxðtÞ that is rescaled by the motion coherence m and

color coherence c, such that the input is

xðtÞ =
�
mpxðtÞ
cpxðtÞ

�
For simplicity we take pxðtÞ= ae�t=ô +b for 0 < t < tx, and pxðtÞ= 0 otherwise, to reflect a sharp onset transient followed by decay to a

steady state.

The context signal arrives with a temporal profile puðtÞ, turning on with the stimulus and remaining on during the delay period until

some time tu>tx. For simplicity we take puðtÞ to be a pulse (one for times between 0 and tu, zero otherwise). Let z be 1 in the motion

context and 0 in the color context. Then we have

uðtÞ =
�
zpuðtÞ
ð1� zÞpuðtÞ

�

QUANTIFICATION AND STATISTICAL ANALYSIS

Human behavioral/fMRI data
Psychophysical model of human choices

To quantify sources of error in the choice patterns, we fit a psychophysical model to the choices of each participant. The model

assumed that each tree was categorised with respect to a linear category boundary in tree space, via a logistic choice function.

The model comprised four free parameters: (1) angle of the decision boundary in tree space (the boundary was assumed to always

pass through the center of the 2D space), (2) a decision bias or offset to the inflection point of the logistic function; (3) the slope of the
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logistic function (iv) a proportion of random lapses. The model is identical to that in ref (Flesch et al., 2018) where it is described in

more detail. From the estimated category boundary, we calculated an angular bias, quantifying the absolute disparity between the

estimated and ground-truth task-specific category boundaries. The model was fitted to human choice by minimizing the difference

between empirical and predicted choice patterns.

Group level inference

Inference was performed via paired t tests or signed-rank tests when valuations of the assumptions of t tests were observed.

fMRI data analysis: GLMs

Data were analyzed using SPM12, the RSA toolbox (Nili et al., 2014) and custom scripts written in MATLAB. We used a general linear

model (GLM) approach for all univariate analyses. A 128 s temporal high-pass filter was applied to remove low-frequency scanner

artifacts. Temporal autocorrelation was estimated with a first-order autoregressive model (AR-1). All GLMs contained regressors

coding for onset and duration (boxcar until participant response) of events, which were convolved with the canonical haemodynamic

response function (HRF). Six motion parameter estimates from the pre-processing stage were included as nuisance regressors in all

GLMs. Each run was represented by a separate set of regressors in the GLM, and run number was encoded by a dummy variable.

Observed fMRI data at single subject level was regressed against this design matrix. Our analyses are based on four different GLMs.

The first GLM (GLM1) had two predictors of interest (task switch trials and task stay trials), locked to cue onset. GLM2 included two

parametric regressors of absolute distance of stimuli to the category boundary, for the relevant and irrelevant dimension, respec-

tively. GLM3 included parametric regressors of the stimulus value and their interaction with choice. GLM4was constructed for repre-

sentational similarity analysis (RSA) and fitted to unsmoothed EPIs. It had 50 regressors per run, one for each combination of context

(‘‘north garden’’/blue rectangle versus ‘‘south garden’’/orange rectangle), branchiness (1 to 5) and leafiness (1 to 5).

Representational similarity analysis of human fMRI

GLM4 (described above) was fit to neural data at single-voxel level. We then constructed neural Representational Dissimilarity

Matrices (RDMs) using a spherical searchlight (radius 12mm). For each searchlight sphere, we computed cross-validated neural

RDMs from the condition-by-voxel matrix of estimated neural responses using Pearson correlation distance between pairs of con-

ditions from distinct runs:

dðxi; xjÞ = 1� ðxi � xiÞðxj � xjÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xiÞðxi � xiÞTðxj � xjÞðxj � xjÞT

q
This yielded a 300x300 RDM (50 conditions per run, six runs). All analyses excluded within-run similarity data (e.g., blocks of 50 con-

ditions on the major diagonal). We constructed seven model RDMs to probe for the existence of task-related representational ge-

ometries in the fMRI activity patterns: the (1) grid model, (2) orthogonal manifold model, (3) parallel manifold model and (4) rotated

grid model, (5) only branchiness model, (6) only leafiness model and (7) diagonal model. Let the vectors of branchiness and leafiness

be b= ½�2;�1;0;1;2�T and l = ½�2;�1;0;1; 2�T . Let the task vector be defined as t = ½0;1�T . Let the matrix of all possible ordered

tuples of context, branchiness and leafiness be:

X50x3 = fðx; y; zÞ: x˛ t; y˛b and z˛ lg
The first model encoded two parallel, evenly spaced grids (unit distance), representing each combination of context, branchiness and

leafiness. This RDM was constructed by computing all pairwise Euclidean distances between the rows in X. The second model was

obtained by taking the grid model and projecting stimuli onto the task-relevant axes for each context.

Let XA be the submatrix for the first task, i.e., where ti = 0 and XB the submatrix for the second task, i.e., where ti = 1:

Xgrid =

�
XA

XB

�
Let YA be the projection matrix for the first task and YB the projection matrix for the second task:

YA =

24 1 0 0
0 0 0
0 0 1

35
YB =

24 1 0 0
0 1 0
0 0 0

35
Then, the orthogonal model would be obtained by stacking XAYA and XBYB:

Xorth =

�
XAYA

XBYB

�
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The RDM was obtained from this coordinate matrix by computing the pairwise Euclidean distances between its rows. Thus, for

each context, stimuli differed along the task-relevant dimension (unit distance), and representations of different tasks were orthog-

onal to each other. The third model was obtained by rotating one of the task vectors from the second model by 90 degrees, consid-

ering the reward assignment the participant had been trained on (hence discriminating ‘‘plantiness’’ of trees, i.e., the extent to which

‘‘plant’’ was the correct answer). For example, if higher feature values led to larger rewards in both contexts, the rotationmatrix would

be defined as:

RAð90Þ =
24 1 0 0
0 cosð90Þ sinð90Þ
0 �sinð90Þ cosð90Þ

35
And the model would be obtained by stacking XAYARA and XBYB and computing pairwise Euclidean distances between its rows:

Xpar =

�
XAYARA

XBYB

�
For the fourth model, we performed the same rotation on the grid model, by stacking XARA and XB:

Xrotgrid =

�
XARA

XB

�
The fifth and sixth models served as controls, based on the assumption that early visual areas might exhibit task-agnostic shape

(branchiness) or color (leafiness) sensitivity. Thesemodels were obtained by projecting both task-specific submatrices either onto the

branchiness ðXAYA and XBYAÞ or onto the leafiness dimension ðXAYB and XBYBÞ.

Xbranch =

�
XAYA

XBYA

�

Xleaf =

�
XAYB

XBYB

�
The last model was obtained by taking the grid of all combinations of branchiness and leafiness and projecting trees onto the main

diagonal, ranging from low leafiness and low branchiness to high leafiness/branchiness, with the projection XPT where :

P =

24 1 0
0 cosð45Þ
0 sinð45Þ

35
so that:

Xdiag = XgridP
T

This last model was based on the competing hypothesis that humans may have ignored context and optimized for a strategy that

yielded 70% correct on both tasks (Flesch et al., 2018). Within a given structural ROI or searchlight sphere, we repeated the 50x50

model RDMs over runs tomatch the 300x300 neural RDMs, setting the within-run-dissimilarities to NaN.We then regressed z-scored

vectorised neural RDMs against z-scored sets of vectorised model RDMs using a multiple linear regression at single subject level:

RDMbrain = b0 + b1 RDMgrid + b2 RDMrotatedgrid + b3 RDMorth + b4 RDMparallel + b5 RDMbranch + b6 RDMleaf + b7 RDMdiag

Statistical inference was performed with a group-level t test of the regression weights against zero. Correction for multiple compar-

isons was conducted via non-parametric cluster correction as implemented in the SNPM toolbox (FDR threshold < 0.05). To avoid

circular inference, all post hoc visualizations and analyses within ROIs were performed in leave-one-subject-out cross-validated

ROIs derived from the activity peaks identified with the searchlight approach (12 mm radius).

fMRI RSA: parameterized model

In order to obtain more fine-grained estimates of the neural geometry, we also fit a parameterised model to the cross-validated ROIs

identifiedwith the searchlight approach.We constructed a space ofmodel RDMs by varying six parameters, one controlling the angle

between the task-specific grids (which rotated one taskmanifold by up to 90 degrees in either direction, so that representations could

be orthogonal, parallel, antiparallel or anything in between), four controlling for the compression of relevant and irrelevant dimensions

within each context, and one controlling for the separation of contexts. Let the vectors of branchiness and leafiness be b=

½�2;�1;0;1; 2�T and l = ½�2;�1;0;1;2�T . Let the task vector be defined as t = ½0;1�T . Let the matrix of all possible ordered tuples

of context, branchiness and leafiness be:

X50x3 = fðx; y; zÞ : x˛t; y˛b and z˛l g
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This matrix consists of two 25x3 blocks, one for each task, each of which encodes the levels of the context signal, branchiness and

leafiness. The compression along relevant dimensions comprArel ;comprBrel and irrelevant dimensions comprAirrel ; comprBirrel aswell as

the context offset parameter context offset are multiplied with the respective blocks in this feature matrix:

X =

�
XA

XB

�
=

"
cA

�
1� comprArel

�
bA

�
1� comprAirrel

�
lA

context offset � cB

�
1� comprBirrel

�
bB

�
1� comprBrel

�
lB

#

The rotation parameter determines the extent to which the representation of the first task is rotated into the frame of reference of the

second task:

RAðqÞ =
24 1 0 0
0 cosðqÞ sinðqÞ
0 �sinðqÞ cosðqÞ

35
This rotation was applied to XA in a subsequent step, so that the full model was given by:

Xparam =

"
½cA

�
1� comprArel

�
bA

�
1� comprAirrel

�
lA�Rq

context offset � cB

�
1� comprBirrel

�
bB

�
1� comprBrel

�
lB

#

We fit RDMs derived from this model to neural RDMs using a constrained optimization procedure (fmincon in MATLAB) with least-

squares cost function. As the procedure is sensitive to the choice of starting values, we averaged over 1000 independent runs with

random starting values. We then performed group-level inference on the distribution of best-fitting parameter values, where the over-

all compression index was defined as the log of the ratio between compression along the relevant and irrelevant dimensions:

compression = log

�
comprrel
comprirrel

�
These were used to visualize the representational geometries of the best fitting RDMs via projection into three dimensions with clas-

sical Multi-Dimensional Scaling (MDS).

fMRI RSA: Embedding dimensionality

We performed Singular Value Decomposition (SVD) on the patterns of BOLD activity across voxels within each cross-validated ROI

and calculated the cumulative explained variance based on the squared singular values to obtain an estimate of the embedding

dimensionality (Jazayeri and Ostojic, 2021) of the neural activity patterns. To test whether the directions of largest variance were

aligned with the task-diagnostic dimensions of context, branchiness and leafiness, we repeated the regression-based RSA within

each cross-validated candidate region after successively removing components, starting with the smallest one. This truncated

SVD allowed us to identify the minimal number of components required to successfully decode a factorised representation from

the neural data.

fMRI RSA: Correlations between brain and behavior

We performed a correlation analysis (Kendall’s tau) to quantify the extent to which orthogonal representations at the neural level pre-

dicted accurate, axis-aligned behavioral responses. We analyzed human choice patterns by computing behavioral data RDMs from

the probabilities of responding ‘‘plant’’ to trees in each condition, i.e., as a function of each stimulus’ distance to bound along the

irrelevant and relevant dimension in each context. Building on previous work (Flesch et al., 2018) we fit two model RDMs to human

choice patterns, called the factorised and linearmodels. In the factorised model, choices were aligned with the ground-truth bound-

aries, whereas in the linear model, a ‘‘diagonal’’ boundary was applied to both contexts, corresponding to the single linear boundary

that optimized for accuracy while ignoring the context (yielding �70% correct). Fitting the factorised model to behavior yielded an

‘‘axis-alignment score,’’ indicating whether the participant’s decision boundaries were aligned with the ground truth. We tested at

the group level whether the extent to which neural geometries could be explained by the orthogonal model (neural factorisation score)

significantly covaried with the extent to which the factorised model explained human choices (axis alignment score).

fMRI RSA: Comparison of patterns across regions

To test statistically whether patterns differed between EVC and DLPFC/PPC/MCC, we performed random effects Bayesian model

selection using the VBA toolbox for MATLAB (seek Key resource table). We created three regression models, consisting of (1) the

branchiness and orthogonal RDM, (2) only the branchiness RDM and (3) only the orthogonal RDM. These were fit to the neural

RDMs in EVC, DLPFC, PPC andMCC.We then approximated the logmodel evidences with the subject-specific negative BIC scores

derived from the individual regression model fits. With these estimates, we performed random effects Bayesian model selection

(RFX-BMS) to obtain exceedance probabilities – the probability that one model explains the data better than its competitors- and

estimated model frequencies – the proportion of subjects explained by each model. We report protected exceedance probabilities,

which correct the exceedance probabilities to reduce the possibility that an effect is observed due to chance.

fMRI MVPA: Decoding of relevant and irrelevant dimensions

We performed a decoding analysis to assess whether a classifier trained on the relevant dimension in one task could decode the

same dimension in the other task where it was irrelevant. In theory, this should only be possible in EVC, which represents both feature
e8 Neuron 110, 1258–1270.e1–e11, April 6, 2022



ll
OPEN ACCESSArticle
dimensions irrespective of context, but not in our fronto-parietal areas of interest where irrelevant dimensions were (partially) sup-

pressed. We first obtained single-trial estimates from a whole-brain GLM estimated on the neural data. We trained a linear support

vector machine (SVM) with binary outputs at single subject level with leave-one-run-out cross validation on the t-maps obtained from

this GLM. Within each run, patterns were first standardized and denoised by removing all but the first n principal components

required to explain 95% of variance. Then, the classifier was trained to predict the choice-diagnostic label of the relevant dimension

(for example, not leafy versus leafy) and its accuracy was assessed on data from the held-out run. We tested whether it could predict

the relevant dimension of the task it had been trained on, the irrelevant dimension of the same task, and the relevant and irrelevant

dimensions of the task it had not been trained on. Decoding accuracies were averaged within subjects across all held-out test sets

and across tasks. To assess significance of the decoding performance, we performed group-level t test against a chance level of 0.5

across subjects.

Neural network simulations
Accuracy

The network was trained to predict the value of the relevant feature dimension in each context, defined as the signed distance to a

category boundary, y˛½ � 2; � 1;0;1;2�. In contrast, human participants had to accept/reject stimuli based on this signed distance.

For comparison between neural networks and human participants, we quantified the network’s accuracy as the match between the

signs of the network’s predictions and the ground truth:

Accuracy : =
1

N

Xn

i = 1

1ððby i>0Þ= = ðyi>0Þ Þ

Endpoint weight norm and relative weight change

Every 100 epochs during training, we computed the Frobenius norm of the hidden layer weights

Whidden F =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i = 1

Xn

j = 1

		wij

		2vuut
and their relative change with respect to the norm at initialisation. This allowed us to assess whether the network operated in the rich

or lazy regime, corresponding to low and high norm solutions. Theweight change relative to initialisation was quantified by computing

how the norm of the hidden layer weights changed from random initialisation to the endpoint of training.

logðDWhidden FÞ= log

0@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i = 1

Xn

j = 1

			wt =T
ij �wt = 0

ij

			2
vuut 1A

Neural network representational similarity analysis

We performed RSA on the hidden layer activity patterns to assess how training sculpted the representations formed by the neural

network. For each individual run, we calculated RDMs based on the hidden layer activity patterns evoked by inputs covering all com-

binations of feature values and contexts. The resulting 50x50 RDMs captured the Euclidean distances between all possible pairs of

stimuli in the high-dimensional space spanned by the hidden units (after the ReLU nonlinearity). We visualized these geometries by

projecting the group-level RDM, averaged across independent runs, down into three dimensions using metric MDS.

Neural network RSA: Quantifying hidden layer geometries

To quantify the extent to which hidden layer geometries exhibited patterns consistent with our hypotheses, we performed a linear

regression of the hidden layer RDMs onto a set of model RDMs. There were three model RDMs in total, (1) a grid model, encoding

the stimulus spaces as two parallel grids, separated by the context, (2) an orthogonal model, encoding the task relevant dimensions

as two orthogonal 1Dmanifolds and (3) a parallel model, encoding the same information as the orthogonal model, but rotated into the

frame of reference of the response (i.e., a ‘‘magnitude’’ representation). These were identical to the grid, orthogonal and parallel

models described above in the section Representational similarity analysis of human fMRI. The lower triangular form of thesemodels

was z-scored and entered into a linear multiple regression model to predict the lower triangular form of the hidden layer RDM:

RDMbrain = b0 + b1 RDMgrid + b2 RDMorth + b3 RDMparallel

This procedure was repeated for each individual training run, yielding a distribution of regression coefficients that permitted sta-

tistical inference on the relative difference between predictors as well as their difference from zero. We tested whether two models

differed in their extent to which they covaried with the hidden layer RDM by performing Wilcoxon Signed Rank tests on their corre-

sponding beta estimates. A nonparametric test was chosen due to the observed violation of the normality assumption. We applied

this analysis tomodels with different initial weight scale, enabling us to investigate the impact of the training regime (rich or lazy) on the

emerging representations. For amore nuanced analysis of the hidden layer patterns, we fit the same parameterisedmodel described

above for the fMRI data to the hidden layer activity.
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Neural networks: Embedding dimensionality of hidden layer activity patterns

We used SVD to investigate the embedding dimensionality of the hidden layer activity patterns (Jazayeri and Ostojic, 2021). SVDwas

applied to the stimulus-by-unit matrix of hidden layer responses to all combinations of feature values and context. We visualized the

cumulative variance explained based on the squared singular values (i.e., the eigenvalues of the response matrix) as Scree plot and

performed the Elbowmethod to obtain a qualitative estimate of the embedding dimensionality. Next, we performed truncated SVD to

assess the task-diagnosticity of the first k directions of variation in the response matrix. For this, we reconstructed the hidden layer

responsematrix, keeping only the first k singular valueswith k ranging from 1 to 27 (i.e., the number of input units). We then generated

new outputs from the network by passing this lower-dimensional activity pattern on to the output unit. Lastly, we calculated the ac-

curacy as the mismatch between these outputs and the ground truth, using the formula described in the section above. This allowed

us to assess, separately for the rich and lazy regime, the extent to which removing components from the hidden layer responses

reduced the network’s performance. The hypothesis was that more components would be needed in the lazy compared to the

rich regime to maintain equal task accuracy.

Neural network hidden unit selectivity and axis alignment

To investigate task selectivity of hidden layer units, we capitalised on the property of ReLU nonlinearities that they map negative in-

puts to zero. We defined task-selectivity for the neural network as a non-zero response to stimuli in one context and zero response to

all stimuli in the other context. Stimulus selectivity irrespective of context was defined as having a non-zero response in both con-

texts.We calculated these sensitivity indices at initialisation and after training to ensure that the initialisation schemedid not pre-parti-

tion the hidden layer in the absence of a training objective. Dead units were defined as returning zero for all stimuli (all combinations of

feature values and context). From this, we calculated the proportion of units that were either dead, task- or stimulus-selective. To

visualize response profiles, we averaged activity within these sub-populations, constructed a response matrix of these averages

separately for each context (with rows corresponding to y location, columns to x-locations of stimuli and the value corresponding

to the average activity of a sub-population) and plotted the group level average (mean across independent runs) as heatmaps.

For this, we focused on the two most extreme weight initialisations, 0.01 and 3, corresponding to learning in the rich and lazy regime,

respectively. Lastly, to quantify the extent to which these response patterns were axis aligned (i.e., whether units responded to rele-

vant but not irrelevant dimensions), we concatenated the two vectorised task response matrices, constructed RDMs based on pair-

wise differences in magnitude and regressed them against twomodel RDMs, (1) the factorised and (2) linear models. In the factorised

model, unit responses scaled with context-dependent relevant dimensions (i.e., with x-location in context A and y-location in context

B). In the linear model, activity scaled jointly with both dimensions irrespective of context. We fitted themodel at the level of individual

runs. To assess which model RDM covaried stronger with the observed neural responses, we performed a Wilcoxon Signed Rank

test on the difference between beta estimates for the factorised and linear model. To assess whether this difference was dependent

on the initialisation scheme, we performed the same test on the difference of differences.

Neural network context weight correlations

Our theory predicted that the network could learn the gating scheme via anti-correlated context weights. To test this empirically, we

calculated the Pearson correlation between task A and task Bweights from the input to the hidden layer at the level of single runs both

at initialisation and after the last training epoch. We repeated this analysis on the sub-populations of task-specific and task-agnostic

units, expecting weights into the former to be stronger anti-correlated. We visualized the distribution of single-run correlation coef-

ficients together with a Kernel-Density-Estimate computed with the kdensity function from the Seaborn package.

Neural network ablation study

We performed an ablation study to investigate how critical task-sensitive and stimulus-sensitive units were for multi-task perfor-

mance. More specifically, for each collected run, we set either the sub-population of task-specific or task-agnostic units to zero, per-

formed a forward pass through the ablated network and computed its loss and accuracy.

Non-human primate data
Representational similarity analysis of NHP electrode recordings

We created pseudo-populations by concatenating all recorded units, separately for monkey A and monkey F. Unit-by-stimulus

response matrices were obtained by averaging activity across trials for each stimulus type (6 motion directions * 6 colors * 2 con-

texts = 72 entries). RDMs were constructed from these matrices using the Euclidean distance measure. For all reported analyses,

we focus on activity averaged over the second half of the trial (300-600ms) where task factorisation was strongest, an observation

consistent with previous reports of dynamic encoding of different task variables throughout a trial (Aoi et al., 2019).We fitted the same

set of candidate model RDMs to this dataset as previously to RDMs obtained from human fMRI data (see above). For statistical infer-

ence, we created a null distribution by randomly permuting the trial labels and repeating this regression-based RSA 1000 times. We

calculated p values from the proportion of permutations that yielded regression coefficients larger than the one observed on the orig-

inal data.

Individual unit selectivity and axis alignment of NHP electrode recordings

We assessed task selectivity of individual units using a standard regression-based approach. Mean activity of each unit was re-

gressed against four predictors, coding for color and motion direction separately for each context:

yunit = b0 + b1 colourcolour task + b2 motioncolour task + b3 colourmotion task + b4 motionmotion task
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Selectivity was defined as having a significant regression coefficient for the variable of interest. Due to the substantial number of

tests, we performed FDR correction to correct for multiple comparisons. We distinguish between diverse types of selectivity. Task-

selectivity was defined as having a significant regression weight only for the relevant feature dimension (i.e., only for motion in the

motion task or color in the color task). Task-agnosticity was defined as having significant coefficients for both dimensions. Further-

more, we identified units that were selective only to color or motion, irrespective of context, and defined non-specific selectivity as

having significant regression weights that do not fall into any of the above categories. As for the hidden units in the neural network, we

again plotted the different proportions of selectivity patterns of units within a pseudo population and visualized the response profile of

task and stimulus selective units by averaging the activity within a sub-population separately for each combination of feature values

(color, motion) and context. Axis alignment of these response matrices was assessed by regressing them against the factorised and

diagonal model as previously described for the neural network (see above). We assessed the embedding dimensionality of the pat-

terns observed in monkey FEF using the same truncated SVD approach described above for the human fMRI data.

Decoding of relevant and irrelevant dimensions

To assess whether task-irrelevant dimensions were filtered out in the NHP data, we performed a decoding analysis that was similar to

the one described above for the fMRI data. We first divided the trials of each unit into a first and second half. As data from the units in

the original dataset had been recorded during different sessions, we first created fully counterbalanced pseudo trials. We generated

1440 pseudo trials by sampling each condition from the set of recording units and creating vectors of condition-by-unit activity that

represented individual trials as if activity from these units had been recorded simultaneously. We repeated the procedure for the sec-

ond half of the dataset, thus yielding 1440 training and 1440 test trials. The data was standardized and denoised by removing all but

the first n principal components required to explain 90% of the variance. We then trained a linear SVM on the relevant dimension of

the NHP dataset with two-fold cross-validation and assessed its decoding performance on the relevant and irrelevant dimensions in

the held-out dataset. Statistical significance was assessed with a permutation test in which we computed test performance after

randomly shuffling the labels (1000 permutations). Chance was defined as the average performance on these shuffled datasets

(roughly 0.5%) and p values were computed from the proportion of trials in which the decoding accuracy exceeded the one observed

on the original data.
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Fig. S1. Experimental design and grid prior analysis. (A) Session Design. Participants completed three 

sessions carried out over consecutive days. All participants underwent a screening task (day1) in which they were 

asked to perform dissimilarity ratings on tree stimuli. Those who showed strong evidence for being aware of the 

dimensions of branchiness and leafiness (assessed by a “grid score”, see next figure) were invited to the remaining 

parts of the study. On day 2, participants received a lengthy blocked training curriculum, preceded by a brief 

familiarisation phase and evaluation (baseline training and test) to measure the effectiveness of the training phase. On 

day 3, participants received a brief refresher training, before they underwent fMRI scanning during which they 

completed six interleaved blocks of test trials. See methods sections for additional details. (B) Dissimilarity Rating 

Task & RSA. Participants were asked to arrange tree stimuli via mouse drag & drop in a circular arena such that 

distances between trees corresponded to how dissimilar they were perceived (left and middle panel). From these 

ratings, we constructed RDMs at single subject level. These RDMs were correlated with model RDMs assuming that 

participants were (i) only aware of branchiness, (ii) only aware of leafiness, (iii) aware of the full 5x5 grid of 

branchiness and leafiness or (iv) made judgements based on pixel similarity. We describe the extent to which the third 

model explains the data as “grid score”. In Flesch et al, 2018, we reported interactions between training effectiveness 

and grid score. We thus only invited participants with a grid score higher than the median grid score (tau=0.18) from 

the previous study. All screened participants exceeded this threshold. (C) Correlation coefficients between subject 

ratings and model RDMs. The grid model explained the data best, indicating that participants were on average aware 

of the data-generating dimensions. (D) MDS on dissimilarity ratings, divided into participants with low, medium and 

high grid score. All groups showed evidence for awareness of the dimensions branchiness & leafiness, and their grid-

like relationship with each other. 
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Fig. S2. Additional MLP simulations and controls. (A) Model RDMs used for Representational Similarity 

Analysis. The grid model encoded both feature dimensions and context along three dimensions. The orthogonal model 

encoded only the context and the relevant feature dimensions. The parallel model was obtained by rotating one of the 

task representations from the orthogonal model by 90 degrees, corresponding to a shared encoding of the task/readout 

axis. (B) Time until convergence (top) and weight change (middle/bottom) as a function of the learning rate for a 

network initialized in the rich regime. (C) Same as (b) but initialized in lazy regime. Note that irrespective of learning 

rate, all nets converged faster than under (b) and had smaller weight changes. (D) RSA on hidden layer patterns as 

function of learning rate, for rich (top) and lazy (bottom) initialized nets, showing again that learning rate was not 

critical. (E) Lazy-initialised network with L2 regulariser, demonstrating that weight norm (top) and task-specificity 

of representations (bottom) can be controlled by a regulariser. (F) We equipped the network with an auxiliary objective 

(“RDM loss”) which minimised the difference between patterns in the hidden layer and a candidate model RDM that 

encoded either grid-like, orthogonal or parallel representational schemes. (G) (left) Accuracy after convergence on 

the supervised objective, depending on chosen constrain on RDM. All models converged . (middle) Endpoint RDM 

loss after convergence on the supervised objective. All networks except for the one with parallel model RDM loss 

converged. (right) Model RSA.  The models with grid and orthogonal schemes as target for the RDM loss learned the 

desired representations. The model trained with a parallel RDM as target in the RDM loss converged to orthogonal 

representations. (H) Same as (g) but for model with two hidden layers. This time, parallel representations could be 

enforced in the second layer, leading to orthogonal representations in the first layer.  
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Fig. S3. Replication of standard univariate findings. (A) Behavioural switch cost. Participants were slightly 

worse on switch than stay trials at test, both during the baseline and later scanning session (Accuracy Baseline, Switch 

< Stay: T(29)=2.057, p=0.048, d=0.266; Accuracy Scan, Switch < Stay: T(29)=2.715, p=0.011, d=0.211; Interaction 

Phase x Switch cost: T(29)=-0.668, p=0.509, d=-0.251).  (B) Univariate markers of switch cost. A whole-brain 

univariate contrast of switch vs stay trials revealed lusters in task-positive regions where activity was higher on switch 

than on stay trials. More specifically, we found significant clusters in Parietal Cortex (BA7 : t(30) = 5.65, p < 0.001 

(FWE corrected), cluster extent (kE) = 570, MNI coords = [-6, -74, 52]), Supplementary Motor Area (SMA t(30) = 

5.03, p < 0.05, kE =66, [-6, 18, 46])) and left Medial Frontal Gyrus (MFG t(30)=6.55, p<0.01, kE = 124, [-44, 21, 

28])) (C) Behavioural sensitivity to relevant and irrelevant dimensions. Fitting logistic functions to the choice patterns 

along both dimensions revealed that, compared to the baseline, participants became much more sensitive to the task-

relevant dimension after they had engaged in the blocked training phase (Slope Relevant, Baseline: Z = 4.72, p = < 

0.001, d = 0.873; Scan > Baseline: Z = 4.762, p = < Scan: Z = 2.705, p = 0.007, d = 0.494). Participants were, 

however, much more sensitive to the relevant than irrelevant dimension at test (Scan, Relevant > Irrelevant: Z = 

4.782, p < 0.001, d = 0.873), and this sensitivity was higher compared to baseline (Dimension x Phase Interaction: Z 

= 4.741, p < 0.001, d = 0.866) (D) Univariate markers of absolute distance to category boundary. A GLM with 

parametric regressors for the absolute distance to category boundary (methods) revealed significant relationships 

between activity and distance to bound along the relevant, but not irrelevant feature dimensions. More specifically, 

we found significant clusters in bilateral Angular Gyrus (left: t(30) = 6.79, p < 0.001, kE = 364, [60, -49, 28]) and 

the right Orbitofrontal Corex (t(30) = 5.46, p < 0.01, kE = 73, [8, 42, -14]), and to a lesser extent also in bilateral EVC 

(left: t(30) = 5.15, p < 0.01, kE = 70, [-13, -98, 14]; right: t(30) = 6.55, p < 0.01, kE = 61, [18, -94, 21]) as well as 

the Posterior Cingulate cortex (t(30) = 5.05, p < 0.001, kE = 192, [4, -49, 35]). (E) Univariate markers of choice 

value. A GLM with regressors for the choice and value of the stimuli revealed significant relationships between the 

interaction of choice and value and BOLD. Consistent with previous studies, we found clusters in ACC (t(29) = -9.52, 

p < 0.001 uncorr , kE = 803 , [8,28,31]), VMPFC (t(29) = 4.33, p < 0.001 uncorr, kE = 23, [4.5,38.5,-21]) and the 

striatum (t(29) = -8.88, p < 0.001, kE = 302 , [-2.5,-14,-3.5]). 
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Fig. S4. Control analyses on the human fMRI and NHP datasets.  (A) Control RDMs used in addition to 

the grid, orthogonal and parallel model (methods). (B) Protected exceedance probabilities (left) and estimated model 

frequencies (right) of a Bayesian model comparison between rich and lazy RDMs for the four candidate 

regions.  Protected exceedance probabilities of comparisons between regions (not shown) implied that it was very 

unlikely that the same model explained patterns in EVC and DLPFC/PPC/MCC (EVC & DLPFC: pep=3.29e-4, EVC 

& MCC: pep=0.0029, EVC & PPC: pep=1.91e-4). RFX BMS within each region confirmed again that the branchiness 

model explained most of the patterns in EVC, in contrast to the orthogonal model in DLPFC/PPC/MCC. Full statistical 

results are reported in Table T1.  (C) Cross-validated decoding accuracies for a linear SVM trained on the relevant 

dimension on one task and evaluated on the relevant/irrelevant dimension of the same and the other task. Only in 

EVC, the same dimension can be decoded from the other task (where it was irrelevant), showing that the other regions 

suppressed task-irrelevant dimensions. Asterisks indicate p-values after Bonferroni-correction. (D) truncated SVD. 

(E) The univariate contrast of switch vs stay trials revealed a significant difference in BOLD in left DLPFC, an area 

where we had also observed evidence for factorised representations using the searchlight RSA approach. We therefore 

tested whether the extent to which task representations were factorised (i.e. lied on orthogonal manifolds) differed 

between switch and stay trials. The difference, however, was not significant. (F) Pattern dimensionality in the four 

ROIs. (G) Same as (C) but on pseudo-trials generated from Monkey A data(methods) again showing that only task-

relevant dimension was represented in the neural pattern. (H) Same as (D) but for Monkey A. (I) RSA for Monkey F, 

showing that in contrast to Monkey A (main text), patterns encoded predominantly motion irrespective of context. 
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Fig. S5. Gating in MLPs, NHPs and RNN model. (A) Input-to-hidden weights, reshaped to resemble the 

dimensionality of the inputs and divided into units that are active only in task A (orange), task B (dark blue), or both 

(light blue frame). Note that task-specific units have axis-aligned receptive fields under rich (top) but not under lazy 

learning (bottom), where selectivity his highly heterogenous. (B) Magnitude of task-specific and task-agnostic weights 

under rich (top) and lazy (bottom) learning, showing that the network relies more on task-specific units, especially 

under rich learning. (C) Ablation study, with performance shown separately for task A and B. Under rich learning, 

where task-specific units are axis aligned, removing them only affects performance on the task they are selective for. 

(D) Distribution of unit selectivity for monkey F; most recorded units are motion-selective. (E) Ablation study with 

performance separately on congruent (same response in both contexts) and incongruent (different responses in task A 

and B) trials. Under rich learning, task-specific units are axis aligned, and task-agnostic units encode congruent trials. 

Hence, when task-specific units are removed, the network still performs well on congruent, but not incongruent trials. 

(F) Congruency effect in human accuracy and RT. Participants were better (T(30) = 2.68, p = 0.012) and faster ( T(30) 

= -5.11,  p<0.0001) on congruent trials.. (G) Model RSA on NHP data, separately for early, middle and late time 

windows within the stimulus interval, suggesting that the neural code transforms from a grid-like to an orthogonal and 

task-specific representation. (H) RNN version of our neural network model. (I) RNN dynamics throughout a simulated 

trial. Top left: Stimulus and context are presented for 750ms, followed by delay (1s) where only context is present. 

Top right: Hidden layer dynamics during motion task trial. We observe a gradual integration of motion information in 

the motion-sensitive unit, and, to a lesser extent, colour information in the colour-sensitive unit. After stimulus offset 

(dashed line), the irrelevant dimension (colour) is gradually suppressed by the context signal. Bottom left: Gradual 

integration of a category signal in the output unit, which remains roughly constant after stimulus offset. Bottom right: 

Aspect ratio between activity encoding the irrelevant and relevant dimensions respectively, indexing the amount of 

compression along irrelevant dimensions. The aspect ratio decreases during the stimulus interval as irrelevant and 

relevant feature information are integrated at different rates (top right plot). It decreases more rapidly after stimulus 

offset (dashed line) as the context signal filters out any task-irrelevant information that is still present. (D) MDS on 

monkey and RNN RDMs averaged over early, middle and late time windows within the stimulus interval.  
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Fig. S6. Convolutional Neural Network (CNN) trained on the same stimuli as human participants. 
(A) Network architecture. We trained a feedforward CNN with five convolutional and one full-connected layer on the 

trees task. The network received RGB images of trees surrounded by an orange/blue frame to signal context, and had 

to predict the task-relevant label (level of branchiness/leafiness). The network was trained either in the rich (small 

initial weights) or lazy (large initial weights) regime. (B) RSA results for network trained in rich regime. Left: 

Coefficients of grid, orthogonal and parallel model obtained from Linear Regression performed on patterns from each 

layer. Each dot corresponds to a single trained neural network (30 in total). Early layers encode both feature 

dimensions, followed by orthogonal representations in intermediate layers and parallel representations closer to the 

readout. The conversion from task-agnostic representations of the inputs into task-specific representations of the rules 

was confirmed by fitting the compression, rotation and offset parameters of the fully-parameterised model RDM 

(middle and right plots). 

(C) Same as (B), but for model trained in the lazy regime. All convolutional layers had task-agnostic representations, 

while the FC layer showed signs of task-specific representations. 

  

             

                

             

                

                       
            

  

      

 

 

 



 

 

8 

 

Table T1 
 

ROI  Protected 

Exceedance 

Probability 

  Estimated 

Model 

Frequencies 

 

 Branchiness 

& Orthogonal 

Branchiness Orthogonal Branchiness 

& Orthogonal 

Branchiness Orthogonal 

EVC 0.302 0.489 0.209 0.38±0.08, 

z=0.8,  

p=0.21 

0.5±0.08 

z=2.29, 

p=0.01 

0.12±0.05  

z=-3.08, 

p=0.999 

DLPFC 0.0 0.0 1.0 0.15±0.06, 

z=-2.86, 

p=0.99 

0.03±0.02, 

z=-4.28, 

 p=1 

0.82±0.06, 

z=4.51, 

p<0.0001 

MCC 0.003 0.002 0.995 0.20±0.06, 

z=-2.00, 

p=0.97 

0.07±0.04, 

z=-3.69, 

 p=1 

0.73±0.07, 

z=4.19, 

p<0.0001 

PPC 0.0 0.0 1.0 0.12±0.05, 

z=-3.08, 

p=0.99 

0.04±0.03, 

z=-4.24, 

 p=1 

0.84±0.06, 

z=4.57, 

p<0.0001 

 


	NEURON15959_proof_v110i7.pdf
	Orthogonal representations for robust context-dependent task performance in brains and neural networks
	Introduction
	Results
	The initial weight scale of a neural network controls a trade-off between learning speed and robustness
	Neural network simulations suggest two possible representational schemes for context-dependent decision making
	Human fMRI reveals task-specific representations consistent with those predicted by the rich training regime
	Fronto-parietal representations in the human brain are task-specific and low-dimensional
	Neural task factorization predicts behavioral axis alignment
	NHP single-cell data exhibits representations as predicted by rich learning
	Task-specific representations can be achieved via non-linear gating
	Empirical evidence in neural networks and NHP recordings supports gating theory

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Human participants
	Nonhuman primate data

	Method details
	Human behavioral / fMRI experiment
	Stimuli
	Pre-screening session (Day1)
	Training session (Day2)
	Scanning session (Day3)
	fMRI acquisition
	fMRI pre-processing

	Neural network simulations
	Task design
	Neural network architecture
	Weight initialisation
	Training
	Addition of Gaussian input noise
	Impact of learning rate
	Controlling the learning regime via L2-regularization

	Controlling the hidden layer representations via auxiliary loss function
	Convolutional neural network simulations
	Dataset and task design
	Architecture
	Training procedure

	Recurrent neural network extension
	Input dynamics


	Quantification and statistical analysis
	Human behavioral/fMRI data
	Psychophysical model of human choices
	Group level inference
	fMRI data analysis: GLMs
	Representational similarity analysis of human fMRI
	fMRI RSA: parameterized model
	fMRI RSA: Embedding dimensionality
	fMRI RSA: Correlations between brain and behavior
	fMRI RSA: Comparison of patterns across regions
	fMRI MVPA: Decoding of relevant and irrelevant dimensions

	Neural network simulations
	Accuracy
	Endpoint weight norm and relative weight change
	Neural network representational similarity analysis
	Neural network RSA: Quantifying hidden layer geometries
	Neural networks: Embedding dimensionality of hidden layer activity patterns
	Neural network hidden unit selectivity and axis alignment
	Neural network context weight correlations
	Neural network ablation study

	Non-human primate data
	Representational similarity analysis of NHP electrode recordings
	Individual unit selectivity and axis alignment of NHP electrode recordings
	Decoding of relevant and irrelevant dimensions






