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Abstract
Continual learning—learning new tasks in se-
quence while maintaining performance on old
tasks—remains particularly challenging for artifi-
cial neural networks. Surprisingly, the amount of
forgetting does not increase with the dissimilarity
between the learned tasks, but appears to be worst
in an intermediate similarity regime.

In this paper we theoretically analyse both a
synthetic teacher-student framework and a real
data setup to provide an explanation of this phe-
nomenon that we name Maslow’s hammer hy-
pothesis. Our analysis reveals the presence of a
trade-off between node activation and node re-use
that results in worst forgetting in the intermediate
regime. Using this understanding we reinterpret
popular algorithmic interventions for catastrophic
interference in terms of this trade-off, and identify
the regimes in which they are most effective.

1. Introduction
Artificial neural networks have reached astonishing perfor-
mance in a number of different applications (Silver et al.,
2016; Rajkomar et al., 2019; Devlin et al., 2019; Tunyasuvu-
nakool et al., 2021), but they tend to perform poorly when
they have to solve a sequence of learned tasks (Kemker et al.,
2018). The ineffectiveness of deep learning algorithms in
this learning paradigm—known as continual learning or
lifelong learning—is strikingly different from observations
in human and animal learning, where tasks can effectively
be learned sequentially and interference is a rarity (Barnett
& Ceci, 2002; Calvert et al., 2004; Mareschal et al., 2007;
Pallier et al., 2003). Neuroscientists and psychologists have
been interested in the mechanisms underpinning this ability
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for some time (McCloskey & Cohen, 1989; Cichon & Gan,
2015; Yang et al., 2014; Flesch et al., 2018); more recently
the engagement of the machine learning community with
this paradigm has also grown as the focus shifts from perfor-
mance on single tasks to distributions of tasks and learning
from the real world (Parisi et al., 2019).

The key difficulty of continual learning is avoiding so-
called catastrophic forgetting or catastrophic interfer-
ence (McCloskey & Cohen, 1989; Ratcliff, 1990), the phe-
nomenon of deteriorating performance on earlier tasks when
learning later tasks. Humans are very good continual learn-
ers, and various biological mechanisms have been proposed
to account for the brain’s ability to combat forgetting (Mc-
Clelland et al., 1995). On the other hand artificial systems,
in particular neural networks trained with gradient descent
algorithms, suffer badly from catastrophic forgetting (Good-
fellow et al., 2014). This has prompted research into meth-
ods to augment vanilla gradient descent with additional
elements specifically aimed at reducing forgetting (Parisi
et al., 2019), including some that take inspiration form the
aforementioned biological mechanisms (Hinton & Plaut,
1987; Robins, 1995; Gepperth & Karaoguz, 2016; Rebuffi
et al., 2017).

In addition to this algorithmic line of research, there is grow-
ing interest in understanding why forgetting affects deep
learning so severely and what the main drivers of forgetting
are. Ramasesh et al. (2021) performed a series of systematic
experiments in a range of architectures and training setups
and made the counterintuitive observation that catastrophic
forgetting is worst between tasks of intermediate similarity.
Lee et al. (2021) then analysed the impact of task similar-
ity on continual learning in a solvable model of two-layer
neural networks and found the same non-monotonic relation-
ship between task similarity and forgetting. Despite these
results, the precise mechanism that makes intermediate task
similarity the worst has remained unclear.

Here, we describe a possible mechanism that drives catas-
trophic forgetting in two-layer neural networks trained in
a teacher-student setup. Our main contributions can be
summarised as follows:

• Maslow’s hammer hypothesis to explain the observa-
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tion that intermediate similarity is worst for forgetting
(Ramasesh et al., 2021; Lee et al., 2021) in terms of a
trade-off between node (hidden unit) re-use and node
activation;

• Evidence from both the student-teacher framework and
a data-mixing image classification paradigm to support
the Maslow’s hammer hypothesis;

• An empirical study of how various methods of allevi-
ating forgetting impact the relationship between task
similarity and forgetting;

• Observation of ‘catastrophic slowing’, whereby de-
spite tremendous advantages in aligned and orthogonal
task settings, interleaving can be inferior to regularisa-
tion methods in intermediate similarity regimes.

Further related work

Recent investigations into theoretical questions related to
continual learning include work by Mirzadeh et al. (2021),
who study the relationship between network width, depth
and forgetting; showing that wider and shallower networks
are less affected by forgetting. Bell & Lawrence (2021)
take inspiration from methodologies in psychology to de-
sign tasks aimed at investigating catastrophic forgetting,
including in relation to loss surfaces and the interplay be-
tween semantic and perceptual information. Meanwhile
Shen et al. (2021) gained interesting insights into algorith-
mic components of two-layer neural circuits—not unlike
those studied here—that allow fruit flies to mitigate inter-
ference, including sparse coding and associative learning.
Arguably closest in nature to our work are those of Asanuma
et al. (2021) and Doan et al. (2021), who also investigate
the effect of task similarity on forgetting but in linear regres-
sion and Neural Tangent Kernel (NTK) (Jacot et al., 2018)
regimes respectively.

A related theoretical line of research concerns transfer learn-
ing where the focus is not on forgetting, but on the boost
that features learned on upstream tasks can provide new
tasks (Tan et al., 2018). Dhifallah & Lu (2021) & Gerace
et al. (2022) have analysed, on single-layer and two-layer
networks respectively, the effect of similarity between tasks
and data scarcity on performance in the downstream task
using methods similar to ours.

On the more applied side of work on continual learning,
concerned with developing algorithms to combat forgetting
in neural networks, there is a larger body of literature (see
e.g. Parisi et al. (2019) for a review). Methods can broadly
be split into three categories: regularisation (Zenke et al.,
2017; Li & Hoiem, 2017; Kirkpatrick et al., 2017); dynamic
architectures (Rusu et al., 2016; Draelos et al., 2017; Zhou
et al., 2012); and replay (McClelland et al., 1995; Shin
et al., 2017). A more recent set of approaches concerns
itself with explicitly learning modular representations for
compositionality (Mendez & EATON, 2021; Veniat et al.,

2021; Ostapenko et al., 2021); our investigation into node
specialisation connects naturally to some of these concepts.
In this work we look at aspects of each of these method
families: insofar as our setups have separate heads for each
task, we implicitly consider adaptive architectures; in Sec. 4
we explicitly investigate how Elastic Weight Consolidation
(EWC) and interleaved replay affect the relationship be-
tween task similarity and forgetting.

2. Continual Learning Setup
In this work we consider two paradigms to study continual
learning: a synthetic framework using the teacher-student
model, and a real data framework where similarity is param-
eterized by a mixing parameter.

Teacher-Student Framework. The key idea of the
teacher-student setup is to train a neural network, the stu-
dent, on a data set generated by taking random inputs and
propagating them through a fixed neural network with ran-
dom weights called the teacher (Gardner & Derrida, 1989;
Seung et al., 1992; Engel & Van den Broeck, 2001). We
will consider two-layer networks with output φ(x;W,v) =∑L

l=1 vlg (wl·x/
√
D); where D is the input dimension, L

is the number of hidden units, W ∈ RL×D are the first
layer weights, v ∈ RL are the second layer weights, g is
the activation function, and x ∈ RD is the input vector.
These inputs are sampled i.i.d. (independent and identically
distributed) from the standard normal distribution.

While the framework allows for any number of tasks, for
concreteness we consider training the student on a succes-
sion of two tasks (which we denote throughout by † and
‡). In the ith phase of training (i.e. training on the ith task),
the supervision labels for the student are generated from
the ith teacher by yi = φ(x;Wi,vi) and the student out-
puts are given by ŷi = φ(x;W,hi). Training is performed
with Stochastic Gradient Descent (SGD) on the squared
error (yi − ŷi)2. Note that the student shares first layer
weights W across tasks but has separate head weights hi

for each task. A sketch of this setup is shown in Fig. 1a.

The key quantity that we would like to compute is the gener-
alisation error of the student with respect to the ith teacher,

εi(W,hi,Wi,vi) ≡
1

2
〈 [φ(x;Wi,vi) −φ(x;W,hi)]2

〉
. (1)

Note that due to the separate heads, the generalisation errors
are well-defined with respect to both teachers regardless of
which is currently providing the labels. From these general-
isation errors, one can further define quantities analogous to
forgetting and transfer from one teacher/task to the next as
differences in generalisation error.
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Figure 1. Intermediate task similarity leads to worst catastrophic forgetting in the teacher-student setup (a) Schematic of student
teacher framework for continual learning. The student is over-parameterised with respect to teachers. Labels for training student are
generated by teacher † in first phase of training and teacher ‡ in second phase. (b) Forgetting given by the difference between generalisation
error on task 1 at the switch and (in this plot) after 10,000 steps as function of teacher-teacher similarity V (cf. Sec. 3.2). Crosses show
solution from ODEs while solid line shows simulations.

The advantage of the teacher-student setup is that by pro-
viding full control over the input distribution, the similarity
between tasks can be precisely tuned by controlling the rela-
tionship between teacher weights. Furthermore, we can give
the student the right number of parameters to learn all teach-
ers perfectly, at least in principle. Finally, the dynamics
of the student in this setup can be solved exactly, yielding
an ODE that describes its average dynamics (shown for sin-
gle teacher-student by Saad & Solla (1995), and later for
continual learning by Lee et al. (2021)). A key observation
from this framework is that intermediate task similarity is
worst for forgetting; we reproduce this in Fig. 1b (c.f. Fig.
3 in Lee et al. (2021) and App. A for details). In this work,
we propose a mechanism responsible for this behaviour, and
investigate the impact of various methods for combating
forgetting on this relationship.

Data-Mixing Framework. To probe how well our find-
ings translate to more realistic data distributions, we comple-
ment the teacher-student framework with a data-mixing ap-
proach similar to that introduced by Ramasesh et al. (2021).
This procedure gives a notion of control over the similar-
ity between any pair of tasks in that the input distribution
is composed of a mixture between two separate datasets,
where the mixing factor determines the similarity. More
specifically, consider two separate datasets with equal cardi-
nality in which inputs and outputs have the same dimen-
sions across both datasets, i.e. D1 = {x1

i , y
1
i }Ni=1 and

D̃2 = {x̃2
i , ỹ

2
i }Ni=1. We can control the ‘similarity’ between

two successive tasks by first training on D1, followed by a
mixture between D1 and D̃2. For a given mixing factor α,
this second dataset is given by

Dα2 = {αx1
i + (1− α)x̃2

i , αy
1
i + (1− α)ỹ2i }Ni=1. (2)

Under this protocol, α = 0 corresponds to a completely new
dataset and an entirely new task, whereas α = 1 corresponds
to continuing to train on the first task.

3. Intermediate Task Similarity
Although numerous independent studies have found non-
monotonic relationships between task similarity and forget-
ting in artificial neural networks (Ramasesh et al., 2021; Lee
et al., 2021; Asanuma et al., 2021), a convincing explana-
tion for this result is still missing. Here, we propose such
a mechanism, which we call Maslow’s hammer hypothesis.
The starting point is to think about how individual nodes
in the hidden layers of two-layer networks are re-purposed
during continual learning. We first outline the intuition be-
hind the hypothesis before presenting supporting evidence
from both the teacher-student setup and networks trained on
image data.

3.1. Maslow’s Hammer Hypothesis

The trade-off between node re-use and node activation finds
an analogy in a well-known cognitive bias in psychology:
in the words of Abraham Maslow, “[...] it is tempting, if the
only tool you have is a hammer, to treat everything as if it
were a nail” (Maslow, 1966). In other words: if we have
a nail we can (and should) use a hammer, but for a screw
we really need a different tool and should avoid using the
hammer.

This phenomenon illustrates the choice that the student net-
work makes in learning the new task. Consider the simplest
case of a student with two hidden units trained on a pair of
teachers with a single hidden unit each. Since the student
has one set of head weights for each teacher, it has the ca-
pacity to achieve zero test error on both teachers at the same
time, cf. Fig. 2a.

During the first task, we expect the student to learn the first
teacher. In doing so, we assume a high degree of specialisa-
tion in the student whereby a subset of units in the network
being trained become very important for the task while oth-
ers remain inactive or unimportant. In this specific case, this
results in the student using one node to learn the first teacher
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(b) Minimal interference solution
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Intermediate Similarity

∼ Teacher 1
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Orthogonal Teachers

(c) Characteristic solutions found by vanilla SGD

Figure 2. Maslow’s hammer hypothesis sketch These diagrams
outline the hypothesis for why intermediate task similarity is worst
for forgetting using a minimal student-teacher example i.e. teach-
ers with a single hidden unit and a student with two hidden units—
as shown in (a). (b) shows an ideal solution; here one student
node specialises to the first teacher in the first phase of training
and the second student node specialises to the other in the second
phase without changing the first node. (c) shows the typical so-
lutions found by the student when trained with vanilla SGD. For
orthogonal teachers the student finds a solution in the same way
as outlined for optimality in (b). For fully aligned teachers, the
student mostly re-uses the previously specialised node and ignores
its spare capacity. In the intermediate region the student attempts a
hybrid solution using both nodes, which leads to most interference.

and leaving the second node virtually inactive. We will
show that this is the case in both the teacher-student setup
and on the data mixture (cf. Fig. 3, Fig. 4 and App. B)

After the switch point there are three ways in which the
student can learn the second teacher: re-use of the node that
specialised to the first teacher, activation of the second (pre-
viously inactive) node, or a hybrid of the two, cf. Fig. 2c. In
order to minimise forgetting, the student could use the inac-
tive units to learn the second teacher and leave the node that
has specialised on the first teacher untouched, as schema-
tised in Fig. 2b. If the tasks are very related, however, it
may be convenient to re-use previously activated nodes and

leverage the features extracted in the first task, as in transfer
learning (Tan et al., 2018). If the tasks are very dissimilar,
the orthogonal teacher regime, the student network typically
chooses to begin using its inactive node leaving the spe-
cialised one fairly intact, thus guarding against catastrophic
interference. The intermediate case represents the most dif-
ficult case for the student: the previously specialised node
will be somewhat aligned to the second teacher, so there
would be some transfer benefit to fine tuning the orientation
of this node (re-use), and making up any remaining differ-
ence with the previously inactive node. However under such
a policy, unlike for the fully aligned teacher case, this would
result in interference since the specialised node is moved. In
sum, the Maslow’s hammer hypothesis states that gradient
descent dynamics bias towards re-using nodes when tasks
are more similar (using a hammer for increasingly nail-like
objects) and towards activation when tasks are more dis-
similar (finding a different tool for decreasingly nail-like
objects). This is most damaging when tasks are somewhat
related, akin to breaking a screw when attempting to use a
hammer.

3.2. Evidence from the Teacher-Student Framework

We first focus on the teacher-student setting where the model
assures precise control. The framework detailed in Sec. 2
can be analysed exactly. Indeed, a long line of work has
shown that, as the input dimension tends to infinity, the
generalisation error concentrates and can be understood
purely in terms of so-called ‘order parameters’ of the sys-
tem (Mézard et al., 1987; Engel & Van den Broeck, 2001).
Here, the concentration hypothesis will be taken as a work-
ing hypothesis and verified numerically by comparing theory
and simulations.

We focus on the simplest setup to exhibit catastrophic for-
getting, a two-task setting with a single task switch. Each
teacher has a single hidden node and an output weight of
norm one; the student has two hidden nodes. Among the
crucial order parameters in the two-layer teacher-student
scenario are the teacher-student overlaps rkm ≡ 1

DwT
kw
†
m

and ukp ≡ 1
DwT

kw
‡
p, which measure the alignment between

the weight of the mth (pth) teacher † (‡) node and the kth

student node. At the beginning of training, the random
teacher weights and the randomly initialised student vector
have very little overlap; throughout training, the student
will improve its alignment with the teacher providing the
labels, and hence its test error. Another order parameter
is the overlap between student weights, qk` ≡ 1

DwT
kw`,

where the diagonal elements give the student node norms.
The final crucial order parameter for our continual learning
analysis, is the overlap between the first-layer weights of the
two teachers, vmp = 1

D (w†m)Tw‡p, which we abbreviate to
V (see App. C & App. E for details). This order parameter
describes the task similarity: orthogonal tasks (V = 0) cor-
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Figure 3. Maslow’s hammer in teacher-student setup (a) Student self-overlap, Q (b) student-teacher 1 overlap, R and (c) student-
teacher 2 overlap, U plotted vs. step s for a two layer student network on two successive teachers with single hidden unit (switch at
1.5e6). Yellow lines show trajectories for highly aligned teachers V = 1, purple lines for orthogonal teachers V = 0, while turquoise
represents intermediate similarity. Re-use vs. activation tendency (d) Specialised student node norm q00 vs. time-step s around the
switch point. Rate of movement from the fixed point increases monotonically as a function of teacher-teacher similarity, demonstrating
the tendency for node re-use when tasks are highly similar. (e) Inactive student node norm q11 vs. time-step s around the switch point.
Rate of movement from the fixed point decreases monotonically as a function of teacher-teacher similarity, demonstrating the tendency
for node activation when tasks are highly dissimilar. (f) Proxy for asymptotic generalisation error with respect to first teacher under full
re-use, ε† [re-use] (see Eq. 3) vs. teacher-teacher similarity V . The cost of node re-use is highest for orthogonal tasks. (g) dot product of first
task importance vector with second task importance vector I1 · I2 vs. teacher-teacher similarity V . Higher values correspond to similar
nodes being important for the second and first task, thus indicating a bias towards node re-use. This plot is equivalent to Fig. 4c.

respond to independent teacher weights, whereas perfectly
similar tasks (V = 1) have identical teacher weights up to
permutations of the second-layer weights.

These order parameters obey a closed set of differential
equations that describes their dynamics when training the
student using SGD as described in Sec. 2. These were first
derived by Riegler & Biehl (1995) and Saad & Solla (1995),
and recently shown to be asymptotically exact by Goldt et al.
(2019). These methods have been used to explore a broad
range of phenomena in neural networks, see Saad (2009)
for a summary of early work and Yoshida & Okada (2019);
Goldt et al. (2020); Refinetti et al. (2021); Saglietti et al.
(2021) for recent results. Here, we follow the derivation of
similar equations for continual learning provided by Lee
et al. (2021). In Fig. 3 we show the evolution of the solu-
tion to these ODEs for a student trained on two successive
teachers with several values of the similarity parameter V
(see App. C for details) These plots show evidence for the
Maslow’s hammer hypothesis outlined in Sec. 3.1. It is clear
from Fig. 3a. and Fig. 3b. that there is strong specialisation
in the student network. The magnitude of one student node
is close to 1, and that node is almost fully aligned with the
first teacher before the switch. Meanwhile the other node is
essentially inactive before the switch. In order to minimise
the amount of forgetting, the specialised node should not
move after the switch (as per Fig. 2b). However after the
switch there is movement in both nodes. Let us consider

different levels of similarity separately:

Fully aligned case (yellow lines): there is an initial phase
of movement in the specialised node before a reversion to
the solution found for the first task. Meanwhile the pre-
viously inactive node remains largely inactive. Although
this solution does not use the spare capacity available to
the student (outside the initial transient), it is very close to
optimal behaviour in terms of forgetting.

Fully orthogonal case (purple lines): there is only a mini-
mal deviation of the specialised node before it reverts to the
solution found for the first task. On the other hand, there
is complete activation and alignment to the second teacher
of the second node. This can be seen in the darkest dashed
line moving close to 1 in Fig. 3a, and the darkest dashed
line in Fig. 3c moving close to -1 (sign is flipped by learned
head weight). This solution is very close to the optimal one
proposed by Fig. 2.

Intermediate case (turquoise lines): between the aligned
and orthogonal cases, the student does a combination of
re-using the previously specialised node and activating the
previously inactive node. The former can be seen in the
movement away from 1 in the solid lines in Fig. 3a and the
movement away from -1 in the solid lines in Fig. 3b. The
latter can be seen in the movements away from 0 of the
dashed lines in Fig. 3a and the dashed lines in Fig. 3c.
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Figure 4. Evidence for Maslow’s Hammer in Data Mixing Setup (a) Test error on first task ε† vs. epoch on two Fashion MNIST binary
classification tasks where intermediate similarity between tasks is worst for forgetting; (b) Node importance I vs. node index. Bars
show first task importance I1 at switch point, while lines show second task importances I2 at end of training; (c) dot product of first task
importance vector with second task importance vector I1 · I2 vs. mixing parameter α. Higher values correspond to similar nodes being
important for the second and first task, thus indicating a bias towards node re-use. This plot is equivalent to Fig. 3g.

Re-use vs. activation tendency. An important aspect of
this explanation is that more similar tasks will bias the net-
work towards re-use whereas more orthogonal tasks will bias
the network towards new activation. This is not obvious a
priori and warrants closer inspection. In Fig. 3d we show the
trajectory of the specialised student node norm around the
switch point. Immediately after the switch there is a clear
monotonic relationship between the teacher-teacher similar-
ity and rate of movement in q11. On the other hand, Fig. 3e
shows the inverse relationship for movement away from 0 in
the norm of the inactive student node. To complete this part
of the picture, Fig. 3f shows the asymptotic generalisation
error of the student with respect to the first teacher under a
complete re-use scheme, which we compute retrospectively
via:

ε†[re-use] =
1

2

〈
[φ(x;W†,v†)− φ(x;W‡,h†∗)]2

〉
, (3)

where W† is the first teacher feature weights, v† is the
first teacher head, W‡ is the second teacher feature weights
and h†∗ is the component of the student’s first head weight
reading from the specialised node at the switch point. There
is another clear decreasing monotonic relationship between
cost in re-using the node and task similarity. Together these
plots show the re-use and activation tendencies of the student
in various similarity regimes, as well as the costs associated
with these tendencies.

3.3. Evidence from Data Mixing Framework

In this section we use the protocol described in Eq. 2 to
supplement the analysis in the synthetic framework with
real data experiments. It is worth bearing in mind the follow-
ing implications of changing settings: (i) While previously
task similarity was defined over input-output mappings and
the input distribution was constant, here the similarity pa-
rameter influences both input-output mappings and input
distributions; (ii) Since the tasks themselves share many
features (e.g. edges for image datasets), this contributes
additional similarity such that even no mixing (α = 0) will

give similar tasks to some extent.

In the teacher-student framework we can understand clearly
how the student solution relates to the task given by the
teacher network from the overlap matrices. In the standard
supervised learning setting there is no analogue. Instead
we define an empirical measure of node ‘importance’ that
we use to investigate how different nodes in the network
contribute to forgetting. For a given node i, we define its
importance Iti in relation to some task t to be the change in
test error when the output of that node is masked (see App. F
for details). If a node is important to the network for a given
task, the error will increase substantially when this node is
masked and Iti will be high.

In Fig. 4b we see that for a two-layer network trained on
a Fashion MNIST (Xiao et al., 2017) binary classification
task, one or two nodes dominate in terms of importance at
the switch point. Any forgetting that occurs after the switch
point will hence be dominated by the behaviour of these
nodes. Empirically, we then observe that these nodes remain
more important for the second task when the task similarity
is higher (see Fig. 4b for a single seed). To visualise this
more generally, we consider the dot product of the vector
of node importances for the first task at the switch point
I1 with the vector of node importances for the second task
at the end of training on both tasks I2. If similar nodes
are important for both tasks (re-use), this quantity is high;
while if different nodes are important (activation), it is low.
Fig. 4c shows that, just as in the teacher-student (see Fig. 3g),
I1 · I2 generally increases as a function of similarity in the
data-mixing setup (see App. G for details on statistics).

4. Methods for Combating Forgetting
With a better understanding of the basis for the relation-
ship between task similarity and catastrophic forgetting,
a natural question to ask is how various commonly used
methods to combat forgetting impact the picture. These
methods typically fall into three broad groups: dynamic ar-



Maslow’s Hammer Hypothesis for Catastrophic Forgetting

chitectures, where capacity is added to deal with new tasks;
regularisation, where a penalty is added to the objective
of later tasks to bias the network to solutions compatible
with earlier tasks; and replay, where data from previous
tasks (or representations thereof) are interleaved throughout
training of later tasks. By using the conventional continual
learning protocol of one head per task, we are arguably al-
ready operating in the dynamic architecture regime. Beyond
that, we study in this section one of the most widely used
algorithms for combating forgetting, EWC; as well as inter-
leaved replay, which we can implement straightforwardly
in the teacher-student framework without storing data or
training additional generative models.

4.1. Elastic Weight Consolidation

EWC (Kirkpatrick et al., 2017) applies a quadratic penalty to
weight movement away from the solution for an earlier task
and is modulated by the Fisher information of the weight
for the earlier task. The penalty is motivated by a Laplace
approximation of the posterior (conditional probability of
the parameters given the data from the first task) where the
mean and variance of the Gaussian approximation are given
by the weights at the end of the first task, and the diagonal
of the Fisher information matrix respectively. For a pair of
tasks A and B, and a neural network parameterised by θ,
the objective function for training on the second task is thus
given by:

L(θ) = LB(θ) +
λ

2

∑
i

Fi(θi − θ∗A,i)2, (4)

where Fi is the ith element along the diagonal of the Fisher
information matrix, θ∗A,i is the value of the ith weight at the
end of training on taskA, and λ is an additional hyperparam-
eter controlling the strength of consolidation. Specifically in
the online learning setting of the two-layer student-teacher
framework, EWC affects only the first layer weights since
the head weights are not shared across tasks.

In Fig. 5 we show the generalisation error curves for a stu-
dent trained on a succession of two teachers with various de-
grees of similarity, this time training with the modified EWC
objective in the second phase. Each subplot shows a differ-
ent value for the strength of consolidation (λ in Eq. 4).

As the importance parameter increases and more weight is
given to consolidation in the objective, forgetting generally
reduces. In particular we see that the more similar the tasks
are, the greater λ needs to be to have an impact. Eventu-
ally for the largest value of λ shown, all trajectories have
collapsed onto a very similar learning trajectory. The excep-
tion is the trajectory corresponding to fully aligned teachers,
which despite some improvement is comparatively less af-
fected by EWC. We can understand these results through
the lens of Maslow’s hammer: for fully aligned teachers,
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Figure 5. Effect of EWC on task similarity vs. forgetting As the
consolidation strength λ increases, so too does the bias towards
node activation. This happens first for networks trained on more
similar teachers until for λ = 10000, all trajectories regardless of
V have essentially collapsed onto one.

the student does not need to activate dormant nodes in the
second task and can feasibly continue to use the specialised
node, hence EWC has little effect. As the task similarity
reduces, the propensity of the student to instead activate a
new node increases. The effect of EWC is to intensify this
increased propensity, in other words to amplify the bias to
fresh node activation since movement in the weights con-
tributing to the specialised node is penalised. Additionally,
as the bias towards node re-use is higher for more similar
tasks, it takes a stronger push in the other direction (i.e.
higher λ) to impact these trajectories. With a high enough
λ such that the bias to node re-use is effectively removed
for all trajectories regardless of teacher similarity, the task
in the second phase of learning is akin to learning a new
random teacher with a tabula rasa node. Hence the learning
trajectories collapse onto one. We show later that although
the conservatism induced by strong EWC (comparable in
this setting to freezing a node), limits even the fully aligned
setting, it can still be a favourable method in intermediate
similarity settings.

4.2. Interleaved Replay

One set of methods for combating forgetting involves show-
ing examples from previous tasks during training of later
tasks. This can be done in a range of ways from explicitly
storing data from previous tasks to training a generative
model from which to sample data during later tasks (Shin
et al., 2017; Draelos et al., 2017). These methods are in-
spired by systems consolidation theories in neuroscience,
e.g. hippocampal replay (Kumaran et al., 2016).

In the student-teacher framework, it is straightforward to
implement this kind of algorithm since the teacher is the
generative model; this means we can intermittently sample



Maslow’s Hammer Hypothesis for Catastrophic Forgetting

(a) T = 100

0 5 · 106 1 · 107

−4

−2

0

step, s

lo
g
ε†

(b) T = 10

0 5 · 106 1 · 107

−4

−2

0

step, s

lo
g
ε†

(c) T = 2

0 5 · 106 1 · 107

−4

−2

0

step, s

lo
g
ε†

(d) T = 1

0 5 · 106 1 · 107

−4

−2

0

step, s

lo
g
ε†

Figure 6. Effect of replay on task similarity vs. forgetting Al-
though interleaving is superior to EWC in highly aligned or highly
orthogonal regimes, it remains very poor in intermediate regimes
even for fully interleaved training.

from previous teachers during training on later teachers.
Here we focus in particular on interleaving a single example
from the first teacher at different periods, T , during training
of the second teacher. Other durations of interleaving and
study of potential prioritisation schemes are left for future
work. This sensitivity analysis is shown in Fig. 6.

As the period of interleaving reduces, forgetting reduces
and indeed the student begins to co-learn in the orthogonal
and aligned regimes (this can be thought of as a kind of
backward-transfer). Unlike for EWC where high λ collapses
the trajectories of the student onto one regardless of teacher-
teacher similarity, even for the strongest interleaving (T =
1) intermediate similarity remains the most difficult regime.
Again this boils down to a difficult and ultimately costly
trade-off between node re-use and node activation which
interleaved training, unlike strong regularisation, cannot
mitigate (see App. H).

It is informative to compare directly the generalisation er-
ror trajectories for vanilla SGD, strong interleaving, and
strong EWC (see Fig. 7a). Although interleaving is far su-
perior in the orthogonal and aligned regimes (effectively
allowing backward transfer), EWC is better in the interme-
diate similarity case despite heavily stagnating on the first
task due to the strong deviation penalty. Given interleaving
is generally considered to be the gold standard (Kumaran
et al., 2016), this may be unexpected. Is this a consequence
of poor initialisation (Liu et al., 2020; Gerace et al., 2022),
or is the intermediate similarity task structure inherently
challenging for interleaved training? We investigated this
question by comparing to the drastic strategy of completely
re-initialising at the task boundary and performing inter-
leaved training from a tabula rasa network. As we show
in Fig. 7b, there is a clear benefit in terms of forgetting in
interleaving experiences starting from the solution to the
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Figure 7. EWC vs. interleaved replay (a) Generalisation error on
first teacher log ε† vs step s for a set of teacher-teacher similarities
V . Dashed (solid) lines represent T = 1 interleaved replay of
the first teacher (λ = 1000 EWC penalty) in the second phase
of training. Although interleaving is far superior on the extremes
of the spectrum, there is a range of task similarity where inter-
leaved replay is worse than the trajectories of EWC. Catastrophic
slowing (b) Generalisation error log ε† vs. step s for extremes
of task similarity spectrum V . Solid lines represent interleaved
replay from the task switch whereas dashed lines represent a re-
initialisation followed by interleaved training from the task switch.
If you allow access to the first teacher during the second phase of
training, re-initialising at the task switch is better for forgetting
(and transfer) in the intermediate task similarity regime.

first task when teachers are orthogonal or aligned. In the
intermediate regime however re-initialising entirely is actu-
ally better! This cannot be explained away by a trade-off
with superior performance on the second task as this is also
better when re-initialising (see App. I). This suggests the
presence of a catastrophic slowing effect in the intermediate
regime where interleaving is not a viable combating method
due to the tight balance between re-use and activation.

5. Discussion
This work has introduced the Maslow’s hammer hypothesis,
which shows how a trade-off between re-use and activation
at the node level gives rise to a non-monotonic relationship
between task similarity and forgetting such that interme-
diate task similarity is most damaging. The universality
of this explanation remains to be fully established: In the
teacher-student setup, the isotropy of the input distribution
implies that the feature weights must pay attention to every
part of the input distribution, and behavioural signatures at
the node level capture those of interest at the weight level.
In the data-mixing framework, where this data isotropy is
broken and we can expect the learned representation in the
feature weights to be sparser, we still see evidence for a
trade-off between re-use and activation at the node level
even if this is a coarsening of more complicated interactions
at the weight level. In other settings, this trade-off may play
out at a super-node level in clusters or sub-networks. We
leave the study of these trade-offs over different compo-
nents of the network for future work. We use the insights
gained from Maslow’s hammer to rethink two popular com-
bating methods for catastrophic forgetting (EWC and in-
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terleaved replay), and identify among other properties of
these methods an effect we term catastrophic slowing where
interleaving experiences in an intermediate task similarity
regime is worse than re-initialising the network, from both
a transfer and forgetting perspective. Moving forward, we
hope that Maslow’s hammer for catastrophic forgetting can
help elucidate related phenomena in continual learning and
cognate paradigms.

Code: github.com/seblee97/student teacher catastrophic
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Appendix

A. Experiment Details
Unless mentioned otherwise in the main text, the following parameters were used in all teacher-student runs:

• Input dimension = 1000;
• Test set size = 50,000;
• SGD optimiser;
• Mean squared error loss;
• Teacher weight initialisation: normal distribution with variance 1;
• Student weight initialisation: normal distribution with variance 0.001;
• Student hidden dimension: 4;
• Teacher hidden dimension: 2;
• Learning rate: 0.1;
• Nonlinearity = scaled error function.

For the data mixing framework, we use the Fashion Modified National Institute of Standards and Technology (MNIST)
dataset, with the following parameters:

• D1: class 0, class 5;
• D̃2: class 2, class 7;
• SGD optimiser;
• Mean squared error loss;
• Batch size = 1;
• Input dimension = 1024;
• Hidden dimension = 8;
• Nonlinearity = sigmoid;
• Learning rate: 0.001.

We grayscale the data and apply an early stopping regime such that the weights used for the network in the second task
are those with the lowest test error obtained during the first phase of training. This is to avoid any additional effects from
overfitting.

Code for the experiments can be found at: github.com/seblee97/student teacher catastrophic

B. Specialisation Assumption
Implicit in some of the discussion around Maslow’s hammer is that there is specialisation in the network during the first task,
and that there is additional capacity in the network to learn later tasks. We show in the ODE solutions for the teacher-student
setup and empirically in the data mixing framework that this is the case (even in a relatively small network). We do not show
the plots here, but we also confirmed this assumption to be robust in the teacher-student framework over every aspect of the
problem we looked at (activation function, level of over-parameterisation, size of hidden dimension, noise and noiseless
teachers). In settings where this assumption does not hold at all, Maslow’s hammer will likely not hold in the way it is
currently stated. We leave investigation of this regime for future work.

12
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C. ODE Formulation
Below we outline the ODE analysis that is used in the teacher-student components of this paper. Since our setup is very
similar to that of Lee et al. (2021), the derivations below are also the same. We reproduce it here to facilitate a self-contained
paper.

C.1. Order Parameters

The full set of order parameters for the two-teacher student-teacher networks in the large input limit is given by:

Student-Student Overlap, Q : qkl ≡ 〈λkλl〉 =
1

N
wkwl; (5)

Teacher†-Teacher†Overlap, T : tnm ≡ 〈ρmρn〉 =
1

N
w†mw†n; (6)

Student-Teacher†Overlap, R : rkm ≡ 〈λkρm〉 =
1

N
wkw

†
m; (7)

Teacher‡-Teacher‡Overlap, S : spq ≡ 〈ηpηq〉 =
1

N
w‡pw

‡
q; (8)

Student-Teacher‡Overlap, U : ukp ≡ 〈λkηp〉 =
1

N
wkw

‡
p; (9)

Teacher†-Teacher‡Overlap, V : vmp ≡ 〈ρmηp〉 =
1

N
w†mw‡p; (10)

along with the head weights, v†, v‡, h†, h‡.

Throughout, we denote any quantities associated with the first task with †, any quantity associated with the second task with
‡. In any quantity or equation that generally holds for † or ‡, we represent this by marking it with ∗.

C.2. Generalisation Error in terms of Order Parameters

Our aim is to formulate the generalisation error in terms of the macroscopic order parameters.

The SGD update equations in the two-layer teacher-student setup are given by:

wµ+1
k = wµ

k −
αW√
D
v∗µk g′(λµk)∆∗µxµ (11a)

h∗µ+1
k = h∗µk −

αh

D
g(λµk)∆∗µ, (11b)

where αW is the learning rate for the feature weights, αh is the learning rate for the head weights, and

∆†µ ≡
∑
k

h†µk g(λµk)−
∑
m

v†mg(ρµm); (12)

∆‡µ ≡
∑
k

h‡µk g(λµk)−
∑
p

v‡pg(ηµp ). (13)

We have also introduced the local fields

ρm ≡
wmx√
D
, ηp ≡

wpx√
D
, λk ≡

wkx√
D

(14)

of the mth teacher † unit, nth teacher ‡ unit, and kth student unit, respectively. In general, indices i, j, k, l are used for hidden
units of the student; m,n for hidden units of †; and p, q for hidden units of ‡.

Let us begin by multiplying out Eq. 1,

ε†g =
1

2

〈∑
i,k

h†ih
†
kg(λi)g(λk) +

∑
m,n

v†mv
†
ng(ρm)g(ρn)− 2

∑
i,n

h†iv
†
ng(λi)g(ρn)

〉 . (15)



Maslow’s Hammer Hypothesis for Catastrophic Forgetting

These generalisation errors involve averages of local fields, which can be computed as integrals over a joint multivariate
Gaussian probability distribution, all of the form

P(β, γ) =
1√

(2π)F+H |C̃|
exp

{
−1

2
(β, γ)T C̃−1(β, γ)

}
, (16)

where β and γ are local fields with number of units F and H respectively, and C̃ is a covariance matrix suitably projected
down from

C =

 Q R U
RT T V
UT VT S

 .

We define
I2(f, h) ≡ 〈g(β)g(γ)〉, (17)

where f, h are the indices corresponding to the units of the local fields β and γ. This allows us to write the generalisation
errors as

ε†g =
1

2

∑
i,k

h†ih
†
kI2(i, k) +

1

2

∑
n,m

v†nv
†
mI2(n,m)−

∑
i,n

h†iv
†
nI2(i, n) (18)

ε‡g =
1

2

∑
i,k

h‡ih
‡
kI2(i, k) +

1

2

∑
p,q

v‡pv
‡
qI2(p, q)−

∑
i,p

h‡iv
‡
pI2(i, p). (19)

C.2.1. SIGMOIDAL ACTIVATION

For the scaled error activation function, g(x) = erf(x/
√

2), there is an analytic expression for the I2 integral purely in terms
of the order parameters (Saad & Solla, 1995):

I2(i, k) =
1

π
arcsin

qik√
(1 + qii)(1 + qkk)

. (20)

In turn, we can similarly write the generalisation errors in terms of the order parameters only:

ε†g =
1

π

∑
i,k

h†ih
†
k arcsin

qik√
(1 + qii)(1 + qkk)

+
1

π

∑
n,m

v†nv
†
m arcsin

tnm√
(1 + tnn)(1 + tmm)

+
2

π

∑
i,n

h†iv
†
n arcsin

rin√
(1 + qii)(1 + tnn)

(21)

ε‡g =
1

π

∑
i,k

h‡ih
‡
k arcsin

qik√
(1 + qii)(1 + qkk)

+
1

π

∑
p,q

v‡pv
‡
q arcsin

spq√
(1 + spp)(1 + sqq)

+
2

π

∑
i,p

h‡iv
‡
p arcsin

uip√
(1 + qii)(1 + spp)

. (22)

C.3. Order Parameter Evolution (Training on †)

Having arrived at expressions for the generalisation error of both teachers in terms of the order parameters, we want to
determine equations of motion for these order parameters from the weight update equations (Eq. 11a & Eq. 11b). Trivially,
the order parameters associated with the two teachers, T and S are constant over time, as are the head weights of the
teachers, v†,v‡. When training on †, the student head weights corresponding to ‡ are also stationary; it remains for us to
find equations of motion for R,Q,U and h†, which we derive below. The equivalent derivations when training on teacher ‡
can be made by using the update in Eq. 11b instead.
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C.3.1. ODE FOR R

Consider the inner product of Eq. 11a (in the case of * = †) with w†n:

wµ+1
k w†n −wµ

kw
†
n = −αW√

D
h†µk g

′(λµk)∆†µxµw†n (23)

= −αWh†µk g
′(λµk)∆†µρµn (24)

rµ+1
kn − r

µ
kn = −αW

D
h†µk g

′(λµk)∆†µρµn (25)

If we let τ ≡ µ/D and take the thermodynamic limit of D →∞, the time parameter becomes continuous and we can write:

drin
dτ

= −αWh†i 〈g
′(λi)∆

†ρn〉, (26)

where we have re-indexed k → i.

C.3.2. ODE FOR Q

Consider squaring Eq. 11a (here we can simply use * to denote training on either teacher).

wµ+1
k wµ+1

i −wµ
kw

µ
i = −αW√

D
h∗µi g

′(λµi )∆∗µxµwµ
k −

αW√
D
h∗µk g

′(λµk)∆∗µxµwµ
i

+
α2
W

D
h∗µi g

′(λµi )h∗µk g
′(λµk)(∆∗µxµ)2 (27)

= −αWh∗µi g
′(λµi )∆∗µλµk − αWh∗µk g

′(λµk)∆∗µλµi

+
α2
W

D
h∗µi g

′(λµi )h∗µk g
′(λµk)(∆∗µxµ)2 (28)

qµ+1
ki − q

µ
ki = −αW

D
h∗µi g

′(λµi )∆∗µλµk −
αW

D
h∗µk g

′(λµk)∆∗µλµi

+
α2
W

D2
h∗µi g

′(λµi )h∗µk g
′(λµk)(∆∗µxµ)2. (29)

Performing the same reparameterisation of µ and the same thermodynamic limit, we get:

dqik
dτ

= −αWh∗i 〈g′(λi)∆∗λk〉 − αWh∗k〈g′(λk)∆∗λi〉+ α2
Wh∗i h

∗
k〈g′(λi)g′(λk)∆∗2〉. (30)

Note: in the limit, (xµ)2 → D since individual samples are taken from a unit normal. Hence the 1/D limit remains the
same decay rate for each term.

C.3.3. ODE FOR U

Consider the inner product of Eq. 11a (in the case of * = †) with w‡p:

wµ+1
k w‡p −wµ

kw
‡
p = −αW√

D
h†µk g

′(λµk)∆†µxµw‡p (31)

= −αWh†µk g
′(λµk)∆†µηµp (32)

uµ+1
kp − u

µ
kp = −αW

D
h†µk g

′(λµk)∆†µηµp . (33)

If we let τ ≡ µ/D and take the thermodynamic limit of D →∞:

duip
dτ

= −αWh∗i 〈g′(λi)∆∗ηp〉. (34)

C.3.4. ODE FOR h∗

Here, we simply take the thermodynamic limit of Eq. 11b (for * = †):

dh†i
dτ

= −αh〈∆†g(λi)〉 (35)
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D. Explicit Formulation
We can go one step further and write the right hand sides of the ODEs in terms of more concise integrals. Recall that for no
noise

∆†µ ≡
∑
k

h†µk g(λµk)−
∑
m

v†mg(ρµm). (36)

Substituting this term into the ODEs above gives us the expanded versions below:

drin
dτ

= −αWh†i

〈
g′(λi)

[∑
k

h†kg(λk)−
∑
m

v†mg(ρm)

]
ρn

〉
; (37)

dqik
dτ

= −αWh†i

〈
g′(λi)

∑
j

h†jg(λj)−
∑
m

v†mg(ρm)

λk〉

− αWh†k

〈
g′(λk)

∑
j

h†jg(λj)−
∑
m

v†mg(ρm)

λi〉

+ α2
Wh†ih

†
k

〈
g′(λi)g

′(λk)

∑
j

h†jg(λj)−
∑
m

v†mg(ρm)

2〉
; (38)

duip
dτ

= −αWh†i

〈
g′(λi)

[∑
k

h†kg(λk)−
∑
m

v†mg(ρm)

]
ηp

〉
; (39)

dh†i
dτ

= −αh

〈[∑
k

h†kg(λk)−
∑
m

v†mg(ρm)

]
g(λi)

〉
. (40)

Similarly to the I2 integral defined in Eq. 17, we further define:

I3(d, f, h) = 〈g′(ζ)βg(γ)〉, (41)
I4(d, e, f, h) = 〈g′(ζ)g′(ι)g(β)g(γ)〉; (42)

where ζ, ι are local fields of the student with indices d, e; and β, γ can be local fields of either student or teacher with indices
f, h. Substituting these definitions into the expanded ODE formulations gives:

drin
dτ

= αWh†i

[
M∑
m

v∗mI3(i, n,m)−
K∑
k

h†kI3(i, n, k)

]
; (43)

dqik
dτ

= αWh†i

 M∑
m

v†mI3(i, k,m)−
K∑
j

h†jI3(i, k, j)


+ αWh†k

 M∑
m

v†mI3(k, i,m)−
K∑
j

h†jI3(k, i, j)


+ α2

Wh†ih
†
k

 K∑
j,l

h†jh
†
l I4(i, k, j, l) +

M∑
m,n

v†mv
†
nI4(i, k,m, n)

−2

K∑
j

M∑
m

v†mh
†
jI4(i, k, j,m)

 ; (44)

duip
dτ

= αWh†i

[
M∑
m

v†mI3(i, p,m)−
K∑
k

h†kI3(i, p, k)

]
; (45)
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dh†i
dτ

= αh

[
M∑
m

v†mI2(m, i)−
K∑
k

h†kI2(k, i)

]
. (46)

This completes the picture for the dynamics of the generalisation error. It can be expressed purely in terms of the head
weights and the I integrals. For the case of the scaled error function we can evaluate the I2, I3, and I4 analytically meaning
we have an exact formulation of the generalisation error dynamics of the student with respect to both teachers in the
thermodynamic limit. Further details on the integrals can be found in Sec. D.1. The next chapter introduces the experimental
framework that compliments the theoretical formalism presented above.

D.1. Gaussian Integrals under Scaled Error Function

In the derivations above, we introduce a set of integrals over multivariate Gaussian distributions, labelled I2, I3 and I4. They
are defined as:

I2(f, h) ≡ 〈g(β)g(γ)〉, (47)
I3(d, f, h) ≡ 〈g′(ζ)βg(γ)〉, (48)

I4(d, e, f, h) ≡ 〈g′(ζ)g′(ι)g(β)g(γ)〉; (49)

where ζ, ι are local fields of the student with indices d, e; and β, γ can be local fields of either student or teacher with indices
f, h; and g is the activation function.

These integrals do not have closed form solutions for the ReLU activation. For the scaled error function however, they can
all be solved analytically. They are given by:

I2 =
1

π
arcsin

c12√
(1 + c11)(1 + c22)

; (50)

I3 =
2c23(1 + c11)− 2c12c13√

Λ3(1 + c11)
; (51)

I4 =
4

π2
√

Λ4

arcsin
Λ0√
Λ1Λ2

; (52)

where

Λ0 = Λ4c34 − c23c24(1 + c11)− c13c14(1 + c22) + c12c13c24 + c12c14c23; (53)

Λ1 = Λ4(1 + c33)− c223(1 + c11)− c213(1 + c22) + 2c12c13c23; (54)

Λ2 = Λ4(1 + c44)− c224(1 + c11)− c214(1 + c22) + 2c12c14c24; (55)

Λ3 = (1 + c11)(1 + c33)− c213; (56)
(57)

and where c is the relevant projected down covariance matrix.

E. Overlap Generation
Throughout this work we tune the similarity of tasks in the teacher-student setup by manipulating the feature weights of the
second teacher in relation to the first. Here we outline the procedure used. Once again this is largely similar to the procedure
used in (Lee et al., 2021).

In the main text we mention that we abbreviate the matrix elements vmp to V . The motivation for this is that in the single
hidden unit case the input-hidden weights are vectors and their dot products are simply scalars. When we move to the
multi-hidden unit setting (see below), there is no single similarity measure from the overlap matrix but we construct our
similarity based on a scalar interpolation between two random matrices, so continue to denote similarity simply by V .
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For teachers with a single hidden unit we simply need a procedure to generate two D-dimensional vectors (where D is the
input dimension), v1, v2, with an angle θ between them such that:

v1 · v2 = θ. (58)

Fortunately there is a standard algorithm for this. First we define two vectors

ṽ1 =

(
0
1

)
; ṽ2 =

(
sin θ
cos θ

)
.

Second, we generate an D × D orthogonal matrix, R. There is a standard sicpy implementation for this based on QR
decomposition of a random Gaussian matrix1.

Finally, multiply the first two columns of R with either vector to generate the rotated vectors:

v1 = R[:, 1 : 2] · ṽ1; (59)
v2 = R[:, 1 : 2] · ṽ2. (60)

For the more general case of multi-hidden units, V is closer to an interpolation than a rotation. Specifically it is an
interpolation between two random matrices such that V = 0 gives a new random matrix that is orthogonal to the first, and
V = 1 gives back the same matrix as the first. Formally for similarity measure V and first teacher feature weight matrix,
W†, the second teacher feature weight matrix is given by:

W‡ = VW† +
√

(1− V 2)Z, (61)

where Z is a D ×D random matrix.

F. Empirical Node Importance
While specialisation measures are very clearly identifiable via the overlap matrices in the teacher-student, analogues do not
exist in the standard supervised learning setup. For this we use an empirical measure of node ‘importance’ defined as the
drop in test error when the node is masked. Formally for a two-layer network, node index i and task index t:

Iti ≡
1

2

〈 L∑
l=1
l 6=i

vlg(Wlx
t
j)−ytj


2

−

[
L∑
l=1

vlg(Wlx
t
j)−ytj

]2〉
(62)

where v are the second layer weights, g is the activation function, W are the first layer weights, and the averages are taken
over the test dataset pairs (xj , yj).

1SciPy Stats Module Docs

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ortho_group.html
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G. Detailed Statistics of Node Re-Use Tendency in Data Mixing
In Fig. 4c, we show the I1 · I2 vs. α. Specifically we plot the mean of 200 random seeds. At each value of α there is a
high level of variance in I1 · I2. However each decile of the distribution of I2 · I2 follows a similar monotonic distribution,
which we show in the plots below. This demonstrates that while there is a large width in the distribution of I1 · I2, there is a
systematic shift upwards as α increases from 0 to 1.
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Figure 8. Deciles of I1 ·I2 distributions over 200 seeds vs. mixing parameter α In every decile there is a general monotonic relationship
between I1 · I2 and the mixing parameter α.

H. Overlap Plots
In this section we show plots of the overlap parameters corresponding to the various figures in the main text. These can help
to illuminate some of the behaviours at the node level that give rise to the macroscopic phenomena we observe e.g. in the
generalisation errors.

H.1. Effect of EWC on task similarity vs. forgetting

These are the overlaps associated with Fig. 5.
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Figure 9. Effect of EWC on task similarity vs. forgetting: student self-overlaps
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Figure 10. Effect of EWC on task similarity vs. forgetting: student-teacher overlaps

H.2. Effect of interleaving on task similarity vs. forgetting

These are the overlaps associated with Fig. 6.
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Figure 11. Effect of interleaving on task similarity vs. forgetting: student self-overlaps
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Figure 12. Effect of interleaving on task similarity vs. forgetting: student-teacher overlaps

I. Transfer Plots
This section contains plots on the ‘transfer’ observed in the performance on task 2. We follow (Lee et al., 2021) in
defining transfer as the difference between the generalisation error on the second teacher at some step after switch and the
generalisation error on the second teacher at the switch. Principally we could ask many of the questions related to forgetting
we ask in this paper for transfer as well in the sense that the teacher-student framework permits a natural transfer analogue.
However forgetting has been the focus of this work and thus we include transfer plots here for the interested reader.

To help distinguish these plots from those showing quantities associated with forgetting, we use a different color scheme for
transfer related plots:
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Figure 13. Effect of EWC on task similarity vs. forgetting: transfer
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Figure 14. Effect of replay on task similarity vs. forgetting: transfer
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Figure 15. EWC vs. interleaved replay transfer In Fig. 7a we compared strong interleaving with strong elastic weight consolidation.
Here we show the transfer performance. The solid lines show EWC and the dashed lines show interleaved training. You can see clearly
that the performance of EWC plateaus; this is because movement in the node that specialised on the first task is so highly penalised and
the network is less flexible as a result. On the other hand transfer performance (as well as backward transfer to the first task as seen by the
plot in the main text) continues to improve under interleaved training for highly aligned and orthogonal tasks.
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Figure 16. Catastrophic slowing transfer In Fig. 7b we identify an effect we call catastrophic slowing where interleaved replay can not
aid forgetting in the intermediate task regime. Here we show that transfer is also poor in this regime. The dashed lines show trajectories
when we re-initialise at the task boundary. While transfer (and forgetting) is better for the aligned and orthogonal cases under interleaving
than under re-initialising, it is worse for intermediately related tasks.
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Figure 17. Transfer vs. task similarity: This is the transfer equivalent of Fig. 1b. For a full discussion of the implications of this plot,
see (Lee et al., 2021) from which this is reproduced.


