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† SPOC laboratory, École Polytechnique Fédérale de Lausanne (EPFL)

‡ Gatsby Computational Neuroscience Unit & Sainsbury Wellcome Centre, University

College London

§ CIFAR Azrieli Global Scholars programme, CIFAR

Abstract. Transfer learning can significantly improve the sample efficiency of neural

networks, by exploiting the relatedness between a data-scarce target task and a data-

abundant source task. Despite years of successful applications, transfer learning

practice often relies on ad-hoc solutions, while theoretical understanding of these

procedures is still limited. In the present work, we re-think a solvable model of

synthetic data as a framework for modeling correlation between data-sets. This setup

allows for an analytic characterization of the generalization performance obtained when

transferring the learned feature map from the source to the target task. Focusing on

the problem of training two-layer networks in a binary classification setting, we show

that our model can capture a range of salient features of transfer learning with real

data. Moreover, by exploiting parametric control over the correlation between the two

data-sets, we systematically investigate under which conditions the transfer of features

is beneficial for generalization.
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1. Introduction

The incredible successes of deep learning originate from years of developments on

network architectures and learning algorithms, but also from increasing amounts of data

available for training. In many deep learning applications, data abundance allows for

an extensive empirically-driven exploration of models and hyper-parameter tuning to fit

billions of model parameters [1, 2, 3]. Despite efforts in building data-efficient pipe-lines

[4, 5], deep networks remain intrinsically data-hungry [6]. In some settings, however,

this procedure is impractical, due to the limited size of the dataset. For instance, the

bureaucracy behind the acquisition of medical data and the lack of automated systems

for their labelling complicate the deployment of deep learning models in medical imaging

[7, 8, 9].

A solution that can drastically reduce the need for new labelled data is transfer

learning [10, 11, 12]. This technique aims to improve the generalization performance

of a network trained on a data-scarce target task, by leveraging the information that

a second network has acquired on a related and data-abundant source task. The idea

is that the network does not need to learn to recognize the relevant features of data

from scratch, but can start from an advanced, yet imperfect, stage of learning. In the

simplest formulation of transfer learning, the first layers of a neural network–those that

perform feature extraction–are transferred and kept fixed, and only the last segment

of the network is retrained on the new dataset. In practice, an additional end-to-end

fine-tuning stage is often added [13], to adapt the learned features to the target task.

Despite its great success and its extensive use in deep learning applications,

theoretical understanding of transfer learning is still limited and many practical

questions remain open. For instance: How related do the source and target tasks need to

be? Is it better to transfer from complex to simpler datasets or vice versa? How much
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data is necessary in the source dataset to make the transfer effective? How does the size

of the transferred feature map impact performance? And when is the fine-tuning stage

beneficial?

A key ingredient for gaining theoretical insight on these questions is to obtain a

generative model for structured data able to produce non-trivial correlations between

different tasks. The influence of the structure of data on learning has been an active

research topic in recent years [14, 15, 16, 17]. An important step forward was taken

in [14], where it was shown that a simple generative model called the hidden manifold

model (HMM) induces learning behaviors that more closely resemble those observed on

real data. The HMM is built on the idea that real-world datasets are intrinsically low

dimensional, as recent studies have shown for some of the most widely used benchmarks.

For instance, the intrinsic dimensions [18] of MNIST and CIFAR10 were estimated to be

L ≈ 15 and L ≈ 35 [19], compared to the actual number of pixelsD = 784 andD = 1024.

This concept is also demonstrated in modern generative models [20, 21], where high-

dimensional data is produced starting from lower-dimensional random vectors.

Contributions: In the present work, we propose a framework for better understanding

transfer learning, where the many variables at play can be isolated in controlled

experiments.

• In Sec. 2, we introduce the correlated hidden manifold model (CHMM), a tractable

setting where the correlation between datasets becomes explicit and tunable.

• By employing methods developed in [22], in Sec. 3, we analytically characterize the

asymptotic generalization error of transfer learning (without fine-tuning) on the

CHMM, where learned features are transferred from source to target task and are

kept fixed while training on the second task.

• We demonstrate similar behavior of transfer learning in the CHMM and in

experiments on real data, in Figs. 2 and 4.

• In Sec. 4 we compare the performance of transfer learning with the generalization

error obtained by three alternative learning models: a random feature model; a

network trained from scratch on the target task; and transfer learning with an

additional stage of fine-tuning.

• In Figs. 3 and 5 we leverage parametric control over the correlation between source

and target datasets to extensively explore different transfer learning scenarios and

delineate the boundaries of effectiveness of the feature transfer. We also trace

possible negative transfer effects observed on real data, such as over-specialization

and overfitting [23, 24] in Fig. 3.

Further related work: Starting from the seminal work of [25], the statistical learning

community has produced a number of theoretical results bounding the performance of

transfer learning, often approaching the problem from closely related settings like multi-

task learning, few-shot learning, domain adaptation and hypothesis transfer learning (see
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[26, 27, 28] for surveys). Most of these results rely on standard proof techniques based

on the Vapnik-Chervonenkis dimension, covering number, stability, and Rademacher

complexity. A recent notable example of this type of approach can be found in [29].

Another recent work considers a two-stage setting similar to the one analyzed in the

present paper, where the feature map learned on a first source task is transferred but

not fine-tuned on a target task [30]. However, these works focus on worst-case analyses,

whereas our work has a complementary focus on characterizing average-case behavior,

i.e., typical transfer learning performance that we believe may be closer to observations

in practice.

An alternative – yet less explored – approach is to accept stronger modeling

assumptions in order to obtain descriptions of typical learning scenarios. Three recent

works rely on the teacher-student paradigm [31], exploring transfer learning in deep

linear networks [32] and in single-layer networks [33, 34]. Despite many differences,

these works confirm the intuitive finding that fewer examples are needed to achieve good

generalization when the teachers of source and target tasks are more aligned. While these

studies provide a careful characterization of the effect of initialization inherited from the

source task, they do not address other crucial aspects of transfer learning, especially the

role played by feature extraction and feature sharing among different tasks. In modern

applications feature reuse is key in the transfer learning boost [35] and it is lacking in

the current modeling effort. This is precisely what we investigate in the present work.

2. Definition of the correlated hidden manifold model

We propose the correlated hidden manifold model (CHMM) as a high-dimensional

tractable model of transfer learning, sketched in Fig. 1. To capture the phenomenology

of transfer learning, two key ingredients are necessary. First, we need to express

the relationship between source and target tasks, by defining a generative model for

correlated and structured datasets. Second, we need to specify the learning model and

the associated protocol through which the feature map is transferred over the two tasks.

In the following, we describe both parts in detail.

2.1. Generative model.

The relationship between classification tasks can take different forms. Two tasks could

rely on different features of the input, but these features could be read-out identically

to produce the label; or two tasks could use the same features, but require these to

be read-out according to different labeling rules. In the hidden manifold model (HMM)

[14], explicit access to a set of generative features and to the classification rule producing

the data allows us to model and combine correlations of both kinds.

The correlated-HMM combines two HMMs – representing source and target

datasets – in order to introduce correlations at the level of the generative-features and the

labels. The key element in the modeling is thus the relation between the two datasets.
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Source dataset :

Target dataset :

2-layer network
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Figure 1: Diagram of the CHMM. Left panel: the generative model consists of

two hidden manifold models that share features (orange) and teacher weights (light

blue), with some perturbations (lightning icons). Right panel: a two-layer network is

trained on the source dataset, and the learned feature map (dark blue) is transferred to

the second architecture – the transferred feature model. The loading symbols indicate

which layer is trained in each phase.

On a formal level, we construct source and target datasets, Ds = {xµs , yµs }Ms
µ=1 and

Dt = {xµt , y
µ
t }Mt

µ=1, as follows: let D denote the input dimension of the problem (e.g.,

the number of pixels), and Ls the latent (intrinsic) dimension of the source dataset.

First, we generate a pair (F s,θs), where F s ∈ RLs×D is a matrix of D-dimensional

Gaussian generative features, (F s)ij ∼ N (0, 1), and θs ∈ RLs denotes the parameters

of a single-layer teacher network, (θs)i ∼ N (0, 1). The input data points for the source

task, xµs ∈ RD, are then obtained as a combination of the generative features with

Gaussian coefficients cµs ∈ RLs , (cµs )i ∼ N (0, 1), while the binary labels yµ ∈ {−1, 1}
are obtained as the output of the teacher network, acting directly on the coefficients:

xµs = ReLU

(
cµsF s√
Ls

)
; yµs = sign

(
cµsθs√
Ls

)
. (1)

Thus, starting from a typically lower-dimensional latent vector cµs the model produces

structured inputs embedded in a high-dimensional space, as in many modern generative

models [20, 21]. Note that the choice of the ReLU non-linearity is not a necessary

requirement of the proposed modeling framework (which would allow any choice of

common activation functions), and that sparse inputs are found in many standard

benchmarks (e.g. MNIST-like datasets [36, 37, 38]). On the other hand, the Gaussianity

of the generative features and coefficients, and of the teacher vector, is a customary but
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strong modeling assumption which is crucial for the theoretical treatment described in

the following sections.

In order to construct the pair (F t,θt) for the target task, we directly manipulate

both the features and the teacher network of the source task. To this end, we consider

three families of transformations:

• Feature perturbation and substitution. This type of transformation can be used

to model correlated datasets that may differ in style, geometric structure, etc.

In the CHMM, we regulate these correlations with two independent parameters:

the parameter η, measuring the amount of noise injected in each feature, and the

parameter ρ, representing the fraction of substituted features:

(F t)ij =

{
(F̃ )ij for i = 1, . . . , ρLs

η(F s)ij +
√

1− η2(F̃ )ij for i = ρLs + 1, . . . , Ls
, (F̃ )ij ∼ N (0, 1);

(2)

• Teacher network perturbation. This type of transformation can be used to model

datasets with the same set of inputs but grouped into different categories. In the

CHMM, we represent this kind of task misalignment through a perturbation of the

teacher network with parameter q:

(θt)i = q(θs)i +
√

1− q2(θ̃)i , (θ̃)i ∼ N (0, 1); (3)

• Feature addition or deletion. This type of transformation can be used to model

datasets with different degrees of complexity and thus different intrinsic dimensions.

In the CHMM, we alter the latent space dimension Lt 6= Ls, adding or subtracting

some features from the generative model:

(F t)ij =

{
(F s)ij for i = 1, . . . ,min(Ls, Lt)

(F̃ )ij for i = min(Ls, Lt) + 1, . . . , Lt
, (F̃ )ij ∼ N (0, 1). (4)

Moreover, the target teacher vector will also have a different number of components:

(θt)i =

{
(θs)i for i = 1, . . . ,min(Ls, Lt)

(θ̃)i for i = min(Ls, Lt) + 1, . . . , Lt
, (θ̃)i ∼ N (0, 1). (5)

The target dataset is again produced according to eq. 1, with the pair (F t,θt) and

starting from i.i.d. Gaussian latent vectors cµt ∈ RLt , (cµt )i ∼ N (0, 1).

We can easily identify counterparts of these types of transformations in real world

data. For example, a simple instance of datasets that slightly differ in style but share

the same labeling (as modeled through feature perturbation/substitution in the CHMM)

can be obtained by applying a data-augmentation transformation like elastic distortions

on a given dataset. Another typical transfer learning setting is one where the same data

is clustered according to different labeling rules (teacher perturbation in the CHMM),

e.g. even-odd digits vs digits greater-smaller than 5 in the MNIST dataset. Finally, one
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could obtain two datasets that only differ in the complexity level (and thus in the latent

space dimension) by selecting a slice of a given dataset that only contains a subset of

the original categories. In this way some of the recognizable traits of the images in the

full dataset will no longer appear in the reduced one (as in the feature deletion case in

the CHMM). In section 4, we provide evidence of the qualitative agreement between the

phenomenology observed in the CHMM of task correlation and in real-world datasets.

2.2. Learning model.

We specialize our analysis to the case of two-layer neural networks. This is the simplest

architecture able to perform feature extraction and develop non-trivial representations of

the inputs through learning. Note that the learning problem created through the HMM

construction could also be tackled with a single layer network [15], but the absence of

a transferable feature map would not allow for the present study. We will denote with

H the number of hidden units in the network and focus on the case of ReLU activation

functions (again, this choice is purely arbitrary). To train the network, we employ a

standard binary cross-entropy loss with L2-regularization on the second layer.

We define the transfer protocol as follows. First, we randomly initialize a two-

layer network with i.i.d.∼ N (0, 1) weights and train it on the source classification task

(following [24], early stopping is employed in this first training step). Then, we transfer

the learned feature map, i.e. the first-layer weights, ŵ1 ∈ RH×D, to a second two-layer

network. Finally, we only train the last layer of the second network, w2 ∈ RH , while

keeping the first layer frozen, on the target task with loss:

ŵ2 = arg min
w2

[
Mt∑
µ=1

`

(
yµ,

vµt ·w2√
H

)
+
λ

2
||w2||22

]
, vµt = ReLU

(
xµt · ŵ1

D

)
, (6)

where `(y, x) = log (1 + exp (−yx)) is the binary cross-entropy. We refer to this learning

pipeline as the transferred feature model (TF). This notation puts the TF in contrast to

the well-studied random feature model (RF) [39, 40], where the first-layer weightsw1 are

again fixed but random, i.e. sampled i.i.d.∼ N (0, 1). Of course, when the correlation

between source and target tasks is sufficient, TF is expected to outperform RF.

Throughout this work, we will generally assume the hidden-layer dimension H to

be of the same order of the input size D. Note that, when the width of the hidden layer

diverges, different limiting behaviors could be observed [41].

3. Theoretical framework

One of the main points of the CHMM is that the typical generalization performance

associated with the above described transfer learning protocol can be characterized

analytically in high-dimensions by means of the replica approach. This tool is a

non-rigorous analytical method from statistical physics [42], used to characterize high-

dimensional optimization problems through a narrow set of scalar fixed-point equations.



Probing transfer learning with a model of synthetic correlated datasets 8

In this reduced asymptotic description, the original dependence on the microscopic

details of the model is captured through a set of overlap parameters, which are assumed

to concentrate around their typical values in high dimensions. Note that, although

the replica approach is heuristic in general settings, there is overwhelming numerical

evidence of the exactness of the yielded results, and a rigorous proof has been derived

in several models.

A crucial aspect of the transfer learning setting analyzed in this paper, allowing

the replica analysis described below, is that the TF model only learns the second layer

weights w2 on the target task, while the feature map is kept fixed through training.

In fact, it has been recently conjectured and empirically demonstrated in [22] that

there exists a broad universality class, featuring diverse learning models with fixed

feature maps that asymptotically behave as simpler Gaussian covariate models, and

that can be successfully studied by means of the replica approach. According to the

generalized Gaussian equivalence theorem (GET) [43], in the high-dimensional limit

L,D,H,M → ∞ (defined in the previous paragraphs), with γ = L/H and α = M/H

of O(1), the generalization error of the two-layer network can be expressed as an easy-

to-evaluate two-dimensional integral:

lim
D→∞

εg = Eδ,ν
[
(sign (ν)− sign (δ))2

]
, (7)

where (δ, ν) are jointly Gaussian random variables, with zero mean and covariance

matrix [
ν

δ

]
∈ R2 ∼ N

(
0,

[
ρ m?

m? q?

])
. (8)

The parameters ρ = ‖θt‖22 /D and (m?, q?) are extremizers of the quenched free-entropy

potential:

φ = extr
q,V,m,q̂,V̂ ,m̂

{
1

2

(
qV̂ − q̂V

)
−√γmm̂+ αgE (q, V,m) + gS

(
q̂, V̂ , m̂

)}
, (9)

where q, V,m and q̂, V̂ , m̂ are the overlap parameters and their conjugates respectively.

The two functions gS and gE in Eq. (9) can be interpreted as competing entropic and

energetic contributions. The entropic potential,

gS = lim
H→∞

1

2H
tr
(
m̂2ΦTθtθ

T
t Φ + q̂Ω

) (
λ11D×D + V̂ Ω

)−1
, (10)

depends on the spectral properties of two matrices, Ω ∈ RD×D and Φ ∈ RL×D, that

encode – through the generative coefficients c and the activations v (below) – the non-

trivial dependency on the correlations between training samples and the non-linear

feature maps: [
c

v

]
∈ RL+D ∼ N

(
0,

[
11L×L Φ

ΦT Ω

])
. (11)
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From Eq. (10) and (11) we can notice that, applying the GET, the non-linear learning

problem with a fixed but generic feature map is mapped onto a simple Gaussian covariate

model.

The energetic potential gE is instead defined as

gE =

∫
DzH

(
− mz√

ρq −m2

)
1

2
(ME(1) +ME(−1)), (12)

ME(y) = max
u

[
−u

2

2
− `
(
y,
√
V u+

√
q
)]

; (13)

with H(x) =
∫∞
−∞ dz

e−z2/2
√
2π

and `(y, x) = log(1+exp(−yx)) the binary cross-entropy loss.

The extremizers of eq. (9) have a precise physical meaning, since they correspond

to the typical values of practically measurable overlaps:

q =
1

D
ŵT

2 Ωŵ2; m =
1√
LD

θTt Φŵ2 (14)

over different possible realizations of the training set. Given the values of m? and q?,

one can finally compute the two-dimensional Gaussian integral in equation (7), yielding

the generalization error achieved at the end of training in closed-form expression:

εg =
1

π
arccos

(
m?√
ρ q?

)
. (15)

An important consideration is that these results are obtained in the so-called

replica symmetric ansatz. Despite being the simplest possible ansatz for these kind

of calculations, it is also known to be the correct one for convex problems like the

logistic regression setting under study. We also remark that the equations above are

already in the zero-temperature limit, which is the relevant one for studying optimization

problems. This limit is non-trivial and requires the introduction of appropriate scaling

laws. We refer the reader to [22] for further details on the derivation.

In this work, we employ this set of equations to predict the generalization

performance of the TF model, described in section 3. We accept the validity of the

Gaussian equivalence as a working assumption, setting up to verify its viability a

posteriori through comparison with numerical simulations. To analyze the transfer

learning setting proposed in Section 2, the pipeline is thus the following:

(i) We generate a finite-size CHMM, (F s,θs) and (F t,θt).

(ii) We obtain the weights to be transferred, ŵ1, via numerical optimization on the

source task. This first computational step is the most demanding in the pipeline.

(iii) We estimate through Monte Carlo sampling the population covariances Ω and Φ

that serve as inputs to the asymptotic formulas in equation (9). Note that the

computational cost of the MC sampling is minimal.

(iv) Finally, we iterate the set of saddle-point equations derived in [22] from the

extremum operation in equation (9), in order to get an analytic prediction for

the associated test error.
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Altogether, the steps require small computational power and can be performed in an

ordinary laptop in less then 3 minutes, more precisely the second step takes 1-2 minutes,

the third 5-10 seconds, and the forth some fractions of a second.

Note that, to the best of our knowledge, it is not possible to circumvent the

numerical optimization entailed in step 2 and obtain a fully analytical description of

this simple transfer learning setting. This type of analysis would require an analytical

characterization of batch-learning settings in two-layer networks, in high-dimensions

(both input and hidden-layer dimensions) and in the feature learning regime. This is a

highly sought after but still missing piece in the current theory of deep learning.

A further thing to notice is that the replica results are valid in the high-dimensional

limit. However, the pipeline proposed in [22] and employed in our work, starts

from finite-size correlation matrices estimated through Monte Carlo sampling. The

justification is the following: the final replica expressions only depend on the traces

of the correlation matrices. In high dimensions, the traces translate into expectations

over the corresponding spectral distributions. However, these expectations can be well

approximated by empirical averages over the finite dimensional spectra, provided the

dimension is large enough (we employ H ∼ 1e3 in our simulations).

We employ the same analytic framework also for the characterization of the

performance of RF, for which the GET assumption was recently proven rigorously [44].

In the following, we use the performance of the RF as a baseline for evaluating the effect

of transfer learning in the CHMM model. For further comparisons, in the following we

also consider: the performance of a two-layer network (2L) trained from scratch on the

target task; and the effect of transfer learning combined with an additional fine-tuning

stage of the entire network (ft-TF). Both these performances are obtained numerically.

The details on the hyper-parameters employed in the learning protocols are provided in

Appendix D.

4. Results

We now employ the CHMM and the analytic description of the TF performance to

explore the effectiveness of transfer learning in a controlled setting. For simplicity, we

focus our presentation on two key variables that can impact the generalization of TF.

We first consider the effect of different correlation levels between source and target

tasks, and afterwards we examine the role played by the latent dimensions of the two

datasets. In both cases the starting point is an experiment on real data, followed by

the identification of similar phenomenology in the synthetic model. Legitimized by

the observed qualitative agreement, we then use the described toolbox of analytical

and numerical methods to explore associated transfer learning scenarios and draw

corresponding phase diagrams.
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4.1. Transfer between datasets with varying levels of correlation.

A highly intuitive aspect of transfer learning is that the degree of task relatedness

crucially affects the results of the transfer protocol. As mentioned in section 2, many

sources of correlation can relate different learning tasks, creating a common ground for

feature sharing among neural network models.

We start with a simple transfer learning experiment on real data. We consider the

EMNIST-letters dataset [37], containing centered 28×28 images of hand-written letters.

We construct the source dataset, Ds, by selecting two groups of letters ({A,B,E, L}
in the first group and {C,H, J, S} in the second) and assigning them binary labels

according to group membership. We then generate the target task, Dt, by substituting

one letter in each group (letter E with F for the first group and letter J with I for

the second). In this way, a portion of the input traits characterizing the source task is

replaced by some new traits in the target.

Fig. 2(a) displays the results. On the x-axis, we vary the number of samples in the

target task (notice the log-scale in the plot), while the size of the source dataset is large

and fixed. A first finding is that TF (light blue curve) consistently outperforms RF

(orange curve), demonstrating the benefit of the feature map transfer. More noticeably,

at a low number of samples, TF substantially outperforms training with 2L (green

curve), with test performance gains of up to 15%. This gap closes at intermediate

number of samples, and we observe a transition to a regime where the 2L performs

better. We also look at the effect of fine-tuning the feature map in the TF, finding

that at small numbers of samples it is not beneficial with respect to TF, while at large

numbers of samples it modestly helps generalization. Both the learning curves of TF

and RF display an interpolation peak, due to the low employed regularization. This type

of phenomenon – connected with the double-descent phenomenon – has sparked a lot

of theoretical interest in recent years [45, 46]. The cusp is delayed in the TF, signaling

a shift in the linear separability threshold due to the transferred feature map. It is also

interesting that the fine-tuned TF retains the cusp while the 2L model does not. This

is due to the different initialization: while 2L starts from small random weights, ft-TF

picks up the training from the TF, where the second-layer weights can be very large.

Further details are provided in section 4.3.

While the reported empirical observations are not too surprising, we can now see

if similar behaviors can be traced also in a synthetic setting. We can straightforwardly

reproduce the type of dataset correlations described above via feature substitution in the

CHMM, as described in section 2. Fig. 2(b) shows the transfer learning phenomenology

in the CHMM, displaying a remarkable similarity with the previous experiment. In the

plot, the full lines show the results of the theoretical analysis, corroborated by numerical

simulations in finite-size (points in the same color). The observed agreement between

theoretical predictions and numerical experiments validates the GET assumption behind

the analytic approach, as described in section 3. The 2L and ft-TF dashed lines

are instead purely numerical, averaged over different realizations of the CHMM. For
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Figure 2: Role of feature perturbation: test error as a function of the number of

samples per hidden unit for both (a) Transfer between two subsets of EMNIST-letters.

(b) CHMM with 30% of substituted generative features in the target task. Full lines are

from the theoretical predictions for the CHMM, points refer to numerical simulations

with connecting dashed lines. The parameters of the networks are set to: H = 500,

λ = 1e − 8 on real data and λ = 1e − 7 on synthetic data. The input sizes are

set to D = 784 for the experiments with real data and D = 1000 for those with the

synthetic model. The parameters of the synthetic data model are set to: Ls = Lt = 150,

(η, ρ, q) = (1, 0.3, 1). The size of the source task is Ms = 25600 on real data and

Ms = 51200 on synthetic data. All the experiments have been averaged over 50, 20

and 10 samples for low, intermediate and high numbers of samples respectively. In all

figures, the error bars are smaller than the size of the points.

low number of samples we observe rather clearly that the fine-tuning of TF actually

deteriorates the test error due to over-fitting, in accordance with empirical findings in

[23]. This effect is also seen in another real data experiment reported in Appendix C.

The correspondence between the transfer learning behavior observed on real data

and in the CHMM motivates a more systematic exploration of the possible transfer

learning regimes using the explicit fine-grained control over the dataset correlations

in the CHMM. The analytical pipeline presented in section 3 is extremely efficient

for deriving phase diagrams in the CHMM. In particular, with a single numerical

optimization for ŵ1 and a single MC sampling for the population covariance Ω, we

can obtain an entire slice of the phase diagram at fixed source dataset, via repeated

iterations of the asymptotic equations. As a result, an entire phase diagram (with

about 1000 points, 10 samples per point) can be derived in 5-10 hours on a modern

laptop (compared with order ∼ 103 hours for obtaining the same diagram through pure

numerical optimization).

As a representative case, Fig 3 shows three phase diagrams, comparing (a) TF with

2L, (b) TF with RF, (c) and ft-TF with TF, and displaying the performance gain as

the teacher network alignment q is varied. High values of q indicate strongly correlated
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Figure 3: Effect of the dataset correlation on transfer learning performance.

The three phase diagrams characterize the learning performance in the CHMM,

comparing the transferred feature model (TF) with: (a) a two-layer network with both

layers trained on the target task (2L), (b) a random feature model trained on the same

task (RF), and (c) the transferred feature model after an additional stage of fine-tuning

(ft-TF), as a function of the correlation parameter q and the target dataset size M . Blue

indicates TF performing better than the compared algorithm (conversely, red indicates

TF performing worse). The results for TF and RF are obtained from the theoretical

solution of the CHMM, while 2L and ft-TF are purely numerical (10 samples per point).

The parameters of the model were set to L = 200, (η, ρ) = (1, 0), D = 1000 andH = 500.

tasks, while low values indicate unrelated ones. Each point in the diagrams represents

a different source-target pair, with a variable number of samples in the target task.

In panel (a), we can see that TF can outperform 2L (blue shaded region) when the

number of samples is low enough, or when the level of correlation is sufficiently strong.

In these regimes 2L is not able to extract features of a comparable quality. Note that,

at q = 1, the transferred features are received from a source task that is identical to

the target, so it is to be expected that at high numbers of samples the performance of

TF is equivalent to 2L. The darker red region (around numbers of samples per hidden

unit of order 1) is connected to the appearance of the interpolation peak, mentioned

above and investigated further in section 4.3. In panel (b), we see a corner of the phase

diagram (red shaded region) where the performance of TF is sub-obtimal with respect to

learning with random features. This is a case of negative-transfer: the received features

are over-specialized to an unrelated task and hinder the learning capability of TF as

in [47]. Finally, in panel (c), we can see when adding a final stage of fine-tuning on

the new data (adapting the weights in both layers) can induce better generalization

performance. The red shaded region, highlighting this improvement, is found at lower

correlations (where the transferred features are not effective without fine-tuning) and

higher number of training samples in the target dataset (where additional training does
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not lead to over-fitting). At small number of samples, instead, this procedure leads to

over-fitting [23].

We here reported on the effect of a teacher network perturbation, but we find

surprisingly similar results for the other families of transformations, perturbing the

generative features with η and ρ (the corresponding phase diagrams are shown in

Appendix A). Thus, at the level of the CHMM, all these manipulations have a similar

impact on dataset correlation and feature map transferability. Next, we asked whether

these patterns held qualitatively on real world data. Remarkably, we trace similar

trends in different transfer learning settings on MNIST-like datasets, as documented

in Appendix C. We emphasize that obtaining almost identical behavior in experiments

on MNIST-like datasets and in a simple (fundamentally Gaussian) synthetic model is

non-trivial, and suggests that our setting captures important features of the real data

setting. The fact that transfer learning performance is largely insensitive to the minute

details of source and target datasets, and seems instead to be dominated by the intensity

of the dataset correlations, hints at the existence of a class of universality connecting

apparently disparate learning problems. In this perspective, although the obtained

phase diagrams cannot be practically employed for predicting real data behavior, the

uncovered phases and lines between them are likely to delineate a picture which is

robust to moderate changes in the data-model. In sum, our systematic phase space

analysis suggests the following conclusions: transfer learning helps most in the limited

target data, high task correlation regime; sufficiently dissimilar tasks can cause negative

transfer; and fine tuning is only beneficial given sufficient target task data.

Connection with related works. Several cross-domain transfer learning experiments

have been carried out in the past decades. For example, [24] transferred from the

imagenet dataset to different target sets, but without investigating the relatedness

between target and source, while [48] extensively studied transfer learning from/to

several sources/targets. These experiments generally show that as the difference between

source and target datasets increases the benefit from transferring decreases, as observed

in our study. Similar results are described in [49], where the transfer is considered from

imagenet [1] to different kind of images (medical [50], pictures, drawings [48]). The

negative transfer effect [47] – i.e. a disadvantage in employing transfer learning with

respect to training from scratch – found in a corner of Fig. 3 has also been observed

in recent numerical works on transfer learning. This phenomenon can be caused by

problems in the architecture [23], or can be associated to task-related difficulties. For

example, [51] observed negative transfer from imagenet to tomography head scans,

imputing the poor performance to the datasets dissimilarity, while [52] reviewed negative

transfer in applications where the datasets belong to far-apart domains.

On a different note, there have been few proposals of viable metrics for evaluating

similarity between real datasets, with the goal of obtaining predictors of the associated

transfer learning performance. Some of these architecture agnostic metrics evaluate

dataset distances based on information theory, information geometry and optimal
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transport [53, 54, 55, 56, 57]. An interesting direction for future work would be to

connect these distance metrics with the parametric transformations in the CHMM.

4.2. Transfer between datasets of different complexity.

So far, we discussed situations where the transfer occurs between tasks with similar

degrees of complexity. However, in deep learning applications, this is not the typical

scenario. Depending on whether the source task is simpler or harder than the target

one, a different gain can be observed in the generalization performance of TF. The

two transfer directions, from hard to simple and vice-versa, are not symmetric. This

observation has been repeatedly reported for transfer learning applications on real data

[58, 59, 49].

To isolate the asymmetric transfer effect, we propose again a simple design.

Consider as a first classification task, Dhard, the full EMNIST-letters dataset (including

all classes) with binarized labels (even/odd categories). As a second task, Deasy, consider

instead a filtered EMNIST dataset (containing only some of the letters) with the same

binarized labels. As denoted by the subscript, the learning problem associated to the

first task is harder, given the richness of the dataset, while the second classification

task is expected to be easier. Fig. 4(a) shows the outcome of this experiment. In the

top sub-plot, we display the transfer from Dhard to Deasy, while in the lower sub-plot

the transfer from Deasy to Dhard. A first remark is on the different difficulty of the

two learning problems: as expected, the test error is smaller in the top figure than in

the bottom one, especially when the number of samples is small (difference of about

10% asymptotic test accuracy for all learning models). However, a more surprising

observation is that, with few target samples, the performance gain of TF over the two

base-lines is not symmetric in the two transfer directions: the gain is large when the

transfer goes from Dhard to Deasy (top figure, about 10%), while it is smaller in the

opposite transfer direction (bottom figure, about 5%).

As mentioned in section 2, dataset complexity is captured in our modeling

framework through the latent dimension of the two HMMs. In particular, we can

respectively assign a higher Lhard and a smaller Leasy to the two tasks. Correspondingly,

the harder HMM will comprise a larger number of generative features. Fig. 4(b) shows

the asymmetric transfer effect in the setting of the CHMM. Again, the top sub-plot

shows the transfer from Lhard to Leasy, while the bottom sub-plot the converse. The

different task complexity is reflected in the lower test scores recorded when the target

task is the easier one. Moreover, as above, we observe a different gain between the

two transfer directions for TF (above 10% in transfer from hard to easy, about 5% in

the other direction). Thus, the difference in the intrinsic dimension of the two datasets

seems to be the key ingredient for tracing this phenomenon.

We can now exploit our modeling framework and further explore the asymmetric

transfer effect as a function of the latent dimension discrepancy. We consider source and

target HMMs with variable latent dimensions, Ls and Lt, while keeping Ls + Lt = 500
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Figure 4: Asymmetric transfer: test error as a function of the number of samples per

hidden unit for both (a) real and (b) synthetic data. Top plots show the hard-to-easy

transfer direction, bottom plots the easy-to-hard transfer direction. (a) Full EMNIST-

letters vs. filtered EMNIST-letters. (b) CHMM with different latent dimensions of

the source and target model. Full lines refer to theoretical predictions for the CHMM,

points refer to numerical simulations with dashed lines being a guide to the eye. The

parameters of the networks are set to: λ = 1e−6, H = 500. The input size is D = 784 for

the experiments on real data and D = 1000 for the synthetic model. The parameters of

the synthetic data model are set to: Leasy = 100 and Lhard = 400, (η, ρ, q) = (0.8, 0, 0.9).

The size of the source task is Ms = 24000 for real data and Ms = 51200 for synthetic

data in both transferring directions (hard-easy and easy-hard). All the experiments

have been averaged over 50, 20 and 10 samples for low, intermediate and high numbers

of samples respectively. In all figures, the error bars are smaller than the size of the

points.

fixed. This allows us to probe cases where the target task is simpler and cases where

it is more complex than the source. By comparing the performance of TF to RF, we

identify the regimes where transfer learning produces the largest gains.

Fig. 5(a) shows the resulting phase diagram, highlighting a stark asymmetry when

transferring between datasets with different latent dimensions. In the plot, the x-axis

shows the latent dimension of the target task, therefore the hard to easy regime is found

on the left, while the easy to hard regime is found on the right. The vertical axis at

Lt = 250, represents the symmetry line of the phase diagram and corresponds to the

case where Ls = Lt, namely when the two HMMs share the same generative features.

By moving to the right or to the left of the axis by the same amount, the number of

generative features common to both datasets is identical. However, on the right, the

target dataset is more complex than the source dataset. As a result, on this side of the

phase diagram, the performance gain of TF is smaller. When instead the target task
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is simpler, the test performance of TF is highly improved, especially at low numbers of

samples.

Fig. 5(b) displays a horizontal cut of the phase diagram, at M/H = 0.4. In the low

number of samples regime transfer learning is highly beneficial, and indeed we observe

that TF greatly outperforms RF and 2L. Again, note that at Lt = 250 the latent

dimensions of source and target tasks are equal. However, as we move away from the

symmetry line at Lt = 250, we see the asymmetric transfer effect coming into play.

When the target latent dimension increases, the gap in performance closes faster. This

is due to the lack of learned features, affecting the test error of TF. If we look at the effect

of fine-tuning the transferred features, we see a different behavior at small/large target

latent dimension. When Lt is small, ft-TF is detrimental. When Lt is instead large,

ft-TF can slightly improve performance. The fully trained 2L network is over-fitting

due to the small dataset.
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Figure 5: Effect of a latent dimension asymmetry. (a) Phase diagram comparing

the performance of the transferred feature model (TF) to that of a random feature model

(RF), as a function of the latent dimension of the target task Lt (larger L implies higher

dataset complexity) and of the number of samples in the target dataset. In the source

task we fix Ls = 500 − Lt, therefore the vertical axis at Lt = 250 indicates the case of

symmetric latent spaces. The displayed results are obtained from the theoretical solution

of the CHMM. (b) Horizontal slice of the phase diagram, at M/H = 0.4, in which also

the performance of the two-layer network (2L) and the fine-tuned TF are shown. Full

lines are obtained from the theoretical solution of the CHMM, points from numerical

simulations, dashed lines are guide to the eye (10 seeds per point). The parameters of

the generative model are set to (η, ρ, q) = (1, 0, 1), D = 1000 and H = 500, λ = 1e− 6.

Connection with related works. Although in practice it is common to transfer from

non-target-specific datasets to the target dataset (e.g. [23, 60]), to the best of our

knowledge, a systematic exploration of the generalization performance from complex
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(feature rich) to simple (few features) has not being carried out. However, we can

obtain an indication of this effect in the already cited works [48, 49] on generalization

performance with different source and target sets, by carefully comparing the reported

scores (for instance in [48] table 3 we see that transferring from real images to paintings

achieve better performance than black and white sketches to paintings). Our results

help systematize numerous observations of the value of adapting large models trained

in rich settings, a strategy which has proven useful in a range of settings.

4.3. Separability threshold and double descent.

Conventional wisdom in machine learning and statistical learning theory says that the

generalization performance of learning models is affected by the so-called bias-variance

tradeoff. When the number of parameters in the learning model is too small, the

resulting estimator may underfit the training set, thus failing in correctly predicting

the correct input-target relationship (high bias-low variance regime). On the contrary,

when the functional space of possible predictors is too large, the selected estimator may

overfit the training set, ending up to interpolate the noise in the data samples (low

bias-high variance regime). The generalization error then follows the classical U-shaped

curve, whose minimum coincides with the “sweet spot” balancing these two regimes.

This picture is at odds with modern deep-learning applications, such as neural

network models, for which optimal generalization performances are often attained in

the over-parametrized regime. In this case, the generalization error follows the classical

U-shaped curve only up to the interpolation threshold, namely when the model can

perfectly fit the training data. Beyond the interpolation threshold, the generalization

error decreases monotonically with the amount of parameters exploited in the learning

model. Between these two regimes, a peak occurs for vanishing regularization.

This double-descent behavior of the generalization error was first observed in

[61, 62, 46] and has recently risen a lot of theoretical interest. In particular, in [45]

the authors established the existence of the double-descent behavior for a wide-variety

of learning models, including neural networks, random feature models and decision

trees. The double descent curve has been exemplified in [63] by means of the well-

know jamming phenomena in statistical physics literature, and it has been shown to

be crucially affected by the additive noise in the labels and the weights initialization in

[64, 65]. The asymptotic expression of the generalization error in the high-dimensional

limit (see sec. 3) of random feature models has been derived in [40] for ridge regression

and in [15] for classification. In particular, [15] has shown that the double-descent

peak occurs at the linear separability threshold of the training data with logistic loss,

extending the results in [66].
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Figure 6: Generalization error (left) and training loss (right) as a function of the number

of samples per hidden unit for both RF (orange curve) and TF (blue curve). The

parameters of the model are D = 1000, M = 1500, L = 200. The regularization

strength is fixed to λ = 1e − 8. In particular, for TF the parameters controlling the

correlation between the source and the target task are fixed to (η, ρ, q) = (1, 0.2, 0.8).

The simulations are averaged over 10 different realization of the CHMM.

Fig. 6 displays the double-descent phenomenology in the CHMM for the transferred

feature model analyzed in the present work. As in the case of random features [15],

a peak in the generalization error can be observed in correspondence of the linear

separability threshold. This threshold (dashed black vertical lines in Fig. 6) signals

the transition to the regime where the input data points can be perfectly separated, i.e.

where the training loss is exactly equal to zero. As can be observed in the plot, the

interpolation threshold associated to TF is shifted towards smaller model complexities.

This is a direct consequence of the non-trivial correlations learned from the source

dataset and encoded in the feature map. The preprocessing induced by the transferred

features helps in the classification process, making data more easily separable with

respect to random Gaussian projections. Note that the sharpness of the transition is

controlled by the regularization strength: the smaller is the regularization, the sharper is

the transition between the two regimes. Due to numerical instabilities in the convergence

of the saddle-point equations, we could not approach regularization strengths smaller

than λ = 1e − 8. We also note that, if the regularization strength was optimized

separately for each dataset size or if early stopping was employed, this would likely

reduce or remove the peak.

Connection with related works. In the context of transfer learning, [33, 67] have shown

the presence of double descent peaks in simple models. In particular [67] explores the

difference between the effect induced by transfer learning and standard regularization

schemes.

4.4. Additional results.

The modeling framework and the efficient pipeline proposed in this work can be used to

investigate other facets of transfer learning. In Appendix A we provide some additional
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results, exploring the impact of the network width H, and of the number of samples in

the source task. In the first case, we find that the biggest performance gaps between

TF, RF and 2L are observed in the regime where H/L is smaller than one, while in the

opposite regime the gain is observed only at small sample-complexity. In the second

case, we find that, at fixed dataset correlation, the number of samples in the source task

needs to be sufficiently large in order for the transfer to be effective, as expected.

Finally, in Appendix B we also challenge the one of the limitations of our

modeling setup –the restriction to the binary classification case– by exploring through

numerical simulations the impact of considering multiple classes on the transfer learning

performance. To this end, we extend our model and introduce the multi-label CHMM,

where relational information among different classes can come into play, and repeat

the simulations presented in Fig. 3 and Fig. 5. Our numerical results show that the

behavior is qualitatively equivalent to the binary setting, confirming the robustness of

the presented analysis.

5. Conclusions

We introduced the correlated hidden manifold model (CHMM), a synthetic model of

correlated datasets that allows a semi-analytical characterization of the transfer learning

performance for 2 layer neural networks. Despite the simplicity of the model, we

were able to show that transfer learning in the CHMM is completely aligned with

the behavior recorded in experiments on standard MNIST-derivative datasets. The

uncovered universality motivated a more extensive exploration of the possible transfer

learning regimes in the CHMM by changing the parametric control over the level of

correlation between source and target datasets. We introduced an efficient pipeline for

obtaining the associated phase diagrams, which considerably amortizes the high cost

of numerical optimization of neural networks. The resulting phase diagrams delineate

the transition lines between the transfer learning regimes traced in the literature, and

can be used to inspect the impact of the many hyper-parameters at play. We find that

transfer is most beneficial in the limited target data, high task correlation regime, and

that fine-tuning is only worthwhile for larger target datasets. Further, we document a

striking asymmetry in transfer, such that transferring from richer tasks to simpler tasks

is more beneficial than vice versa. These results help motivate methods which make use

of highly complex models trained on diverse source tasks [60, 68].

Despite the remarkable adherence of the CHMM phenomenology to simple transfer

learning experiments on real data, there are several limitations to the presented

approach. The main one is technical: in high-dimensions we are not aware of any

theoretical framework that captures feature learning in full two-layer networks in a form

that could then be used to study transfer learning. Therefore, even our analytic curves

are obtained on top of results from numerical learning of the features from the source

task. The description of learning processes in architectural variants, commonly used

in deep learning practice, is even further from the current reach of existing theoretical
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approaches. An interesting direction for future work would be to find a method for

quantifying the amount of correlation between real source and target datasets and to

locate the pair in the phase diagrams we obtained.

Acknowledgments

S.S.M. and A.S. acknowledge Oxford University for the hospitality in early phases

of this work. We acknowledge funding from the ERC under the European Union’s

Horizon 2020 Research and Innovation Program Grant Agreement 714608-SMiLe, and

a Sir Henry Dale Fellowship from the Wellcome Trust and Royal Society (grant number

216386/Z/19/Z). A.S. is a CIFAR Azrieli Global Scholar in the Learning in Machines

& Brains programme.

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems, 25:1097–

1105, 2012.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770–778, 2016.

[3] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are

few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[4] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[5] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural

networks. In International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.

[6] Xue-Wen Chen and Xiaotong Lin. Big data deep learning: challenges and perspectives. IEEE

access, 2:514–525, 2014.

[7] Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit

Greenspan. Gan-based synthetic medical image augmentation for increased cnn performance in

liver lesion classification. Neurocomputing, 321:321–331, 2018.

[8] Hoo-Chang Shin, Neil A Tenenholtz, Jameson K Rogers, Christopher G Schwarz, Matthew L

Senjem, Jeffrey L Gunter, Katherine P Andriole, and Mark Michalski. Medical image

synthesis for data augmentation and anonymization using generative adversarial networks. In

International workshop on simulation and synthesis in medical imaging, pages 1–11. Springer,

2018.

[9] Amy Zhao, Guha Balakrishnan, Fredo Durand, John V Guttag, and Adrian V Dalca. Data

augmentation using learned transformations for one-shot medical image segmentation. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

8543–8553, 2019.

[10] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

[11] Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues, Jianhua

Yao, Daniel Mollura, and Ronald M Summers. Deep convolutional neural networks for

computer-aided detection: Cnn architectures, dataset characteristics and transfer learning.

IEEE transactions on medical imaging, 35(5):1285–1298, 2016.

[12] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Understanding

transfer learning for medical imaging. arXiv preprint arXiv:1902.07208, 2019.



Probing transfer learning with a model of synthetic correlated datasets 22
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[17] Stéphane d’Ascoli, Marylou Gabrié, Levent Sagun, and Giulio Biroli. More data or more

parameters? investigating the effect of data structure on generalization. arXiv preprint

arXiv:2103.05524, 2021.

[18] Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic

dimension of datasets by a minimal neighborhood information. Scientific reports, 7(1):1–8,

2017.

[19] Stefano Spigler, Mario Geiger, and Matthieu Wyart. Asymptotic learning curves of kernel

methods: empirical data vs teacher-student paradigm. arXiv preprint arXiv:1905.10843, 2019.

[20] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani,

M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural

Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[22] Bruno Loureiro, Cédric Gerbelot, Hugo Cui, Sebastian Goldt, Florent Krzakala, Marc Mézard,
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Appendix A: Exploring different aspects of transfer learning in the CHMM

In the following paragraphs, we present some additional phase diagrams on the

phenomenology of transfer learning in the correlated hidden manifold model (CHMM).

These results complement the materials presented in the main text and give additional

insights on the role played by the various parameters in transfer learning problems.

Impact of transformations on the generative features. We first consider a similar

experiment to the one presented in the first paragraph of section 4. In section 4 we

showed the phase diagrams for transfer learning when source and target HMMs are

linked by a teacher perturbation. Here we explore the effect of the other types of

transformations that preserve the dimensionality of the latent space, namely the feature

perturbation and the feature substitution transformations.

Fig Appendix A.1 shows two phase diagrams, comparing TF with 2L as a function

of: (a) the feature perturbation parameter η; (b) the feature substitution parameter

ρ. High values of η (low values of ρ) indicate strongly correlated tasks. Apart from

the fact that the diagram associated to ρ is mirror image compared to the others, it

is evident that the obtained phase diagrams are non just qualitatively equivalent, but

also quantitatively similar to the phase diagram for the parameter q. At low numbers
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Figure Appendix A.1: Transfer learning performance with correlated generative

features. The two phase diagrams characterize the learning performance in the CHMM,

comparing the transferred feature model to a two-layer network with both layers trained

on the target task (TF to 2L gain), as a function of: (a) the feature perturbation

parameter η, (b) the feature substitution parameter ρ, and the target dataset size M .

The results for TF are obtained from the theoretical solution of the CHMM, while 2L

is purely numerical (10 samples per point). Parameters: L = 200, q = 1, D = 1000 and

H = 500.
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of samples and high levels of feature correlation TF largely outperforms 2L. We also

find again a region where TF overfits due to the closeness to the separability threshold.

More generally, 2L becomes the better algorithm when the size of the target dataset is

large enough.

The striking similarity of Fig. 3a and these phase diagrams might suggest some

type of universality in the effect of dataset correlation (of any type) on the quality of

the transferred features.

Impact of the number of learned features. In this paragraph, we look at the effect of

varying the the width of the two-layer neural network, H. Note that H also corresponds

to the number of learned features in a 2-layer network. In the plots, we rescale H by the

number of generative features (kept fixed to L = 200) to obtain a quantity that remains

O(1) even in the high-dimensional setting of the replica computation.
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Figure Appendix A.2: Impact of the hidden layer width on transfer learning

performance. The two phase diagrams compare the performance of the transferred

feature model (TF) to (a) a two-layer network with both layers trained on the target

task (2L), (b) a random feature model (RF), in the CHMM as a function of the number

of hidden units H and the number of samples in the target dataset M . The results for

TF and RF are obtained from the theoretical solution of the CHMM, while 2L is purely

numerical (10 samples per point). Parameters: L = 200, (η, ρ, q) = (1, 0.2, 0.8), and

D = 1000.

Fig Appendix A.2 shows two phase diagrams, comparing (a) TF with 2L and (b) TF

with a RF, as a function of H and of the number of samples in the target task. Source

and target tasks are linked through a fixed transformation with parameters (η, ρ, q) =

(1, 0.2, 0.8). In both diagrams we can clearly see the diagonal line corresponding to the

separability threshold, which shifts to higher values as H (i.e., the number of parameters

in the second layer) is varied. TF is found to perform better in the low number of samples
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Figure Appendix A.3: Impact of the source dataset size on transfer learning

performance. The two phase diagrams compare the performance on the CHMM of

the transferred feature model (TF) to (a) a two-layer network with both layers trained

on the target task (2L), (b) a random feature model (RF), as a function of the number

of samples in the source dataset M1, and the number of samples in the target dataset

M2. The results for TF and RF are obtained from the theoretical solution of the

CHMM, while 2L is purely numerical (10 samples per point). Parameters: L = 200,

(η, ρ, q) = (1, 0.2, 0.8), D = 1000 and H = 500.

regime, as in all other experimental settings. An interesting phenomenon appears in

panel (b), where the behavior of RF seems to change once the number of learned features

becomes larger than the number of generative features H > L. From this point on, the

improvement obtained by TF over RF becomes less pronounced if the number of samples

is sufficient. Both diagrams also seem to show that at very large H, and starting from

intermediate values of the number of samples, the differences between TF, 2L and RF

seem to narrow. This type of behavior is expected, since by growing the width of the

hidden layer one eventually approaches the kernel regime [19].

Impact of sample size of source dataset. Finally, we vary a parameter that was kept

fixed throughout the above presented simulations, the number of samples in the source

task. Of course, in practice it does not make too much sense to use a small dataset as

a source task in a transfer learning procedure. The interest in this experiment is more

theoretical, as it can be used to understand when the learning model is able to start

extracting features that could be helpful in a different task.

Fig Appendix A.3 offers a comparison of (a) TF with 2L and (b) TF with a RF, as

a function of source and target dataset sizes, M1 and M2. The resulting phase diagram

shows that the two-layer network trained on the source dataset is unable to extract

good features from the data below a critical value of the number of samples M1. In this
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regime the performance of TF in the target task is indistinguishable from RF, confirming

the key role played by the learned features (and not just initialization and scaling [34])

in the success of TF. As expected, when the number of samples in the second task

becomes larger, we reconnect with the typical scenario already recorded in the previous

experiments.

Appendix B: Numerical experiments on multi-label learning

In the proposed CHMM model we focus on the case of binary classification. One of

the main reasons for this choice is that the asymptotic equations derived through our

analysis can in this case be solved in reasonable time, while adding extra dimensions

in the output space would likely make their repeated solution too computationally

demanding. Although a majority of the related theoretical works is similarly limited to

the simplified binary case, intuitively the effect of cross-class correlation and feature

similarity among multiple classes could have a large impact on transfer learning

performance. On the other hand, it has been recently observed that multi-label

classification shows similar phenomenology to the case of binary classification [69],

supporting the assumption that the study of the simpler case may also allow for a

deeper understanding of the general case.

In this section we test the robustness of our results in the multi-label classification

settings making a simple extension of the CHMM model. This test is performed

numerically and does not have the purpose of extending the theory presented in the

main text (although that may be possible, in principle, by extending our results in the

spirit of [69]). Note that, because of the pure numerical nature of these experiments,

the computational cost of the associated simulations was greatly increased with respect

to the experiments presented in the main text, and required an implementation on a

computational cluster.

The multi-label CHMM model can be again represented using the cartoon shown

in Fig. 1 with the difference that y and ŷ are K-dimensional arrays, with K the number

of classes. The correct label is given by the highest coordinate of y, while the output

of the student is re-normalized using a softmax function. Perturbations between source

and target tasks can be defined likewise.

Fig. Appendix B.1 is the multi-label counterpart of Fig. Appendix A.1a (and Fig. 3,

given the quantitative and qualitative similarity between the phase diagrams for the

parameters η and q). The main result we report is that, despite some quantitative

disagreement, the salient features of the diagrams are still there, as expected. The

simulations were purposely evaluated with minimal changes with respect to the binary

case. The comparison between TF and RF shows again negative transfer for low η and

low sample complexity in the target, Fig. Appendix B.1b. The different shape of the

region may be due to poor feature extraction in the numerical optimization, indicating

that a larger number of learning steps may be needed. The phase diagrams on TF vs 2L

(Fig. Appendix B.1a) and TF vs ft-TF (Fig. Appendix B.1c) show the largest impact
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of transfer learning when the number of samples in the target dataset is low and when

the similarity between the two sets is large enough.
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Figure Appendix B.1: Effect of the dataset correlation on transfer learning

performance in multi-label classification. The three phase diagrams characterize

the learning performance in the CHMM as reported in Fig. 3 as η is varied. The gain

is obtained after averaging over 10 realizations. Parameters: L = 200, (q, ρ) = (1, 0),

D = 1000, H = 500 and K = 4.

Let us consider the case of asymmetric transfer, where the target and source hidden

dimensions (Ls and Lt respectively) differ, extending the analysis of Sec. 4.2 to the multi-

label cases. Fig. Appendix B.2 shows the same features of Fig. 5, the most beneficial

case occurs for low sample complexity and transferring from high dimension to low

dimension (Ls > Lt). This is consistent with the literature and correctly captured by

the model.

Finally, we again remark that the key advantage of the standard binary CHMM

is that, because of its simplicity and the existence of universality, it allows for a fast

and exact characterization of the same phenomena in a short time, without the need of

computationally expensive simulations.

Appendix C: More experiments on real data

In the following paragraphs, we provide some additional transfer learning experiments on

real data. The goal of this section is to show that, despite different types of relationship

between source and target tasks and different degrees of relatedness, the emerging

qualitative behavior is similar to that presented in the main text and reproduced by the

CHMM. In paragraph 1 of section 4, we have considered an experiment corresponding to

a feature substitution transformation in the context of the CHMM. In the following, we

will describe two experimental designs that instead correspond to feature perturbation
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Figure Appendix B.2: Effect of a latent dimension asymmetry in multi-label

classification. The three phase diagrams characterize the learning performance in

the CHMM as reported in Fig. 5. The plot in the multi-label setting shows qualitative

agreement to the binary case. Parameters: Ls+Lt = 500, (q, ρ, η) = (1, 0, 1), D = 1000,

H = 500 and K = 4.

and teacher perturbation transformations (see section 2 for more details). Moreover, we

will demonstrate a case of “orthogonal” tasks, where the feature transfer is completely

ineffective.

Feature perturbation. We consider an experiment where the transfer is between the

MNIST dataset and a perturbed version of MNIST, obtained by applying a data-

augmentation transformation to each image. In particular, we construct the source

dataset, Ds, by altering the MNIST dataset through an edge enhancer in the imgaug

library for data augmentation (for more details see sec.Appendix D). Instead, we use the

original MNIST as the target dataset, Dt. In both cases, we label the images according

to even-odd digits. In this way, the target task can be seen as a perturbed version of

the source task.

Fig. Appendix C.1 shows the outcome of this experiment. A first thing to notice is

that TF always outperforms RF for all numbers of samples in the range we considered.

Moreover, both models show a double descent behavior, with the peak occurring at the

linear separability threshold (see sec. 4.3 for more details). As seen in the main text,

TF reveals to be more effective than 2L at small numbers of samples, with a gain of

about 5% in test error scores. This gap closes above M/H = 1, where the 2L starts

performing better than both TF and ft-TF. Concerning ft-TF, we can instead recognize

two different regimes. At small number of samples, ft-TF performs better than 2L but

worse than TF, showing a larger over-fitting effect compared to Fig. 2. With a higher
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Figure Appendix C.1: Feature perturbation: test error as a function of the number of

samples per hidden unit. The source dataset is the augmented even-odd MNIST, while

the target dataset is the original even-odd MNIST. The employed augmentation is an

edge-enhancer transformation. The parameters of the networks are set to: D = 784,

H = 500 and λ = 1e−8. The size of the source task is Ms = 60000. All the experiments

have been averaged over 50, 20 and 10 samples for low, intermediate and high numbers

of samples respectively.

number of samples, ft-TF joins 2L, thus outperforming TF, except in the small region

close to the separability threshold.

Teacher perturbation and orthogonal tasks. Additionally, we consider the following

experiment on real data. As a source dataset, Ds, we use the notMNIST dataset [38]

grouped into even-odd classes. In the target task, Dt, we instead consider notMNIST

but labeled differently, based on whether the class labels are smaller or larger than 5.

In this way, the only difference in the two tasks is in the employed labeling rule.

Fig. Appendix C.2(a) displays the outcome of this experiment. The observed

phenomenology is identical to that already described for the previous experiments. Note

that, even though the two tasks share the same input images, observing a benefit when

transferring the feature map is not trivial. TF is here found to be effective because

the learned features carry information about the digit represented in each image, which

induces a useful representation regardless of the grouping of the digits.

It is in fact possible to construct effectively “orthogonal” tasks even if the set of

inputs is the same. In the final experiment, we use even-odd MNIST as the target task,

Dt, but we consider a source task where the label assigned to each MNIST image is

only dependent on its luminosity. In particular, we assign all the images with average

brightness less than 20 or in the interval (35, 59) to one group and the remaining ones to

the other group. Thus, the resulting source task has nothing to do with digit recognition.

Fig. Appendix C.2(b) shows the outcome of this last experiment. Contrary to the

other cases, in this experiment we can clearly see no advantage in transferring the feature
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Figure Appendix C.2: Perturbed teacher and orthogonal tasks: Generalization

error as function of the number of samples per hidden unit in the target task. (a)

teacher perturbation. (b) orthogonal tasks. In the left panel, the source dataset is the

even-odd notMNIST, while the target dataset is notMNIST grouped in digits smaller-

greater than 5. The size of the source task is Ms = 200000. In the right panel, the

source task is MNIST grouped according to image luminosity and the target task is

even-odd MNIST. The size of the source task is Ms = 51200. Note that in panel (b),

the light blue and the orange curves are overlapping. The parameters of the networks

are set to: D = 784, H = 500 and λ = 1e − 8. The simulations are averaged over 50,

20, and 10 samples at small, intermediate and high numbers of samples respectively.

map from the source to the target task: TF not only does not improve over 2L, but it

also overlaps with RF for any number of samples. Interestingly, we can here identify

three different regimes for ft-TF: a first regime at small numbers of samples where ft-

TF actually follows the trend of TF and RF, thus badly performing with respect to

2L; a second regime, at intermediate numbers of samples, where ft-TF actually starts

improving its test scores with respect to TF and RF (around 10%) but it still does not

have enough data to perform as well as 2L; finally, a third regime when the number of

samples is high, where ft-TF equates the generalization performances of 2L.

Appendix D: Technical details on the numerical simulations

In this section, we provide additional details on the numerical simulations concerning

the experiments on both real and synthetic data.

Datasets. In the experiments with real data, we have used three different standard

datasets: MNIST, EMNIST-letters and notMNIST. MNIST is a database of images

(28 × 28 pixels in range 0 − 255 in the experiments) of handwritten digits with 10

classes, containing 60000 examples in the training set and 10000 examples in the test

set [36]. EMNIST-letters is a dataset of images (28 × 28 pixels in range 0 − 1 in the
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experiments) of handwritten letters with 26 classes, containing 124800 examples in the

training set and 20800 examples in the test set [37]. Finally, notMnist is a dataset of

images (28 × 28 pixels in range 0 − 1 in the experiments) of letter fonts from A to J

with 10 classes, containing 200000 examples in the training set and 10000 examples in

the test set [38]. Concerning the experiment on feature perturbation of Fig. Appendix

C.1, we have used the EdgeDetect function of the imgaug library for data augmentation

to enhance the contours of each digit with respect to the background [70]. In the

experiment, we set the parameter alpha to (0.5, 0.7). An example of the three datasets

is provided in Fig. Appendix D.1.

(a) MNIST (b) MNIST augmented

(c) EMNIST-letters (d) notMNIST

Figure Appendix D.1: Examples from the real datasets: (a) examples of images

in the MNIST dataset. (b) examples of images in the MNIST dataset perturbed to

enhance digit contours with respect to the background. (c) examples of images in the

EMNIST-letters dataset. (d) examples of images in the notMNIST dataset.

Hyper-parameter settings. In the source task, we consider a two-layer neural network

with ReLU activation function and single sigmoidal output unit. To train the two-layer

network on the source, we implement mini-batch gradient descent, using the end-to-end

open source platform for Machine Learning Tensorflow 2.4 [71]. In particular, we use the

Adam optimizer with default Tensorflow hyper-parameters and the binary cross-entropy

loss. We then apply L2 regularization on the last layer and early-stopping with default

Tensorflow hyper-parameters as regularizers. The training is immediately stopped when

an increase in the test loss is recorded (the patience parameter in early stopping is set

to zero). We set the maximum number of epochs to 200, the learning rate to 1e− 3 and

the batch size to 50.

In the target task, we train TF and RF via the scikit-learn open-source

python library for Machine Learning [72]. In particular, we use the module

linear model.LogisticRegression which implements logistic regression with L2

regularization when the penalty parameter is set to “l2”. Note that, non-zero

L2 regularization ensures that the optimization process is bounded even below the

separability threshold for both TF and RF. The training stops either because a maximum
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number of iterations (max iters = 104) has been reached, or because the maximum

component of the gradient is found to be below a certain threshold (tol = 1e − 7). To

train 2L, we have instead employed Tensorflow 2.4 once again, with Adam optimizer

and cross-entropy loss with L2-regularization on the last layer. In this case, we set

the maximum number of epochs to 200, the learning rate to 0.1 and the batch-size

to 1000. The training stops when the maximum number of epochs is reached. The

choice of the learning hyper-parameters is made to ensure the two-layer network to

always reach zero-training error on the target task. Finally, to train ft-TF (from the TF

initialization), we use the Adam optimizer and the binary cross-entropy loss. Since we

expect the pre-trained weights on the source task to be already good enough to ensure

good generalization performances, we set the learning rate to 0.01 not to alter them too

much or too quickly. We then keep the total number of epochs equal to 200 and the

batch-size equal to 1000).
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