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Abstract

One of the most fundamental and striking limitations of human cognition appears to be

a constraint in the number of control-dependent processes that can be executed at one

time. This constraint motivates one of the most influential tenets of cognitive

psychology: that cognitive control relies on a central, limited capacity processing

mechanism that imposes a seriality constraint on processing. Here we provide a

formally explicit challenge to this view. We argue that the causality is reversed: the

constraints on control-dependent behavior reflect a rational bound that control

mechanisms impose on processing, to prevent processing interference that arises if two

or more tasks engage the same resource to be executed. We use both mathematical and

numerical analyses of shared representations in neural network architectures to

articulate the theory, and demonstrate its ability to explain a wide range of phenomena

associated with control-dependent behavior. Furthermore, we argue that the need for

control, arising from the shared use of the same resources by different tasks, reflects the

optimization of a fundamental tradeoff intrinsic to network architectures: the increase

in learning efficacy associated with the use of shared representations, versus the

efficiency of parallel processing (i.e., multitasking) associated with task-dedicated

representations. The theory helps frame a formally rigorous, normative approach to the

tradeoff between control-dependent processing versus automaticity, and relates to a

number of other fundamental principles and phenomena concerning cognitive function,

and computation more generally.
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On the Rational Boundedness of Cognitive Control:

Shared Versus Separated Representations

1 Introduction

One of the most remarkable features of human cognition is the ability to override

habitual (automatic) responses to successfully guide behavior in the service of current

task goals. Mechanisms underlying this function are summarized under the term

cognitive control. They are engaged across various domains of cognition, including

perception, attention, learning, memory and action selection (Anderson, 1982; Badre &

Wagner, 2007; Lavie, Hirst, De Fockert, & Viding, 2004; Posner & Snyder, 1975;

Ridderinkhof, Van Den Wildenberg, Segalowitz, & Carter, 2004; Shiffrin & Schneider,

1977), and appear to be fundamental to many of the faculties that distinguish human

mental function from other species (and continue to distinguish it from machines),

including problem solving, planning and language processing (Miyake & Friedman,

1998; Otto, Skatova, Madlon-Kay, & Daw, 2014; Shah & Miyake, 1996; Sweller, 1988).

Cognitive control has often been treated as an undifferentiated construct.

However, recent work has begun to focus on a distinction between mechanisms

responsible for the execution of control, that is the regulation of processes subject to

control; and mechanisms responsible for the allocation of control, that is monitoring

internal states and/or the environment, including the outcome of processing, and

determining based on that information how control should be allocated. For example,

when confronted with the opportunity to perform one or more of several

control-demanding tasks, before committing to performing any of them there may be an

initial phase during which the individual considers which (and possibly how many) it is

best to perform (Fischer & Plessow, 2015) – that is, how to allocate control. How

people make such determinations has been the focus of increasing theoretical interest,

including attempts to provide a normative account from a resource rational perspective

(Shenhav, Botvinick, & Cohen, 2013; Shenhav et al., 2017; Lieder, Shenhav, Musslick,
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& Griffiths, 2018). These proceed from the assumption that the allocation of control is

constrained – an assumption that, as we will elaborate below – has been central to

virtual all theory concerning cognitive control – and cast the question of how control

should be allocated as an optimization problem, that people seek to solve by evaluating

candidate opportunities in terms of their expected future value weighed against the cost

of allocation. The latter is generally formulated as an opportunity cost: what is lost by

forestalling or even forgoing other tasks to pursue a chosen one (or few). However, like

virtually all other theoretical work on cognitive control, these theories do not explain

why the allocation of control is constrained. This article seeks to address that question,

with the goal of grounding our broader understanding of cognitive control on a firmer

normative foundation. Below, we discuss the constraint associated with control,

followed by a brief review of explanations that have been given for it, before providing a

formal theory.

1.1 Capacity Constraints

Despite the powerful abilities that cognitive control affords, and its ubiquitous

engagement in daily life (e.g., mentally planning one’s day at work, or navigating an

alternate route to work), it has long been recognized that we have a dramatically

limited ability to carry out more than one (or a very few) control-dependent processes

at the same time (e.g., the inability to plan and navigate at the same time). This

limitation has been literally paradigmatic since the earliest efforts to define cognitive

control: it was used to distinguish it from automatic processing (Posner & Snyder,

1975; Shiffrin & Schneider, 1977), and is used universally to operationalize it in the

laboratory (i.e., “diagnose” it experimentally) in the form of dual-task interference

(Lavie et al., 2004; McLeod, 1977; Meyer & Kieras, 1997b; Welford, 1952). A constraint

in the capacity for control-dependent processing has also become a theoretical

cornerstone of virtually all major theories of cognitive function (Anderson et al., 2004;

Anderson & Lebiere, 2014; Pashler & Sutherland, 1998; Simon, 1957), including ones,

noted above, that address how rational choices are made among the limited set of
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control-dependent behaviors that can be carried out at a given time (Kurzban,

Duckworth, Kable, & Myers, 2013; Lieder et al., 2018; Shenhav et al., 2013). Despite

the central importance of the constraints associated with the engagement of cognitive

control, the source of the constraint itself remains a mystery.

1.1.1 Structural Constraints. A widely accepted view is that constraints in

the capacity for control-dependent processing arise from structural limitations inherent

to the control system itself. One of the earliest, and still most influential views is that

cognitive control relies on a centralized, limited capacity mechanism that imposes a

seriality constraint on processing (e.g., Posner & Snyder, 1975; Shiffrin & Schneider,

1977). This reflects two strong influences. One is an analogy with the traditional

computer architecture (e.g., von Neumann, 1958), that has at its core a single, general

purpose central processing unit (CPU) with a limited buffer that allows it to execute a

single program instruction at a time (Kerr, 1973). A second, convergent influence comes

from the longstanding tradition of work on selective attention, in which the earliest

theories proposed an attentional filter that limits information processing to selected

stimulus features (Broadbent, 1957, 1958; Craik, 1948; Welford, 1952). These ideas have

matured and been refined by an extensive literature on dual-task interference, that

provide compelling evidence for a central processing bottleneck (e.g., Pashler, 1984,

1994).

The idea of a structural constraint has also been suggested by mechanistic models

of cognition in which control relies on the active maintenance in working memory of

representations needed to guide task performance (such as task instructions, goals, etc.;

e.g., Anderson, 1984; E. K. Miller & Cohen, 2001). Accordingly, constraints on control

could be due to the well characterized limitations in the capacity of working memory,

such as a limited number of discrete slots for working memory representations (Cowan,

Rouder, Blume, & Saults, 2012; Kriete, Noelle, Cohen, & O’Reilly, 2013; Luck & Vogel,

1997; Schneider, Detweiler, et al., 1987), their passive decay (Jensen, 1988; Page &

Norris, 1998), interference among representations held in a common working memory

buffer (Nairne, 1990; Oberauer & Kliegl, 2006; Usher & Cohen, 1999), or the related
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idea that there is a tradeoff between the number and precision of representations that

can be actively maintained (Ma & Huang, 2009; Ma, Husain, & Bays, 2014) — for a

comparative review of these accounts, see Oberauer, Farrell, Jarrold, and Lewandowsky

(2016).

Even if dependence on working memory were responsible for the constraints on

cognitive control, this leaves at least two mysteries unsolved: (1) Whereas the exact

limits of working memory capacity are actively debated (is it 7, 4 or even just 2?

Cowan, 2001, 2010; Luck & Vogel, 1997; G. A. Miller, 1956; Palmer, 1990; Turner &

Engle, 1986), constraints on the simultaneous execution of controlled-dependent

processing is even more severe: it is almost universally considered to be a single task

(e.g., Anderson et al., 2004; Anderson & Lebiere, 2014; Pashler & Sutherland, 1998); (2)

Why would a system with processing resources as vast as those of the human brain

(with billions of neurons in the human cortex alone; Herculano-Houzel, 2009; Pelvig,

Pakkenberg, Stark, & Pakkenberg, 2008) suffer from such a Draconian limitation on a

function as adaptive as the capacity for cognitive control? In the face of modern

compute clusters, with 1000s of “cores” or more, the analogy between cognitive control

and an architecture with a single CPU has become as quaint as the architecture itself.

1.1.2 Multiple Resource Theory. An alternative to the idea that capacity

constraints arise from the resource limitations of a centralized, control mechanism —

that is, that they reflect a limitation of the control system itself — is the idea that they

reflect, instead, properties of the processes that are being controlled. This idea was first

expressed in the form of the multiple resource theory (Allport, 1980; Allport, Antonis, &

Reynolds, 1972; Kinsbourne & Hicks, 1978; Navon & Gopher, 1979; McCracken &

Aldrich, 1984; Walley & Weiden, 1973; Wickens, 1991). This proposes that

control-demanding tasks, like any others, rely on a constellation of “local” resources

(e.g., task-specific representations)1, and that the inability to perform more than one

1 . The terms “shared resource” and “shared representation” describe similar concepts in different

models of human multitasking. In symbolic architectures, such as ACT-R (Anderson & Lebiere, 2014)

or EPIC (Meyer & Kieras, 1997b), two tasks are considered to share a resource if both of the tasks
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task at a time may reflect the conflict that arises within local resources when the tasks

involved rely on the same local resources, but demand that they be used for different

purposes, rather than reliance on a single centralized control mechanism. A classic

demonstration of this was provided by Shaffer (1975), who contrasted two dual-task

conditions. In one condition, participants were asked to repeat an auditory input

stream out loud (echoing) while manually typing visually presented text (copy-typing);

they were able to do this reasonably well after a modicum of practice. The other

condition involved the same stimulus modalities (auditory and visual streams of verbal

information) and response modalities (speaking and typing), in this case they were

asked to type the auditory input (dictation) while reading aloud the visually presented

text (reading); this proved virtually impossible to do, even after extensive practice.

What is particularly striking is that one of the tasks in the second condition — word

reading — is considered to be a canonical example of an automatic process (Warren,

1972; Posner & Snyder, 1975; R. F. West & Stanovich, 1978; Seidenberg, Tanenhaus,

Leiman, & Bienkowski, 1982); since the response it demanded (verbal) was different

from the dictation task (manual), it should not have produced interference, no less been

subject to interference itself.

Fig. 1 illustrates these tasks and offers an explanation of the findings, in a manner

consistent with the multiple resource theory. In the first condition, the two tasks each

make independent use of two distinct “resources” (orthographic and phonological

representations of verbal materials); in the second condition, both tasks must make use

of both resources, each for a different purpose (i.e., to process different, competing

require engagement of the same processing component. A processing component may be used to

represent declarative information (e.g., sensory information or more abstract semantic knowledge) or to

manipulate information (e.g., productions for updating the activity of representations in declarative

memory and/or taking actions). In connectionist models — consisting of multiple interconnected

processing units, often grouped into modules that are used to represent and process a given type of

information — two tasks can be considered to share a resource if they make use of the same units in a

module (i.e., they “share representations”) but require different representations to be active at the

same time (cf. Fig. 3C).
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Figure 1 . Two dual-tasking conditions contrasted in the experiment by Schaffer (1975).

(A) In the first condition, participants were asked to repeat spoken words (echoing) while typing

visually presented text (copy-typing). (B) In the second condition participants were asked to type

spoken words (dictation) while vocalizing visually presented text (reading). Participants were able to

learn to multitask in the first condition but were unable to do so in the latter. The difficulty of the

second condition can be explained in terms of interference that arises from the shared use of

representations for two different purposes. In that condition (B), the phonological and orthographic

representations must each be used for two tasks (reading and echoing), leading to interference between

them. No such interference is present in the first condition (A).

stimuli). From this perspective, the dual-task interference that arose in the second

condition did not necessarily reflect the limited capacity of a centralized control

mechanism, but rather the conflict that arose from making competing demands of the

same local “resources” (on the assumption that each resource could not be used to

simultaneously represent different information). Similar effects reflecting the sensitivity

of dual-task interference to the particularities (often referred to as the “compatibility”)

of the stimulus-response mappings involved have continued to be widely reported in the

literature (Greenwald, 1970; Greenwald & Shulman, 1973; Göthe, Oberauer, & Kliegl,

2016; Halvorson, Ebner, & Hazeltine, 2013; Hazeltine, Ruthruff, & Remington, 2006;

Lien & Proctor, 2002; Liepelt, Fischer, Frensch, & Schubert, 2011).

Several computational models of cognitive function have implemented the idea

that constraints on the number of tasks that can be performed at the same time arise

due to the sharing of local resources, rather than a limitation in the mechanisms
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responsible for control. For example, the executive-process interactive control (EPIC)

framework (Meyer & Kieras, 1997b; Kieras & Meyer, 1997) implements a control

mechanism that schedules tasks, without any upper limit on the number that it can

schedule for execution in parallel. Bottlenecks arise from seriality constraints within

individual processing resources, when these are required for performance by more than

one task at a time. Salvucci and Taatgen (2008) have described a similar view in the

context of a theory of threaded cognition. Such modeling efforts based on symbolic

architectures have been successful in predicting when multitasking performance is

possible, and when constraints arise, based on assumptions about which resources are

shared between specific tasks (Byrne & Anderson, 2001; Kieras, Meyer, Ballas, &

Lauber, 2000; Meyer & Kieras, 1997a; Salvucci & Macuga, 2002; Salvucci, 2006). While

these efforts have focused on people’s ability to multitask, connectionist models have

addressed the conflict that can arise from shared representations even when performing

a single task (i.e., when information from a competing source impinges on the shared

representations, such as in the Stroop and Erisken Flanker tasks), and the role that

control plays in managing such conflict (e.g. Botvinick, Braver, Barch, Carter, &

Cohen, 2001; J. D. Cohen, Dunbar, & McClelland, 1990).

1.1.3 Guilt by Association: Control as a Solution Rather than a

Cause. The modeling efforts above all emphasize the point that a fundamental

purpose of control mechanisms is to manage the potential for cross-talk between tasks,

by restricting the engagement of representations shared by multiple processes to the

one(s) relevant for a single process at any given time. That is, they make the point that

the constraints on the simultaneous execution of multiple control-dependent processes,

usually ascribed to the mechanisms responsible for control, can instead be viewed as the

purpose of control — to limit cross-talk — rather than a limitation of control

mechanisms themselves. Ascribing the constraints to a limitation in control mechanisms

is mistaking correlation for causation, akin to blaming the fire fighters for the fire, since

they are always at the fire. The real constraint is the sharing of representations by

different processes, rather than assigning dedicated representations to each, not the
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control mechanisms responsible for adjudicating their use in a particular setting.

However, this perspective does beg the following question: Why, if the sharing of

resources leads to conflict, constraints on processing, and reliance on control, should

such sharing arise in the first place, no less be as prevalent as the bottlenecks associated

with controlled processing seem to be?

One potential answer to this question, and several closely related ones, is

suggested by a different analogy, between the role of cognitive control in information

processing and that of a traffic controller in a transit system. Think of each process in

the cognitive system as a vehicle, conveying goods (by analogy, information) from a

source to a destination. Ideally, each vehicle travels on a thoroughfare that runs directly

from its source to its destination, without crossing any others. In this case, the system

can function independently (i.e., automatically), without any need for a traffic

controller. However, as the number of goods or, perhaps more importantly, the number

of uses to which they are put, increases, it becomes increasingly difficult to avoid the

crossing of routes. Where this occurs, there are two options. One is to build an

overpass, so that the vehicles can continue to operate independently of one another or a

controller. However, this can be costly and take time. Alternatively, the thoroughfares

can be allowed to intersect. However, this introduces the risk of collisions, so the

intersection must be accompanied by a traffic signal, and a traffic controller engaged to

manage it. The role of traffic controller becomes increasingly important as the number

of crossings and vehicles traversing them grows.

This analogy brings several critical points to light. First, using traffic signals

rather than overpasses is faster and cheaper to implement, but restricts the flow of

traffic. More specifically, it is the number of stop signals that must be imposed at any

one time that constrains the traffic flow, and it is the responsibility of the traffic

controller to impose these. The fact that the traffic controller imposes this restriction

does not reflect a limitation of the controller (there is no practical limit to the number

of signals available to it, nor any intrinsic limit on how many can be used to signal “go”

vs. “stop” at any time); but rather, the restriction in the number of “go” signals reflects
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its purpose in preventing collisions. Analogously, the purpose of cognitive control is to

limit cross-talk that arises from those parts of the processing system that involve

“crossings” — that is, shared representations.

1.1.4 Shared vs. Separated Representations. The analogy above suggests

a qualitative answer to the question of why the cognitive system should favor shared

representations: Like traffic intersections, they may be easier, quicker, and/or cheaper

to construct, and also more flexible (e.g., allowing processing to be quickly re-directed

in a number of different directions), as compared to separated representations dedicated

to each process (e.g., overpasses). This qualitative answer brings into focus two more

specific, quantitative questions.

The first question is: How does multitasking2 capacity scale with the size of the

processing system, and the frequency of shared representations within it? By way of the

analogy above, how does the risk of collisions scale with the number of crossings in the

system? One might imagine that in a processing network with the capacity of the

human brain, the likelihood of a given set of tasks relying on a shared set of

representations might be relatively low, and should therefore play an insignificant role

in constraining the number of tasks that can be performed in parallel. However,

provisional numerical work suggests otherwise (Feng, Schwemmer, Gershman, & Cohen,

2014), motivating the need for a more rigorous analysis of the impact of

representational sharing on network performance.

The second question is: How does the human cognitive system balance the costs

and benefits for shared vs. separated representations? As noted above, previous

computational modeling efforts have addressed the consequences of shared

representations with respect to cross-talk and attendant constraints on multitasking,

showing that mechanistically-explicit implementations of the multiple resource theory

can provide quantitatively accurate accounts of human performance in task domains

2 Here, we define multitasking as the simultaneous execution of two or more tasks to distinguish it from

broader uses of the term, such as the switching between multiple tasks (Koch, Poljac, Müller, & Kiesel,

2018).
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where there appear to be constraints on concurrent multitasking (Byrne & Anderson,

2001; Meyer & Kieras, 1997a; Salvucci & Taatgen, 2008). However, these have assumed

a stationary resource taxonomy (see Wickens, 1991), based on pre-specified

representations for the tasks involved, without specifying how or why those

representations arose in the first place (Botvinick et al., 2001; Byrne & Anderson, 2001;

J. D. Cohen et al., 1990; Laird, 2012; Meyer & Kieras, 1997b; Salvucci & Taatgen,

2008). That is, they have not provided an account of the factors that drive the system

to rely on shared representations, at the cost of a reliance on control, versus the

development of separated, task-dedicated representations that provide the efficiency of

parallel processing and multitasking (i.e., automaticity).

1.2 Overview

The purpose of this article is to directly address both of the questions raised

above: How does multitasking capability scale with the prevalence of representational

sharing and the size of the processing system; and what are the factors that determine

the tradeoff between shared and separated representations? For most of the article we

focus on the domains of skill acquisition and task performance, however in the General

Discussion we consider the extent to which the principles involved generalize to, or

relate to others concerning the cognitive system more broadly.

We begin, in Part I, by describing a formal framework in which the balance

between shared and separated representations, and the corresponding constraints on

multitasking capability and demand for cognitive control, can be quantified. Next, we

apply the framework to empirical findings from experimental tasks that have been used

to study control-dependent processing, from classic “attentional” tasks (such as the

Stroop paradigm) to dual-task and task switching paradigms. We show how the

constraints imposed by shared representations can provide a unified framework for

explaining behavioral effects commonly observed in these domains. Then, in Part II, we

examine the influence that learning has on this balance, and illustrate how this can be

used to provide a quantitative, and potentially normative account of the trajectory from



RATIONAL BOUNDEDNESS OF COGNITIVE CONTROL 13

controlled to automatic processing over the course of training.

We conclude by suggesting that the tradeoff between shared and separated

representations, and its interaction with learning, represent a fundamental principle of

adaptive network architectures that underlies and shapes all domains of psychological

function, from perception and inference to task execution, and extends equally to

artificial systems. Moreover, we discuss how solutions to this tradeoff can be

approximated by considering a “cost of control” that has begun to receive considerable

attention in theories of control allocation (e.g. Kool & Botvinick, 2018; Kurzban et al.,

2013; Lieder & Griffiths, 2015; Shenhav et al., 2013, 2017), as well as in theories of

planning and decision making (Callaway et al., 2018; Kool, Gershman, & Cushman,

2017; Lieder et al., 2018). We also consider how the tradeoff between shared and

separated representations may help provide a unified understanding of a wide range of

psychological phenomena that, to date, have been treated largely as distinct from one

another — including the role of “chunking” in skill acquisition (G. A. Miller, 1956;

Servan-Schreiber & Anderson, 1990), interference in working memory (Bouchacourt &

Buschman, 2019; Usher & Cohen, 1999; Wilken & Ma, 2004), attention in “binding”

(Treisman, 1996, 1999; Treisman & Gelade, 1980), facilitation in creativity (Kajić,

Gosmann, Stewart, Wennekers, & Eliasmith, 2017; Schatz, Jones, & Laird, 2018), and

the tradeoff between pattern separation vs. pattern completion in episodic vs. semantic

memory (McClelland, McNaughton, & O’Reilly, 1995) — and discuss its relationship to

similar principles that have begun to emerge from machine learning, such as the

bias-variance tradeoff and regularization.

2 Part I: Shared vs. Separated Representations

and Constraints on Multitasking Capability

We begin by describing a simple neural network model that has been used widely

to implement a fundamental function of cognitive control: configuration of information

processing in the service of performing a specified task. We use this model to define

what we mean by the terms “task”, “process”, and “shared representation”; and how
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the configuration of processes used to perform tasks constrain the multitasking

capability of a network, and consequently the demands for control. We show how

constructs from graph theory can be used to analyze how the cross-talk associated with

these different configurations impacts performance, and how these effects scale with the

size of the network. We then demonstrate how these graph-theoretic methods can be

used to predict the multitasking capability of a network from measures of single task

representations. We also examine how the amount of conflict induced by shared

representations interacts with the persistence characteristics of those representations to

produce constraints on multitasking and dependence on control. We show that these

interactions can account for patterns of reaction time (RT) that have been proposed to

index the degree of parallel processing in task performance (Townsend & Wenger,

2004). Finally, we demonstrate how the constraints on parallel processing imposed by

shared representations, and concomitant demands for control, provide a unifying

account of phenomena associated with the sequential execution of multiple tasks, such

as the psychological refractory period (PRP; Telford, 1931) and task switch costs

(Allport, Styles, & Hsieh, 1994; R. D. Rogers & Monsell, 1995), and discuss how this

can be used to define multitasking behavior along a continuum from pure sequential

processing, through rapid task switching, to pure parallelism (Fischer & Plessow, 2015;

Salvucci, Taatgen, & Borst, 2009).

2.1 A Simple Neural Network Model

We base our work on a family of neural network models that have been used

previously to capture a wide range of empirical findings concerning controlled processing

in attention and conflict tasks (e.g. J. D. Cohen et al., 1990; Botvinick et al., 2001;

Gilbert & Shallice, 2002; Kalanthroff, Davelaar, Henik, Goldfarb, & Usher, 2018). In

this section we describe the network architecture and processing in a canonical example

of these models, and use this to illustrate some of the subtle, in addition to obvious

ways in which shared vs. separated representations impact multitasking performance.
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2.1.1 Architecture. The basic model consists of two input layers, one of

which represents the stimulus presented to the network and another that indicates the

task the network is required to perform on the stimulus. The stimulus information is

transformed by a matrix of connection weights from the stimulus input layer to a

hidden (associative) layer, where it is represented as a pattern of activity over the units

in the hidden layer. A simple version of this model is depicted in Fig. 2. The pattern of

activity over units in the hidden layer is used to determine the pattern of activity over

the output layer that represents the response to a given stimulus. Control is

implemented by projections from the task input layer to the hidden and output layers,

that bias processing towards task-relevant representations in each of these layers, thus

allowing the network to elicit different responses to the same stimulus, depending on the

task specified. 3

2.1.2 Tasks and Processes. Note that the stimulus input layer is comprised

of several subsets of units, one for each dimension of information in the stimulus.

Similarly, distinct subsets of output units are generally used to represent different

response dimensions, although in the example shown in Fig. 2 there is only a single such

dimension (for verbal responses; see Fig. 3 for an example with two response

dimensions). We define a task as a one-to-one mapping from representations within a

single stimulus dimension to ones in a single response dimension (for example, each

color to a verbal response; i.e., its name). A process is the set of units and connections

within a network used to implement a task. Thus, the model shown in Fig. 2, with two

stimulus dimensions in its input layer and one response dimension in its output layer, is

configured with two processes that can be engaged to perform either of two tasks: color

naming or word reading. Fig. 3 shows an extended version of the Stroop model that

adds a dimension for manual responses in the output layer, allowing the network to

3 Note that all of our examples use one-hot (“localist”) representations of input and output features

within each dimension, but all of our findings apply equal to cases in which features are represented in

a more distributed form (see Simulation Studies 4 and 6), so long as each feature is orthogonal to all

the others.
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Figure 2 . Neural network model of the Stroop paradigm (adapted from Cohen et al.,

1990). (A) Model architecture: The input layer has two partitions: one represents the current stimulus

(shown in gray) and projects to a hidden layer (shown in blue), and the other encodes the current task

(shown in orange) and projects to both the hidden and output layers. The hidden layer projects to the

output layer (shown in green). The output layer represents the network’s response. Stimulus input

units are structured according to stimulus dimensions (subvectors of the stimulus pattern), each of

which is comprised of a set of feature units with one input unit activated per dimension corresponding

to the stimulus feature in that dimension; in the present example there are two units in each

dimension, one for red and the other for green (see Footnote 3). Similarly, output units are organized

into response dimensions, with only one output unit permitted to be active per dimension

corresponding to a selected response in that dimension; in the present example, there are two units, one

for each of the two responses (there is also only a single response dimension — verbal; see Fig. 3 for an

example with additional response dimensions). All units in the model are assumed to be inhibited at

rest. Projections from each unit in the task input layer act as control signals that engage task-relevant

units in the hidden and output layers by placing them in a more sensitive range of their activation

function (see Cohen et al., 1990 for a more detailed explanation). (B) To execute the color naming

task, a unit in the control layer is activated, which engages units in the hidden layer representing color

input features (thus allowing them to overcome any interference from word features at the output

layer); the control unit also engages units representing the verbal response dimension in the output

layer, licensing a verbal response (relative to others that are not shown here).

perform two additional tasks: manually pressing a button to a particular color, and

similarly for words. Thus, the model can now be instructed to perform any of four

tasks: color naming, word reading, color mapping or word mapping. Importantly,

however, whereas there is only one way to configure the two tasks as distinct processes

in the Stroop model, there are several ways to configure the processes for the four tasks
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in the extended Stroop model, as discussed in the section that follows.
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Figure 3 . Minimal basis set representation versus tensor product representation. In a

task-environment with two stimulus dimensions (e.g. ,color and word) and two response modalities

(e.g., verbal and manual responses) the system can perform four tasks — that is, mappings from

stimulus to response dimensions: color to verbal (color naming), color to manual (color mapping), word

to verbal (word reading) and word to manual (word mapping). In the minimal basis set representation

(A, C) tasks with common stimulus dimensions share the same representation in the hidden layer. In

the tensor product representation (B, D) a separate representation is dedicated to each task. When

asked to multitask (e.g., execute color naming and word mapping at the same time; red lines), the

minimal basis set representation (C) leads to cross-talk in both response dimensions, which receive

(possibly conflicting) information from each stimulus dimension (dashed lines). No such cross-talk

occurs for the tensor product representation. Note that weights projecting from the task input layer are

not shown.
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2.1.3 Shared vs. Separated Representation: Minimal Basis Set and

Tensor Product Configurations. The two panels of Fig. 3 show two ways in which

the hidden units in Fig. 2 can be configured for the four processes required to perform

the four possible tasks. These represent two extremes along the dimension of shared vs.

separated representations, which help illustrate the advantages and disadvantages of

each. In Fig. 3A, the hidden units are divided into two pools, as they are in the Fig. 2,

each of which represents one of the two stimulus dimensions (for colors and words), and

are connected to each of the two response dimensions (for verbal and manual

responses). Thus, each pool of hidden units is shared by the processes for tasks

involving a given stimulus dimension (e.g., color naming and color pointing), and thus

connotes a shared resource in the network (see Footnote 1). This requires the fewest

number of units and connections to implement all four tasks (four and eight,

respectively). We refer to this as the “minimal basis set” configuration, reflecting the

fact that it “spans the space” of all four tasks with the fewest number of elements. This

has the advantage of representational efficiency; however, it has the disadvantage of not

being able to reliably perform more than a single task at a time. If conflicting

information is presented in the color and word stimulus dimensions (e.g., the color red

and word GREEN), the model is unable to resolve which information should be

conveyed to each of the response dimensions, e.g. when asked to execute color naming

and word mapping at the same time (see Fig. 3C). This is an analog of the second

condition in the Shaffer (1975) dual-task experiment discussed above, and provides the

simplest example of the constraints on multitasking imposed by shared representations.4

We will return to this at length below.

The configuration in Fig. 3B overcomes this problem, by implementing processes

using a dedicated set of hidden units for each task. We refer to this as the “tensor

product” configuration, referring to the fact that it assigns a separate set of

representations for each pairwise combination (“product”) of stimulus and response

4 This might also be recognized as isomorphic to the “binding” problem that arises from often

discussed in the context of perception, to which we will return in the General Discussion.



RATIONAL BOUNDEDNESS OF COGNITIVE CONTROL 19

dimensions. This solves the problem faced by the minimal basis set configuration,

allowing the maximum number of tasks to be performed simultaneously; that is, that do

not involve competing input and/or output representations. However, this comes at the

cost of requiring a greater number of hidden units and weights (eight and sixteen,

respectively). It can also take longer to learn — a critical consideration that we address

in Part II of this article.

2.1.4 Control. The focus of this article is on the impact that representations

within the processing pathways required to perform a task (i.e., those in the input,

hidden and output layers) have on the capability to execute multiple tasks at the same

time and, to the extent that this must be limited, the resulting requirements for control.

However, it is worth taking a moment to briefly consider how different configurations of

the processing pathways (such as the two extremes shown in Fig. 3) impact the

representational demands on the control components of the system (i.e., the task layer

and its projections). In all cases, the sharing of representations for response dimensions

at the output layer introduces the potential for conflict, and thus the need for control at

that level (see Simulation 6 in J. D. Cohen et al. (1990)). That is, constraints imposed

by shared output representations (also referred to as “peripheral interference”; Wickens,

1991) establish a minimum amount of control needed for performance of any task: we

have only one mouth, two hands, one set of eyes, etc., and we must chose how to use

them. However, the configuration of hidden representations (i.e., at the hidden layer)

introduces interesting differences in the requirements for control. For the network used

in Fig. 3A, the minimal basis set can be managed with four control units: one for each

of the two stimulus dimensions represented in the hidden layer, and one for each of the

two response dimensions in the output layer. Any of the four tasks can be selected for

performance by activating one from each pair5. More generally, a minimal basis set

5 Note that a partitioning of control units by stimulus and response dimensions is different from a

partitioning of control units by tasks (as depicted in Fig. 3). In this section, we choose the former to

illustrate representational demands on control. However, for simplicity, we choose the latter in all

simulations reported below.
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configuration (for a network with a single hidden layer) requires a number of control

units equal to the sum of the stimulus and response dimensions; that is, it scales

additively with the stimulus and response dimensionality of the network. In contrast,

the control requirement of the tensor product configuration, as its name suggests, scales

multiplicatively with the number of stimulus and response dimensions. In the example in

Fig. 3B, the number of control units required is 4: one for each combination of stimulus

dimension and response dimension.6 For this particular example, this is the same as the

minimal basis set. However, if the number of stimulus and/or response dimensions

increases, the representational requirements for the tensor product configuration grow

multiplicatively with the product of those dimensions. For example, for a network with

three stimulus and three response dimensions, the minimal basis set configuration

requires six control units, but the tensor product configuration requires nine. Therefore,

the tensor product configuration has representational requirements — both for hidden

units and control — that grow exponentially with the number of possible tasks relative

to those of the minimal basis set. This is one factor that may contribute to reduced

learning efficiency with tensor product representations, as discussed in Part II.

2.1.5 Multitasking Capability and Network Size. The minimal basis set

and tensor product are two extremes along a continuum of possible configurations, that

highlight an inherent tension between representational efficiency (favored by the

minimal basis set configuration) and the number of tasks that can be performed

concurrently (favored by the tensor product configuration), as a function of the extent

to which representations are shared across tasks. We refer to the number of tasks that

can be performed concurrently (i.e., multitasked) as the multitasking capability of a

network, that reflects its processing efficiency (how many tasks it can reliably perform

per unit time). As the size of a network increases, so does the number of possible

6 Whereas the minimal basis set requires that control be engaged at both the hidden layer and the

output layer, the tensor product configuration can be parameterized to require control only at the

hidden layer — e.g., by assigning a strong negative bias to all of the output units, and insuring that the

weights from the hidden layer to the output layer are strong enough to overcome that bias.
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configurations, which raises the question of what exactly is the impact of shared

representations on the multitasking capability of a network as a function of its size.

That is, just how much of a problem is representational sharing in larger networks? It

might be assumed that, for a fixed proportion of shared representations, multitasking

capability scales with the size of a network; that is, the proportion of representations

that are shared across tasks determines the proportion of tasks that can be performed

simultaneously. However, recent theoretical results suggest otherwise.

Feng et al. (2014) carried out initial numerical analyses to address this question.

They simulated two types of networks: one involving a simple linear mapping from

inputs to outputs for each task, and another in which each task was implemented as a

drift diffusion process (Ratcliff & Rouder, 1998) to accommodate dynamics of

performance and analytic optimization (Bogacz, Brown, Moehlis, Holmes, & Cohen,

2006). In both cases, the processing pathway implementing each task could be engaged

or disengaged by a corresponding control signal. Simulations were carried out for both

types of networks that varied their size and the degree of overlap among tasks (i.e.,

sharing of representations). Each simulation involved dense optimization of all

processing parameters over control policies to determine the optimal one for a given

network configuration — that is the degree of control allocated to each task that

optimized performance of the network as a whole. For the linear model, this was the

mean error over the output units for all tasks; for the drift diffusion model, this was the

aggregate reward rate over all tasks. In both cases, a dramatically sublinear relationship

was observed between degree of task overlap (number of tasks that share a

representation) and the number of tasks engaged by the optimal control policy, with a

fixed asymptotic limit in the absolute number of tasks it was optimal to perform at

once, irrespective of the size of the network (see Fig. 4).

These observations suggest that even modest sharing of representations across

tasks can impose dramatic constraints on the number of tasks that can accurately be

performed at once. However, the results were obtained using two specific models, each

of which made a number of simplifying assumptions. While most of these assumptions
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source of these effects. They suggest that, whereas modulation
of the entire pathway (i.e., both the input and output layers)
produces optimal performance, the sublinear scaling of
optimal K with network size relies heavily on control at the
output layer (see SOME, Figs. S6–S9). Some intuition for this
effect can be gained by considering the extended version of
the Stroop task described in the introduction. Presented with
the options of performing both the color-naming and
word–action tasks or just one of these, it would almost
certainly be preferable to choose the latter. Assume, for the
purposes of illustration, that the word–action task is chosen. In
this case, the full model would modulate the activity of both
the intermediate and response (output) units of the
color-naming pathway, leaving only the word–action pathway
activated (see Fig. 2B). However, now suppose that it were not
possible to modulate the output units in a pathway. This would
fail to suppress the effect of the intermediate units in the word
pathway on the verbal response units, which (for incongruent
stimuli) would produce an error in the color-naming task
(since the inputs to those units from the intermediate units in
the color pathway were suppressed). Therefore, under these

conditions, it would be preferable to also allocate control to
the color-naming pathway, allowing its input and interme-
diate units to influence the response, and at least partially
counteract the effects of the cross-talk at the output layer. In
other words, in the absence of the ability to control the
output, activating pathways that are subject to some (but
perhaps not too much) cross-talk can contribute beneficially
to their own outputs, and in some cases outweigh the cost of
any additional cross-talk that they introduce into the network.
However, when output can be controlled, this is not necessary,
and the optimal policy is to limit processing to only the best-
performing pathways.

General discussion

The simulations reported above provide a quantitative
examination of the effects of pathway overlap on the number
of tasks that can be simultaneously performed by networks
with the capability of performing multiple two-alternative
forced choice decision tasks. The results reveal that increasing
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Fig. 5 Capacity constraints in the I/O-matching model as a function of
pathway overlap for networks of different sizes. These results are for an
incongruence of φ = .75. The top panels (A and B) show capacity
constraints under the optimal control policy in terms of the absolute
number of active pathways (K), and the bottom panels (C and D) show
the results in terms of the percentage of active pathways (K/N). The left
panels (A and C) show the results in terms of the absolute amount of

pathway overlap (F), and the right panels (BandD) show them in terms of
the percentage of pathway overlap (F/N). Note that when there is no
overlap (F = 0), all relevant pathways are active (K = N), indicating
full multitasking. Increasing F quickly drives this down, limiting multi-
tasking. This effect is substantially greater for larger network sizes, with
networks of all sizes converging to a similar limit in multitasking at
around F = 20 %
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overlap (F = 0), all relevant pathways are active (K = N), indicating
full multitasking. Increasing F quickly drives this down, limiting multi-
tasking. This effect is substantially greater for larger network sizes, with
networks of all sizes converging to a similar limit in multitasking at
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overlap rapidly constrains the number of tasks that can be
performed at once, and that this reaches a maximum in a
manner that is only weakly influenced by network size.
These findings support the idea that multiplexing of represen-
tations in the brain may be an important source of limits in the
ability for multitasking of control-dependent tasks. That said,
the upper limits on multitasking observed in the models (10–
30 tasks for a wide range of parameters) are noticeably higher
than those typically observed for humans (certainly under 10).
This may be due to a number of factors.

One factor is suggested by the difference in results ob-
served for the I/O-matching and DD models. The limits on
multitasking were less severe in the simpler, fully linear I/O-
matching model than for the DD model. Two primary differ-
ences in the latter model were the addition of an integration
process and the added nonlinearity that this introduced in the
relationship between processing and performance.
Presumably, the integration process afforded an additional
opportunity for cross-talk from irrelevant pathways to inter-
fere with processing in the relevant ones. The nonlinearity
may also have contributed to this effect. The inclusion of
additional nonlinearities commonly used in neural-network
models (e.g., in the processing function itself) could be ex-
pected to further accentuate it (e.g., by amplifying the influ-
ence of activation in irrelevant pathways on relevant ones).
Other factors that are likely to have a similar effect are mul-
tiple choices (increasing the likelihood of incongruence

among processes), recurrent connectivity (increasing interac-
tion among processes), more complex processes involving
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Fig. 7 Capacity constraints as a function of network size. The optimal
control policy is plotted for networks of varying size (N=10 to 1,000) for
the I/O-matching (top curve) and DD models (bottom curve). These
results are for a pathway overlap of F = 20 % and incongruence of φ =
.75. Note that the slopes of both lines reduce considerably as network size
increases, with the slope for the DD model decreasing more quickly and
reaching a lower value than the slope for the I/O-matching model. See the
text for a discussion. (Note that the change in slope from N = 10 to 30 is
due to a disproportionately high number of active connections for small
networks—about 50% of the units in the smallest network are active; this
small effect vanishes as N exceeds 30.)
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Fig. 6 Capacity constraints in the DD model as a function of pathway
overlap for networks of different sizes. See the Fig. 5 caption for details.
As in Fig. 4, the effects are substantially more pronounced than in the I/O-

matching model, with a striking convergence in the limit on multitasking
to less than 14 active pathways for a level of pathway overlap ofF= 20%,
irrespective of network size
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Figure 4 . Shared representations and asymptotic limits in multitasking capability.

Simulation results of Feng et al. (2014) showing the optimal number of simultaneously engaged

processing pathways K (multitasking capability) as a function of overlap F between processing

pathways (number of tasks sharing the same representation) in a neural network. Results rely on the

assumption that tasks interfere 75% of the time if their processing pathways overlap. The optimal

number of processing pathways was determined either by (A) minimizing the mean error over all

output units in a linear model or by (B) maximizing aggregate reward rate over all tasks, each of which

as implemented as a drift diffusion process.

are likely to be conservative (that is, produce an underestimate of the effects of interest

— see Feng et al. (2014) for a discussion), the generality of the effects observed

remained to be determined. Below, we describe the use of graph-theoretic methods to

address this challenge. First, we use these methods to provide a formal characterization

of multitasking capability as a function of the amount of shared representation and

network size in simple linear networks, that also calls attention to two distinct forms of

interference that can arise from shared representation. We then demonstrate how these

methods can be used to predict both the overall multitasking capability of trained

artificial neural networks, as well as behavioral markers of dual-task interference, such

as the psychological refractory period (PRP) and task switch costs, from learned,

distributed representations.
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2.2 Graph-Theoretic Analyses

2.2.1 Definitions. In order to pursue a more rigorous analysis of the

relationship between shared representations and the multitasking capability of a

network, we first introduce more rigorous definitions of what we mean by a task, how

performance is measured, and two distinct types of dependence that can arise between

tasks that share representations. These definitions are stated in more rigorous,

set-theoretic form in Lesnick, Musslick, Dey, and Cohen (2020).

Tasks and performance. For the purposes of this article, and in accord with the

examples discussed above, we focus on simple types of “mapping” tasks that are defined

by a set of associations of stimuli with responses. More specifically, we assume that: (1)

inputs are structured by stimulus dimensions (e.g., color, shape, location, etc.); outputs

are structured by response dimensions (e.g., verbal, left hand, right hand, etc.); (2) all

of the stimulus features relevant to a particular task are drawn from the same stimulus

dimension, and all of its responses are drawn from the same response dimension; (3)

only a single stimulus or response can be represented within a given dimension at a

given time. Under the General Discussion we consider how our results may apply to

more complex forms of tasks (e.g., sequential tasks).

When performance of a task is evaluated, we assume that, for each trial, a feature

is selected from the relevant stimulus dimension and activated in the stimulus input

layer, and success is defined by the extent to which the correct unit within the relevant

response dimension (that is, the one specified by the mapping that defines that task) is

activated in the output layer (and no other output units are activated, within that

dimension or any others). When parallel performance of two or more tasks (i.e.,

multitasking) is evaluated, a single feature is chosen independently for each task from

each of the relevant stimulus dimensions, and success is defined by the extent to which

all of the correct responses units are activated (and no others).7 As noted above, our

7 This precludes mappings that use the same stimulus dimension as independent tasks (e.g., color

naming and color pointing in the example shown in Fig. 3). Accordingly, the simultaneous execution of

such tasks is not considered as a genuine multitasking condition. This is because tasks are defined as
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examples use “localist” representations of input and output features within each

dimension, but the same principles apply to distributed representations (see

Footnote 3). Based on these definitions, we identify two qualitatively distinct forms of

dependence on shared representations that can give rise to conflict, and therefore

demand control to avoid or resolve.8

Structural dependence. The most obvious way in which shared representations can

introduce the risk of conflict is if two or more tasks involve the same response

dimension, a classic example of which is the Stroop paradigm (see Fig. 2 and Fig. 5).

This follows from the definitions above: If the stimuli for the two tasks are drawn

independently from their respective stimulus dimensions, then they have the potential

to require different responses within the same response dimension (e.g, verbal) and,

according to assumption (3) above, both responses cannot be represented within that

dimension at the same time. Furthermore, the likelihood of such interference grows

rapidly with both the number of features in the relevant dimensions and the number of

tasks to be performed, given the assumption that the stimuli for each task are chosen

independently of one another.9 Such dependence can also arise if tasks to be performed

mappings that draw independently from their respective stimulus dimensions. If they share the same

stimulus dimension, then simultaneously drawing independently from that dimension would violate the

assumption that only a single value of a dimension can be represented at a given time. Given this

restriction, performing such tasks at the same time would be limited to conditions in which they always

involved the same stimulus, and thus would amount to generating multiple responses to the same

stimulus, which could simply be reformulated as a single task with a richer representation of responses.

8 We use the term “dependence” rather than interference for several reasons: (1) It denotes situations

in which inter-task interactions can arise (i.e., cross-talk), irrespective of their consequence (interference

generally connotes destructive effects, such as conflict, whereas dependence can sometimes have

constructive effects, such as facilitation or “super capacity”; see Townsend and Wenger (2004) and the

General Discussion); (2) “dependence” is used in graph theory for similar purposes, where it

corresponds to the concept of “independent sets” used below.

9 Specifically, the likelihood of interference corresponds to the joint probability of selecting any stimuli

across the tasks that are associated with different responses (e.g., an “incongruent” stimulus in the

Stroop task).
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in parallel converge on one or more internal dimensions of representation (e.g.,

phonological and orthographic in the dictation and word reading tasks of the Shaffer

(1975) paradigm; see Fig. 1). We refer to these forms of dependence as structural,

defined as the potential for interference that arises when two or more instructed tasks

make common use of a dimension of representation. This is the type of interference on

which the multiple resource theory was focused. However, there is another, indirect way

in which dependence can arise in some network configurations.

Functional dependence. This refers to a form of dependence that arises indirectly

when the tasks to be performed do not share any representations with one another, but

the representations on which they depend can be recombined to form one or more other

(currently irrelevant) tasks. As an example, consider a subset of the tasks in the

extended Stroop paradigm: color naming, word reading, and word mapping. Fig. 5A

shows the minimal basis set configuration for these tasks. Note that color naming and

word mapping are not structurally dependent. Nevertheless, they cannot be performed

simultaneously. This is because a combination of their stimulus and response

dimensions (word stimuli and verbal responses) forms another task (word reading) that

shares representations with one of the relevant tasks at the hidden layer (i.e., of words).

As a consequence, activating word representations (in the service of word mapping) as

well as the verbal output units (for color naming) inadvertently engages the word

reading pathway, introducing the potential for interference with the color naming task.

Thus, even though color naming and word mapping are not structurally dependent,

they are functionally dependent.

The functional dependence mediated by word reading in this example can be

averted if a separate set of representations for words is dedicated to the word mapping

tasks, as shown in Fig. 5B.10 Insofar as those are not associated with verbal responses,

10 Alternatively, functional dependence between color naming and word mapping can be avoided by

configuring the word mapping task as a pathway from word stimuli to a different, existing set of

representations in the hidden layer (e.g., for locations). However, as a result, the word mapping task

would then be structurally dependent on any task relying on representations for that dimension (e.g.

location mapping).
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Figure 5 . Structural and functional dependence in the extended Stroop model. Examples

of networks exhibiting each form of dependence among tasks in the extended Stroop paradigm, and

their graph-theoretic representation. Each network implements four tasks: color naming (CN), word

reading (WR) and mapping a word to a button press (WM). As discussed in the text, color naming

and word reading are structurally dependent, since both share the same response dimension. However,

color naming and word mapping can be either functionally dependent or fully independent, based on

the network configuration – that is, whether a minimal basis set or tensor product representations are

used for the word reading and word mapping, as shown in the Neural Network Models in Panels A and

B. (A) Minimal basis set representation for words. The word mapping task shares a representation for

words with the word reading task at the hidden layer, which introduces functional dependence between

it and the color naming task. (B) Tensor product representation for words. Word Mapping relies on a

separate set of representations for words in the hidden layer, rendering color naming and word mapping

functionally independent (see text for explanation). Each configuration has a corresponding bipartite

task graph (lower part of each panel), with nodes representing stimulus and response dimensions, and

edges representing the tasks (i.e., the mappings from features in a given stimulus dimension to

corresponding responses in the response dimension that define that task). The corresponding

dependency graph represents the relationship between tasks, with nodes now corresponding to tasks,

and edges indicating tasks are dependent on (i.e., interact with) one another. A solid line in the

dependency graph indicates structural dependence between two tasks whereas a dashed line indicates

functional dependence. The maximum independent set (MIS) of this graph corresponds to the

multitasking capability of the network (see text for explanation). The MIS of the dependency graph

shown in (A) is 1 whereas the MIS of the graph shown in (B) is 2.
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activating them to perform the word mapping task would not engage the word reading

task, allowing the color naming task to be performed in parallel without risk of

interference. This corresponds to the tensor product configuration for those two tasks.

These two ways of representing the word mapping task — using representations for

words that are shared with or separate from word reading — provide an example of how

the minimal basis set may be efficient to learn (for performing a novel task), but at the

cost of the multitasking capability (i.e., ability to multitask) afforded by the tensor

product, observations for which we provide empirical support in Part II of this article.

2.2.2 Bipartite and Dependency Graphs. To analyze how structural and

functional dependence scale as a function of the prevalence of shared representations

and size of a network, we define a graph-theoretic formalism of the relationship among

the tasks implemented in a network. This involves two graph representations (shown at

the bottom of each panel in Fig. 5). For clarify of exposition, we begin by considering

only three-layered networks of the sort shown in the examples thus far, but then go on

to consider the case of multilayered networks.

Bipartite graph. This is a simplified representation of the sorts of three-layered

networks used in the examples above, that focuses on the hidden and output layers.

This simplification is justified by observing that, for the full range of network

configurations for a given set of tasks, the hidden and output layers are sufficient to

describe the factors of interest: whether, at the hidden layer, representations are shared

between tasks with each projecting to all response dimensions (as in the extreme case of

the minimal basis set configuration); or whether a separate subset of hidden layer

representations is dedicated to each task (i.e., to each pairing of stimulus and response

dimension, as in the extreme of the tensor product configuration). Thus, a given

network configuration can be represented as directed bipartite graph GB = (I, O, T )

(see Appendix A for an overview of relevant graph-theoretic terms), in which each input

node I represents a subset of hidden representations (corresponding to associative

dimensions in the original network)11, each output node O represents a response

11 As noted above, for the minimal basis set configuration, there is one input node of the bipartite
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dimension, and edges between them represent the tasks (see the left bottom of each

panel in Fig. 5). The bipartite graph can be used to formalize the distinction between

structural and functional dependence described above. Two tasks are considered to be

structurally dependent if their edges share either an input node or an output node (e.g.,

the color naming task and the word reading task in Fig. 5 both share the same output

node and are thus considered to be structurally dependent). In contrast, two tasks are

considered to be functionally dependent if they are not structurally dependent, but an

edge (a third task) connects the input node of one task to the output node of the other

(e.g. an edge representing the word reading task connects the color naming and word

mapping tasks in the bipartite task graph in Fig. 5A).

Dependency Graph. Using the bipartite graph described above, a dependency

graph can be constructed that directly expresses relationships between tasks. This is

constructed by assigning each edge of the original graph GB to a node in the

dependency graph GD. Thus, each node in GD represents a task in GB (and in the

original network). Edges are assigned between any two nodes in GD representing tasks

in GB that are either structurally or functionally dependent (see the right bottom of

each panel in Fig. 5), as defined above. For simplicity, we assume that either form of

dependence introduces a risk of interference that precludes those two tasks from safely

being executed in parallel. This relies on the assumption that two different tasks are

unlikely to process congruent pieces of information (see Footnote 9). Thus, the

dependency graph GD can be used to determine which tasks in the original network can

be executed safely in parallel. In the analyses described below, we exploit this to

determine the maximum number of tasks that a given network can execute in parallel;

that is, its multitasking capability.

2.2.3 Analysis of Multitasking Capability. The dependency graph GD

can be used to analyze the multitasking capability of a network, however this poses

graph for each stimulus dimension represented in the hidden layer of the original network, whereas for

the tensor product configuration there are as many input nodes in the bipartite graph as there are

distinct task-specific sets of hidden layer representations in the original network.
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challenges that we consider and address below.

Maximum independent set. The definitive way to determine the multitasking

capability of a network is to identify the largest set of nodes (tasks) in GD that do not

share any edges (i.e., that are not dependent on one another). This is known as the

maximum independent set (MIS) of a graph (Godsil & Royle, 2001). Thus, determining

the MIS of GD provides a general means of examining how factors such as shared

representation (i.e., task dependencies) and network size influence its multitasking

capability (Musslick et al., 2016), corresponding to the factors that were examined

numerically for particular networks in Feng et al. (2014). However, there are practical

constraints on doing so. If the bipartite graph GB representing the network contains

only structural interference, or only structural interference is considered when

constructing the dependency graph GD, then GD is known as the line graph of GB, and

calculating its MIS is a well formed and tractable problem (D. B. West et al., 2001). It

is equivalent to the matching problem, and can be computed by computationally

efficient algorithms (Hopcroft & Karp, 1973). However, when there are functional

dependencies in GB and they are included in GD, then the latter is known as the square

of the line graph of GB, and calculating its MIS is equivalent to solving an induced

matching problem (Cameron, 1989). This is known to be an “NP hard” problem, the

complexity of which scales roughly factorially with the size of the graph, and thus

quickly becomes computationally intractable (Berman & Fürer, 1994; Tarjan &

Trojanowski, 1977). Since the latter is required to fully characterize the multitasking

capability of a network, doing so requires that constraints be placed on the problem.

Below, we address this issue (and how it relates to constraints on cognitive control),

exploring various ways of constraining the problem for analysis, and then examining

their ability to generalize more broadly.

Distribution complexity. One set of measures of the bipartite graph GB that can

be used to quantify the prevalence of shared representations in the network are its

out-degree and in-degree. The out-degree is the “fan out” of an input node; that is, the

number of response dimensions with which a stimulus dimension is associated.
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Conversely, the in-degree is the “fan in” of an output node, specifying the number of

stimulus dimensions that map convergently to the corresponding response dimension.

As we show below, the multitasking capability of a network depends both on the mean

of these measures of degree across all input and output nodes, as well as the distribution

of their values over the corresponding sets of nodes. Characterizing these factors

provides a basis for simplifications that can help make the enumeration of all possible

graphs tractable. Toward this end, we introduce distribution complexity DCin,out as a

measure of homogeneity in degree distribution in the bipartite task graph GB. The

distribution complexity of incoming edges of the output nodes DCin is defined as:

DCin = −
N∑
i=1

((
diin∑N
k=1 d

k
in

)
log2

(
diin∑N
k=1 d

k
in

))
. (1)

The distribution complexity for outgoing edges DCout is defined in an analogous

manner. The equation above can be read as a measure of the entropy over the sharing

of representations across all response dimensions. For a fixed network, DCin is

maximized when edges are uniformly distributed among the output nodes and, as we

will demonstrate, leads to lower values of multitasking capability. For example, Fig. 6

illustrates two bipartite graphs, both of which have output nodes with the same

out-degree dout = 2, but one of which has low distribution complexity (most tasks

converge on the same output node), and the other of which has high distribution

complexity (tasks are uniformly distributed among the output nodes).
(a) low	distribution	complexity (b) high	distribution	complexity

A	 B	Low	Distribution	Complexity	 High	Distribution	Complexity	

Figure 6 . Distribution complexity. Two bipartite graphs with output nodes that have the same

out-degree (dout = 2): (A) low distribution complexity (DCin = 1.75); (B) high distribution complexity

(DCin = 2).

To investigate the effect of shared representations and distribution complexity on
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multitasking capability, we considered networks with N stimulus and N response

dimensions. We fixed the out-degrees of each input node such that diout = S where S is

a proxy for the number of tasks that rely on the same representation in the hidden layer

of the network (or, equivalently, input layer of the bipartite graph). We constrained the

in-degree of the output nodes to be uniform (i.e. diin = S,∀i ∈ Vin), which made it

tractable to enumerate all possible networks of a given size N and shared representation

S. For each enumerated network, we computed its multitasking capability by

computing the MIS of the associated dependency graph. Fig. 7A-D summarizes the

results for networks of size N = 5, 6, 7 and 8, respectively. The results show that

multitasking capability (averaged over all possible network configurations with a given

size N and fixed out-degree diout) dropped precipitously with the number of tasks

sharing the same stimulus representation S. This was observed over a wide range of

distribution complexities, from maximum (red lines, corresponding to values used in

Feng et al., 2014), to the average value (black lines). Thus, the observations based on

the numerical analyses of a particular set of networks reported in Feng et al. (2014)

appear to generalize over a much broader range of possible networks. Nevertheless, it is

of interest to observe that, at the extremes, distribution complexity did impact

multitasking capability, with a minimum in DCin diminishing shared representation

between tasks and thus maximizing multitasking capability. For example, multitasking

capability is maximized when all sharing in the network occurs on a single output

component (shown in blue; also see Fig. 6A). In contrast, multitasking capability is

minimized when the sharing of representations is distributed more uniformly over the

network (maximum DCin, shown in red; also see Fig. 6B).

One might intuitively guess that the multitasking capability of a system is largely

dependent on the size of the network (i.e. the number of stimulus and response

dimensions). The computational intractability of enumerating all possible networks,

and limits of currently available computational power, preclude an exact analysis of

networks beyond size N = 8.12 However, by constraining enumeration to networks with

12 Even for a network of size N = 8 with out-degree di
out = 4, the number of possible network
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Figure 7 . Effect of distributional complexity on multitasking capability. Graph-theoretic

analysis of multitasking capability. Panels (A)-(D) show variation in multitasking capability (measured

as MIS of the dependency graph for networks of size 5, 6, 7 and 8) as a function of out-degree di
out for

all network configurations, corresponding to the average value of distribution complexity (black line in

panels (A)-(D)). Panel (E) shows multitasking capability (higher values correspond to warmer colors)

with maximum value of distribution complexity for networks of sizes 1-50 and a corresponding range of

out-degree di
out.

maximum DCin analyses can be extended to much larger networks. For example,

Fig. 7E shows results for networks up to size 50, which exhibited the same qualitative

effects (see Fig. 7A-D). In particular, they reaffirm the observation that even modest

amounts of shared representation impose dramatic constraints on multitasking

capability, virtually irrespective of network size. Although Fig. 7E shows the effect

when processes were distributed uniformly over the network, the results shown in

Fig. 7A-D indicate that the dramatically sublinear scaling of multitasking capability

with network size prevailed for a wide range of distribution complexities.

These results are consistent with those of similar, but complementary approaches

to computing the multitasking capability of network architectures as a function of

representational sharing (e.g., Petri et al., 2020; Alon et al., 2017). Together with those

of Feng et al. (2014), they strengthen the conjecture that, for control-dependent

processes — that is, those involving shared representations that require control for

disambiguation — the number that can be concurrently executed is dramatically

configurations exceeds 2.25 trillion.
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limited in a manner that is relatively insensitive to network size.

Effective multitasking capability. The computation of MIS described above

provides a theoretical maximum for the multitasking capability of a network. In reality,

the number of control-dependent tasks that a network can be expected to carry out in a

given setting is likely to be considerably lower. This is because the MIS refers to one or

more particular sets of tasks that are independent of one another. However, even if

there is more than one such set, the network can only realize the multitasking capability

indicated by the MIS when those particular tasks are available to be performed. The

likelihood of this occurring is of course determined by other factors, such as the

affordances of each task (i.e., the current availability of the stimuli and feasibility of the

responses), and the motivation for performing them (i.e., their current value to the

agent). It is easy to see that, even with liberal assignments of probabilities to these

individual factors, their joint probability diminishes quickly with the size of the MIS, its

proportion to the overall size of the network (i.e., total number of tasks it can perform)

and the scope of the environment. A more general characterization of effective

multitasking capability would take account not only of the MIS, but all smaller

independent sets of tasks. One such calculation, that considers smaller sets of tasks

sampled uniformly at random, strongly suggests that, like the MIS, the effective

multitasking capability of a network decreases dramatically with the extent of shared

representations, and grows sub-linearly with the size of the network (Petri et al., 2020).

Multitasking capability and network depth. The analyses described above all

pertain to three-layered networks, with a single hidden layer represented by the input

nodes of the bipartite graph. A natural question is how multitasking capability is

impacted by the number of layers (i.e., “depth”) of a network — a factor that is of

obvious importance to understanding both the brain, as well as artificial systems ones

that have become increasingly important in machine learning. For example, one

advantage of deep architectures is that they are more economical in expressing real

functions (Goodfellow, Bengio, & Courville, 2016). A greater number of layers in a

network allows it to encode a larger set of mappings between a given pair of input and
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output nodes. Thus, the number of meaningful tasks that one might be able to perform

may increase with the number of layers. However, a greater number of layers in a

network may also increase the opportunity for cross-talk. To assess the influence of these

factors, we generalized the graph-theoretic analysis described above for bipartite graphs,

to consider networks with multiple layers. For simplicity, we considered networks with r

disjoint layers, in which every layer was an independent set (i.e., there were no

connections between nodes within the same layer), and all of which had the same size

N . In such graphs, a task corresponded to a path from a node in the input layer to one

in the output layer.13 The definitions of structural and functional independence can be

extended by direct analogy to the bipartite case: A pair of tasks are structurally

dependent if their paths share a node at any layer in the network; and a pair of tasks

are functionally dependent if they are structurally independent but are connected by an

edge (that is, there is at least one edge that connects a node of one task to a node of

the other). As in the bipartite case, we sought to determine the multitasking capability

of the network, that is, the largest set of tasks that were both structurally and

functionally independent. Note that, in these networks, the multitasking capability can

only be as large as the smallest multitasking capability between any two layers.

A B C

Figure 8 . Effects of network depth. Upper bound of multitasking capability as a function of task

density (the probability of an edge p between any two layers) and network depth (the number of layers

r). The number of nodes per layer was varied across networks: (A) 100, (B) 10,000 or (C) 1,000,000

nodes per layer.

13 Note that in contrast to the case of three-layered networks, there may be multiple paths between an

input node and an output node, which could correspond to multiple realizations of the same task (i.e.,

using different intermediate representations).



RATIONAL BOUNDEDNESS OF COGNITIVE CONTROL 35

In Appendix B we show, using mathematical analysis, that the constraints on

multitasking capability are robust to network depth. The results are shown in Fig. 8. It

should be noted, however, that the probabilistic manipulation of task density (i.e., edge

probability) used in these analyses is not formally equivalent to directly manipulating

degree of shared representation. That is, the results are limited to network architectures

that are defined by randomly connecting layers. However, recent work using similar

graph-analytic methods that control for both the number and distribution of tasks in

the network have generated similar results (Alon et al., 2017). That work, together with

the results presented here, suggest that shared representations have even greater

constraining effects on multitasking as the depth of a network increases.

2.3 Toward a Mechanistic Account of Constraints on Control-Dependent

Processing: Shared Representation, Conflict and Persistence

In the previous section we introduced graph-theoretic methods for analyzing the

influence of shared representation on multitasking capability. These analyses relied on a

number of simplifying assumptions. First, they assumed that tasks either share or don’t

share a set of representations. However, many of the most important contributions that

neural network models have made to psychological research have relied specifically on

representations of concepts that are distributed over many processing units that allow

for graded degrees of sharing (Hinton et al., 1986; Kriegeskorte, Mur, & Bandettini,

2008; McClelland, Rumelhart, Group, et al., 1986; T. T. Rogers & McClelland, 2004;

A. M. Saxe, McClelland, & Ganguli, 2019; Yamins et al., 2014); and neuroimaging

studies have provided strong support for this in the brain (Albers, Kok, Toni,

Dijkerman, & De Lange, 2013; Kosslyn et al., 1999; Notebaert, Gevers, Verguts, & Fias,

2006; Salamoura & Williams, 2007; Decety & Sommerville, 2003). It remains to be

shown whether and how the graph-theoretic formalisms described above can be applied

to such networks. Second, all of the networks were all pre-configured, either

deterministically, or connections were assigned according to general statistical

constraints that did not reflect anything specific or meaningful about natural task
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environments. However, networks that learn representations through experience have

played a critical role in explaining human cognitive function (Botvinick et al., 2001;

Brown, Reynolds, & Braver, 2007; J. D. Cohen et al., 1990; Gilbert & Shallice, 2002;

Herd et al., 2014; McClelland et al., 1986; O’Reilly & Frank, 2006; T. T. Rogers &

McClelland, 2004; A. M. Saxe et al., 2019), and have become a mainstay of research in

artificial intelligence (Goodfellow et al., 2016; Schmidhuber, 2015). Finally, the analyses

focused exclusively on interference arising from the simultaneous execution of two or

more tasks (see Footnote 7). They did not address performance costs known to be

associated with the processing of multiple tasks even when they are executed in

sequence, such as the psychological refractory period (Telford, 1931) and switch costs

(Allport et al., 1994); nor do they address the continuum from pure parallelism,

through rapid task switching, to pure sequential processing that has been described by

others (Fischer & Plessow, 2015; Salvucci et al., 2009; Townsend & Wenger, 2004).

Below, we present the results of simulations studies showing how the effects associated

with all of these factors can be explained in terms of the sharing of representations, by

considering the influence of three graded properties that are intrinsic to neural network

architectures: the similarity of representations, the strength of connections, and the

persistence characteristics of patterns of activity.

In Simulation Study 1, we demonstrate that the graph-theoretic methods

described above can be used to predict the multitasking performance from distributed

representations of tasks in trained neural network models, by quantifying the degree of

representation sharing in terms of the similarity between patterns of activity associated

with each task. One motivation for this is the potential use of such methods for

analyzing brain imaging data, to predict multitasking performance from patterns of

activity associated with individual tasks. In Simulation Study 2, we investigate how

degree of representation sharing interacts with connection strength (manipulated by

training) to produce conflict, and evaluate its effects both on multitasking accuracy as

well as established measures of reaction time distributions that have been used to infer

parallelism of multitask processing from human behavioral data. Finally, in Simulation
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Study 3, we show that interference effects arising from the interaction between

representation sharing and the persistence characteristics of representations in neural

networks can explain costs associated with the sequential performance of multiple tasks

(such as the PRP and task switch costs). Furthermore, we discuss how these

interactions can be used to define a continuum from pure parallelism, through rapid

task switching, to pure sequential processing.

2.3.1 Neural Network Model of Multitasking Performance. We begin

by defining the general network architecture and the task environment used to simulate

both concurrent and sequential multitasking performance. We then describe the

network’s processing and training procedure, as well as performance metrics used across

simulations.

Architecture. As in the examples above, the models used here were comprised of

three layers of processing units: an input layer with two partitions, one of which

represented the current stimulus and projected to a hidden layer, and another that

encoded the current task and projected to both the hidden and output layers; a hidden

layer (100 units) that projected to the output layer; and an output layer that

represented the network’s response. Stimulus input units were grouped by the stimulus

dimensions relevant to performing each task, and used a one-hot encoding (i.e., a single

unit was used to represent each stimulus, with the current stimulus clamped to 1 and

all others clamped to 0). The number of units in the input and output layer varied

across simulations studies, as determined by the corresponding task environment. Fig. 9

illustrates a network with three stimulus dimensions (each with three features) and five

tasks. The task input units used a similar one-hot encoding, with one unit used to

represent each task. Output units were grouped by response dimensions, and trained

(see below) using a one-hot encoding for each response within a dimension.

Processing. The network was instructed to perform a given task by specifying the

current stimulus and task to be performed in the respective partitions of the input

layer. These stimulus and task input values were multiplied by a matrix of connection

weights from each partition of the input layer to a shared hidden layer, and then passed



RATIONAL BOUNDEDNESS OF COGNITIVE CONTROL 38

Hidden Layer

…

Stimulus Input Layer

Output Layer

!"#! = %
"
&!"'" +%

#
&!#)# + *! '! =

1
1 + "$%&#!

&!#

&"#
Task Input Layer&"'

!"#" = %
(
&"()' +%

#
&"#)# + *" '" =

1
1 + "$%&#"

&!"

)'

'"

'!

)#

Figure 9 . Neural network used for simulations of multitasking. The input layer was

composed of a stimulus vector −→xs and a task vector −→xt . The activity of each element in the hidden layer

yh ∈ −→yh was determined by all elements xs and xt and their respective weights whs and wht to yh.

Similarly, the activity of each output unit yo ∈ −→yo was determined by all elements yh and xt and their

respective weights woh and wot to yo. A fixed bias of θ = −2 was added to the net input of all units yh

and yo, to implement the assumption that units are inhibited at rest. Thus, without additional input

from the task layer, units are relatively insensitive to information from the previous layer. Additional

input from the task layer puts these units on a more sensitive part of their activation function, making

them more susceptible to incoming information from preceding layers (see J. D. Cohen et al., 1990).

Filled input and output units (circles) correspond to unit values of > 0, and illustrate an example

stimulus and task input pattern with its respective response pattern: The task indicated by the

activated unit in the task layer requires the network to map the vector of values in the three stimulus

input units in the first stimulus dimension (shaded in light grey) to one out of the three units in the

second response dimension (also shaded in light grey).

through a logistic function to determine the pattern of activity over the units in the

hidden layer. This pattern was then used, together with the set of direct projections

from the task input layer to the output layer, to determine the pattern of activity over

the latter. The activation values of units in the hidden and output layer were computed

as a function of their net input. The net input neti of unit i in a given processing

(hidden or output) layer was calculated based on the connectivity and the activation

from preceding layers as
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neti =
∑
j

wijxj − θ (2)

where xj is the activity value of the sending unit, wij is the projection weight from

sending unit j and θ = −2 is a constant negative bias. The net input of each unit in the

hidden and output layers was then then passed through a logistic function to determine

its activity yi

yi = 1
1 + e−neti

(3)

The response within a given response dimension of the network was determined by

a leaky competitive accumulator (LCA, Usher & McClelland, 2001) layer, implementing

the assumption that the network could only provide one response per response

dimension (e.g. the network cannot say “RED” and “GREEN” at the same time).14

One LCA layer was assigned to each response dimension k, which was comprised of a

set of units ri that received as their input the activity of corresponding units in that

response dimension. The winning response in each dimension was determined by the

accumulation of activity by each LCA unit and the competition among them, the

dynamics of which were governed by

dri = [yo − λri + αf(ri)− β
∑
j 6=i

f(rj)]
dt

τ
+ ξi

√
dt

τ
(4)

where yo is the activity of the corresponding response unit in response dimension

k, λ is the decay rate of ri, α is the recurrent excitation weight of ri, β is the inhibition

weight between LCA units, τ is the rate constant, and ξ is noise sampled from a

Gaussian distribution with zero mean and standard deviation σ. The activity of each

14 This one-winner-take-all constraint is in agreement with our formal definition of a task in Lesnick et

al. (2020). While this constraint was not explicitly imposed on other layers of the network (since they

did not include recurrent connections), nevertheless it could arise through the feedforward inhibition

acquired through learning. We return to this issue in the General Discussion.



RATIONAL BOUNDEDNESS OF COGNITIVE CONTROL 40

LCA response unit was lower bounded by zero with a threshold such that f(ri) = ri for

ri ≥ 0 and f(ri) = 0 for r < 0. The response for dimension k was determined by the

unit within the corresponding LCA layer the activity f(ri) of which first reached

threshold z. The accuracy for each response dimension k corresponded to the

probability of generating the correct response for that dimension P (correct)k across 100

simulations of the LCA, and the reaction time RTk for that dimension was the average

number of time steps t required for the response to reach threshold, plus a fixed

non-decision time of T0 = 0.15s. The following parameter values were used for all

reported simulations: λ = 0.4, α = 0.2, β = 0.2, and σ = 0.2; z for each LCA layer was

chosen as the threshold that maximized reward rate P (correct)k/(ITI +RTk) for that

dimension, where ITI corresponds to an inter-trial interval of 0.5s.

Task environment. Each task was comprised of a pair of input and output vectors.

The input vector in each pair was composed of subvectors specifying the stimulus and

task, and the associated output vector specified the correct response for the stimulus for

each task. All of the stimuli for a given task were drawn from the same stimulus

dimension and all of the responses for that task were drawn from the same response

dimension. Each stimulus was associated with a single, unique response, a task was

comprised of all of the unique pairs of stimulus-response vectors for its specified

stimulus and response dimensions, and there was one task for each unique combination

of stimulus and response dimensions. These implementations conform to the formal

definition of a task described in Lesnick et al. (2020). The number of stimulus and

response dimensions varied across simulation studies. In all tasks, the stimulus

dimension and response dimension each had three features (i.e., stimuli and responses,

respectively).

Training. Networks were initialized with a set of small random weights15 and then

trained using the backpropagation algorithm (Linnainmaa, 1970; Rumelhart, Hinton, &

Williams, 1986; Werbos, 1982) to produce the task-specified response for each stimulus

in each task, while suppressing all other responses (both within the task-relevant

15 We initialized the networks with small random weights to facilitate convergence of learning.
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response dimension, and all task-irrelevant response dimensions). The network was

trained in epochs, with each epoch sampling all training patterns in random order. The

error term used for training was the mean squared error (MSE) of the pattern of

activities in the output layer with respect to the correct (task-determined) output

pattern. The weights of the network were adjusted16 with a learning rate of 0.3 after

presenting each training pattern within an epoch (online training) until the network

reached an MSE of 0.001.

Measures of single and multitask performance. The accuracy of the network on a

single task was determined by the probability of responding correctly in the

task-relevant response dimension, averaged across all stimuli for that task. Multitasking

accuracy for a given set of tasks was determined by the average probability of

responding correctly across all task-relevant response dimensions, averaged across all

stimuli. Unless otherwise specified, we assessed multitasking performance only for

incongruent stimuli.17 Since all tasks in a multitaskable set are structurally independent

(see below), stimulus incongruence is identified with respect to irrelevant tasks that

mediated functional interference. Thus, incongruent stimuli were defined as

configurations of stimulus features for which the correct response in at least one

response dimension was different for at least two tasks that mapped to that response

dimension. Conversely, congruent stimuli were defined as configurations of stimulus

features for which the correct responses in all task-relevant response dimensions were

the same (see Fig. 10).

Multitasking sets. We measured multitasking performance on “multitaskable” sets

16 Bias weights remain fixed at their initial value of -2.

17 Testing the network on only incongruent stimuli corresponds to an assumption made by the

graph-theoretic analysis above, that cross-talk always results in response conflict. This is not

unreasonable, as congruent stimuli are generally unlikely to be sampled from a uniform distribution of

stimuli, given that the likelihood of a congruent stimulus decreases with the number of stimulus

dimensions as well as with the number of features per stimulus dimension (Feng et al., 2014). Thus,

performance on incongruent stimuli is likely to be reasonably representative of behavior in rich task

environments.
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of tasks on which a network was trained. All tasks within a multitaskable set were

structurally independent; that is, each task in the set had input and output dimensions

that were distinct from all of the others in the set. The requirement of distinct input

dimensions for the tasks in each set satisfies our definition of a task (see Lesnick et al.,

2020); the requirement for distinct output dimensions insures that it was possible in

principle to perform the multitask over all stimuli (for example, color naming and word

reading would not constitute a legitimate multitasking combination since it is not

possible to execute both tasks simultaneously over all possible stimuli, viz. incongruent

ones).

Stimulus
Input Layer

Output 
Layer

Hidden
Layer

…

Congruent Stimulus Incongruent Stimulus

…

A B

Figure 10 . Congruent and incongruent stimuli. The network in both panels consists of an input

layer, a hidden layer and an output layer (task input layer is not shown). The stimulus input and

output layers are grouped into three stimulus and response dimensions, respectively. A task is defined

as a mapping from one of three feature units in a given stimulus dimension to one of three output units

in a corresponding response dimension. Colored circles in the stimulus input layer indicate the active

feature in each stimulus dimension. Colored circles in the output layer indicate the correct response as

determined by the task that requires mapping the stimulus feature of the same color. (A) Congruent

stimuli require the same response in a given response dimension, irrespective of the task involving that

response dimension the network is asked to perform. (B) Incongruent stimuli require a different

response in a given response dimension, depending on the task the network is asked to perform.

2.3.2 Simulation Study 1: Predicting Multitasking Capability from

Single Task Representations. In the previous section we introduced

graph-theoretic analyses to investigate factors affecting the multitasking capability in

simplified network structures. These analyses were based on the assumption that shared
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representations can induce functional dependence between tasks, constraining the

number of tasks a network can perform at the same time. Here, we examine the extent

to which these analyses can be applied to more complex models (of biological agents

and/or artificial systems) in which tasks representations are learned and distributed

across multiple processing units. We describe how neural representations of individual

tasks can be used to generate predictions about how many and which combinations of

tasks a network can perform in parallel (a space of possibilities that grows

combinatorially with the number of tasks, and thus quickly becomes intractable to

direct empirical inquiry), based on measurements of single task performance (that grows

only linearly in the number of tasks). The purpose of these analyses is to confirm that

the constraining effect of shared representations generalizes to more complex network

architectures with distributed representations, and to validate the application to such

networks of diagnostic tools for assessing multitasking capabilities using measurements

made in single task performance – that is, on amounts of data that would practical to

acquire in empirical settings.

To assess the accuracy with which the graph-theoretic analyses described above

predict the multitasking capability in more complex neural networks, we compared

predictions of multitasking performance made by task dependency graphs extracted

from 20 separately trained networks with the numerically simulated multitasking

performance of those networks. We did so by extracting a bipartite graph from each

trained network (using methods described below), and from that a dependency graph.

We then used the dependency graphs to make predictions about the networks’

multitasking capability, as well as performance of multitasking sets as a function of the

number of dependencies between tasks in a set. We first describe specifics of the

network architecture and training environment used for these simulations, as well as the

procedure for extracting dependency graphs based on learned task representations,

followed by a comparison of predictions and results.

Network architecture and processing. The networks in these simulations used five

stimulus and five response dimensions (N = 5), each of which had three features (i.e.,
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stimuli and responses, respectively). Thus, they supported a total of 25 possible tasks,

1545 multitasking conditions and 243 possible stimulus (and corresponding response)

patterns per task (including both task-relevant and task-irrelevant features).

Task environment. As described above, a task was defined as a mapping from the

three stimulus features of a task’s stimulus dimension to the three corresponding output

units of its response dimension, such that only one of the three relevant output units

was permitted to be active for a given stimulus input unit. Each network was trained

on a different subset of ten randomly sampled tasks (an example training environment

is shown in Fig. 11A). Tasks were sampled subject to the constraint that each stimulus

dimension and each response dimension was associated with at least one task.

Generating bipartite and dependency graphs from task representations. Network

analyses focused on representations (patterns of activity) in the hidden and output

layers, insofar as these correspond to data that can be acquired with neuroimaging

techniques. Analyses characterized the representations for each task, and how they

compared across tasks. We used these measures to construct bipartite and dependency

graphs for each network, from which its predicted multitasking capability was computed,

and tested against the empirically measured multitasking performance of the network.

The representations (patterns of activity ) associated with each task that were

learned during training were characterized by calculating, for each unit in the hidden

and output layers, the mean of its activity over all of the stimuli for that task.18 This

mean activity pattern at each layer for each task was correlated with the one for each

other task to yield a task similarity matrix that was examined separately for the hidden

and output layers of the network. Fig. 11B provides an example of such similarity

matrices. These were used to assess the extent to which different tasks relied on shared

or separated representations within the hidden and output layers of the network, which

was used, in turn, to construct a bipartite graph (shown in Fig. 11C). The

18 A formally equivalent analysis could be carried out using the weight matrix of the network. Here we

focus on patterns of activity, as these may serve as useful predictors for patterns of activity observed in

empirical data, such as functional magnetic resonance imaging (fMRI) and/or neuronal recordings.
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Figure 11 . Prediction of multitasking capability from dependency graph constructed

from correlations among single task representations. (A) A task environment consisting of 10

possible tasks represented as stimulus-response mappings. Each arrow from a stimulus dimension to a

response dimension denotes a task. (B) Task similarity matrix computed from correlations among the

mean activity patterns learned for each task in the hidden and output layers of a network. Pairs of

tasks that exceed a correlation threshold of 0.5 in a given layer are marked in black. The thresholded

similarity matrices are used to extract the bipartite (C) and dependency (D) graphs for the tasks (see

text). (E) The MIS of the dependency graph is used to predict the multitasking capability of the

network. The plot shows the highest multitasking accuracy of a network as a function of the number of

tasks it is asked to perform in parallel (multitasking capability curve) and the predicted MIS for that

network. Each line corresponds to the multitasking performance of a trained network, whereas the

color of each line indicates the predicted MIS for that network. The plot suggests that the multitasking

capability curve drops as the set size approaches the predicted MIS.

representations for a pair of tasks within a given layer were considered to be shared if

the Pearson correlation coefficient of their mean pattern of activities exceeded 0.5.19 If a

19 Thresholding the correlation between task activities was required in order to derive an unweighted

dependency graph. However, it is worth noting that some data may be lost when averaging hidden

activation patterns across trials; models that operate on unaveraged time series data, by contrast, may

offer a more complete measure of sharing and separation. Such models may, for example, attempt to

estimate the neural encoding of stimuli while an agent performs each of several tasks, and then
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pair of tasks was determined to have a shared representation in the hidden layer, then

the two tasks were assigned the same input node in the extracted bipartite task graph.

Analogously, if a pair of tasks was determined to have a shared representation in the

output layer then both tasks were assigned the same output node. The bipartite graph

was then used to generate a dependency graph as described earlier, which was used to

examine the multitasking profile of the network.20 Thus, the dependency graph served

as summary of the similarity relationships among tasks, that we used to determine the

multitasking capability of the network (i.e., the size of the MIS), as well as the specific

combinations of tasks that could and could not be performed concurrently. Fig. 11A-D

illustrates this sequence of steps for an example network. It is worth reiterating that the

procedure described above requires that the network be examined only on the

performance of each task individually, and therefore is substantially more efficient

(scaling linearly with number of tasks) than determining the multitasking profile by

simulating and examining performance of the network for all combinations of tasks

(which scales factorially).

Multitasking capability. To test the extent to which the MIS of the extracted

dependency graph for each network predicted its multitasking capability, we compared

the analytically-determined MIS with the empirically-observed maximum multitasking

performance achievable by each network. We did this by identifying, for each network

compare encoding functions for two different tasks directly, as in Bernardi et al. (2018); U. Cohen,

Chung, Lee, and Sompolinsky (2019); Henselman-Petrusek, Segert, Keller, Tepper, and Cohen (2019).

It remains a matter for future research to explore how well these measures can be used to predict

multitasking capability of network architectures. Nevertheless, all results reported below were

qualitatively robust to a wide range of correlation thresholds.

20 The bipartite graph, and its use in generating the dependency graph, are presented here for clarity

and consistency with presentation of the graph-theoretic methods described earlier. However, the

dependency graph can also be directly computed from the similarity matrices of the hidden and output

layer as follows: An edge is assigned to a pair of tasks in the dependency graph if (1) their correlation

exceeds threshold in either of the similarity matrices, or (2) there exists a third task that correlates

above threshold with one task in the similarity matrix for the hidden layers and with another in the

similarity matrix for the output layers.
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and a given number of tasks, the combination of tasks (multitasking set) that yielded

the greatest multitasking accuracy. We predicted that the accuracy should remain

asymptotically high for multitasking set sizes at or below the analytically-determined

MIS, but should decline as a function of set sizes that exceeded it. For example, if the

extracted MIS of a trained network was 2, we predicted that the maximum accuracy

across multitasking sets would drop for multitasking sets of size of three or more. We

refer to the maximum accuracy as a function of multitasking set size as the multitasking

capability curve of a network. To statistically evaluate the predictions above, we

computed the maximum multitasking capability curve for each network, fit a sigmoid

function to each curve21, and tested the prediction that the inflection point (i.e., offset)

of the curve should lie between multitasking set sizes equal to MIS-1 and MIS+1.

Predictions of multitasking accuracy for specific combinations of tasks. We also

used the extracted dependency graph to predict how accurately the network could

perform particular combinations of tasks, and to characterize the extent to which this

was influenced not only by multitasking set size, but also by the number of

dependencies between the specific tasks in a given set. For each set size, we computed

the multitasking performance for all combinations of that number of tasks. Then, for

each set size, we grouped sets based on the number of functional dependencies among

the tasks in the set predicted by the dependency graph, and evaluated the effect that

this had on multitasking performance across sets. We predicted that multitasking

performance for a given set size should drop with the number of dependencies between

tasks in the set.

Results. As expected, the dependency graph accurately recovered the task

structure imposed during training. That is, it confirmed that the network learned to use

similar hidden layer representations for tasks involving the same stimulus dimension

(e.g. Tasks A and B in Fig. 11A-B), and that it learned similar output representations

21 Due to the limited number of data points per curve, we estimated only the slope and offset of the

sigmoid function. The maximum and minimum of the sigmoid were fixed to the respective largest and

smallest value of the multitasking capability curve.
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Figure 12 . Network performance for sets of tasks with different numbers of

dependencies. Error bars indicate the standard error of the mean for multitasking conditions of

networks trained in different task environments.

for tasks involving the same response dimensions (e.g. Tasks B, D & I in Fig. 11A-B).

In Part II of this article (Simulation Study 4), we return to this finding in greater detail

and examine the conditions under which the network learns to share representations

between tasks. Fig. 11D shows that the predicted multitasking capability (derived from

the extracted dependency graph) accurately predicted the maximum number of tasks a

network can perform.22 That is, the inflection point (i.e., offset) of the multitasking

capability curve lies significantly above a set size equal to the predicted MIS-1,

t(19) = 3.7810, p < 0.001, and below a set size of MIS+1, t(19) = −6.6706, p < 10−5.

However, as the MIS of a network grows, the analysis begins to overestimate the

network’s multitasking capability (the drop of the multitasking capability curve occurs

before the predicted MIS); that is, the analysis provides a liberal estimate of the

constraints imposed by shared representation, which are likely to be even more

restrictive in practice (e.g. if only a limited number of tasks are available to perform;

see the discussion of effective multitasking capability above).

Fig. 12 shows that these analyses also predicted the relative accuracy with which

22 The prediction is robust to a range of performance metrics, number of hidden units in the network,

and choices of correlation threshold (for a robustness analysis, see Petri et al., 2020).
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tasks could be performed concurrently that varied by extent of representational sharing.

That is, for a given size of a multitasking set, average accuracy decreased reliably as the

number of dependencies between tasks predicted by representational sharing increased.

Interestingly, in addition to the predicted drop in multitasking performance as a

function of dependencies among tasks, we also observed an unpredicted effect: a drop in

performance as a function of multitasking set size irrespective of how many predicted

dependencies there were in the set. This suggests that there were sources of processing

interference among tasks other than the dependencies extracted from shared

representations at the hidden and output layer, that increased with the number of tasks

to be performed. Examination of the networks revealed that a primary source of such

cross-task interference is mutual inhibition of output units between tasks. When trained

on single tasks, for each task the network learned to suppress irrelevant responses (i.e.,

associated with the same inputs for other tasks), by developing inhibitory weights for

projections from the corresponding task unit in the task input layer to all units in the

output layer for task-irrelevant response dimensions. However, this produced cross-task

interference when the networks were asked to multitask (something they were not

trained to do), an effect that is unrelated to the amount of shared representation

between tasks in the hidden and output layer (and thus not captured by the graph

theoretic analysis), and scales with the number of tasks to be performed at once, as

seen in Fig. 12. This suggests that a similar effect might be observed empirically, for

sets of tasks that are predicted to be independent, but for which participants have not

be trained to multitask.

2.3.3 Simulation Study 2: Interaction between Representation Sharing

and Graded Conflict. The results above offer provisional support for use of

graph-theoretic analyses in predicting the effect of shared representations on

multitasking performance, subject to the potential for overestimation as the number of

tasks grows. However, there is another way in which the analyses presented are limited:

they assumed shared processing pathways were of equal strength, and treated the

interference associated with the sharing of representations as an all-or-none
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phenomenon whereas, in actuality, interference can be graded. For example, the relative

strength of pathways that share a set of representations can vary by degree of training,

that in turn can lead to asymmetric interference effects (e.g., J. D. Cohen et al., 1990;

MacLeod & Dunbar, 1988). Thus, graded differences in the relative strength of

pathways should be associated with correspondingly graded effects on multitasking

performance. Here, we consider the effects of relative differences in connection strengths

for pathways that fully share sets of representations. In Part II (Simulation Studies

4-6), we examine the effect of graded degrees of representational sharing.23

To illustrate the effects on multitasking of differences in the relative strength of

pathways that share representations, consider Tasks A-E shown in Fig. 13. Tasks A, B

and C each map a different stimulus dimension to correspondingly distinct response

dimension, and thus all are structurally independent of one another. However, if Tasks

A and B share representations with Tasks D and E, respectively, then they are

functionally dependent. Previously, we considered the connections implementing such

tasks to all be of equal strength, and thus functional dependence to be all-or-nothing.

However, previous work (J. D. Cohen et al., 1990; Gilbert & Shallice, 2002; MacLeod &

Dunbar, 1988) suggests that conflict introduced by Tasks D and E on tasks B and A,

respectively, should increase as the strength of pathways for the former increases

relative to the latter. That is, progressive training on Tasks D and E should have a

graded effect on the ability to multitask A and B (see Fig. 13A), while it should have no

23 For clarity of exposition, we treat strength of processing (here) and representational sharing (in Part

II) as separate factors. However, it should be noted that in network architectures with distributed

representations, pathway strength and representational sharing, though potentially dissociable, may

also be closely related to one another. For example, in the case of two processing pathways that vary in

the strength of their connections to a shared set of processing units, the degree of overlap could

be-expressed as the strength of the connections in each pathway to the processing units that are

shared. However, at the other extreme, if they are both connected to an equal number of units with

equal strengths, then the degree of sharing (number of shared units) can be dissociated from their

relative strengths. These are factors that can be determined by learning, and that we consider in

greater detail in Part II of this article. Here, we focus on conditions in which varying learning impacts

strength but not extent of sharing.
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impact on the ability to multitask either of the latter with Task C (see Fig. 13B). Here,

we describe simulations of such effects, and confirm expected dependencies between

tasks using the graph theoretic methods presented above. We also apply quantitative

methods for estimating parallel versus serial processing from reaction time data

(Townsend & Wenger, 2004) to determine the amount of interference in the network.

To do so, we trained networks on all tasks shown in Fig. 13, varying the amount of

training that the network received for Tasks D and E relative to Tasks A, B and C, and

evaluating multitasking performance of Task A with Tasks B and C.

BFunctional Dependence IndependenceA

…

A B

…

A CD E D E BC
Hidden 

Layer

Output 
Layer

Stimulus
Input Layer

Figure 13 . Task dependencies used in Simulation Studies 2 and 3. (A) Tasks A and B are

assumed to be functionally dependent due to shared representations with Tasks D and E; thus, the

ability to multitask A and B should be impacted by the strength of D and E. (B) Tasks A and C are

assumed to be independent, and thus multitasking should not be affected by the strength of D and E

(see text for discussion)

Network architecture and processing. These simulations used a variant of the

network architecture described for Simulation Study 1, in this case with just three

stimulus dimensions (containing three features per dimension) and three response

dimensions (also with three features per dimension). The network was trained on the

subset of tasks described below.

Task environment. For each simulation we implemented tasks corresponding to

A-E in Fig. 13, such that Tasks A, B and C each mapped different stimulus dimensions

to distinct response dimensions; Task D shared a stimulus dimension with Task A and a

response dimension with Task B; and, conversely, Task E shared a stimulus dimension

with Task B and a response dimension with Task A.

Training. We initialized 20 networks for each training condition with small
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random weights. For each training condition, we sampled 100 patterns for each of the

three Tasks A, B and C per training epoch. For Tasks D and E, however, we varied the

number of patterns sample across conditions from none (0% task strength) to 150

(150% task strength relative to Tasks A, B and C). Every network was trained until it

reached the same performance criterion for Tasks A, B and C.

Functional dependencies between tasks. To confirm assumptions about functional

dependencies between tasks, we assessed the similarity of the learned representations for

each pair of tasks after training, and then applied the graph-theoretic methods

described above to determine dependencies between tasks. In Simulation Study 1, we

focused on analyzing average patterns of activity for each task, to demonstrate how

graph-theoretic methods can be applied to neuroimaging data (e.g. fMRI). Here, we

quantify representation sharing by calculating the Pearson correlation of their weight

vectors to the hidden layer, as these provide a more direct measure of representational

overlap, i.e. the degree to which two task units project to the same hidden units.24 We

then applied the same graph-theoretic analysis to extract a functional dependencies

between tasks from the correlations.

Intermediate Results: functional dependencies and multitasking accuracy.

Analyses of the learned representational similarity between tasks confirms that Tasks A

and B are functionally dependent whereas Tasks A and C are independent. Fig. 14

shows the correlation between learned task representations in the hidden layer of the

network, averaged across all networks and training conditions. As expected, Tasks A

and D learned shared representations in the hidden layer, as did Tasks B and E, since

each pair relied on the same set of stimulus features. As a result, Tasks A and B were

found to functionally dependent on one another, whereas they were independent of Task

C. We assessed the multitasking accuracy for performing Tasks A and B, and similarly

for Tasks A and C, as well as the single task accuracy for Tasks D and E as a function

of training on Tasks D and E(Fig. 14C). Multitasking performance for Tasks A and B

24 Prior simulations (not reported) suggest that weight vectors yield more accurate predictions of

multitasking performance than averaged patterns of activity.
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decreased with the amount of training on Tasks D and E, while performance for Tasks

A and C was virtually unaffected by the training condition. Even small amounts (30%)

of training on Tasks D and E, sufficient to improve their performance, came at the

expense of impaired multitasking performance of Tasks A & B. This suggests that

detriments in multitasking performance scale with the degree of interference induced by

shared representations. In other words, shared representations alone may not be

sufficient to impair multitasking performance, but they do so if the processing strength

of these other tasks induces a sufficient amount of interference.
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Figure 14 . Effects of shared representation and graded interference on multitasking

accuracy. (A) Average correlations between learned task representations in the hidden layer. (B)

Bipartite Task Graph and Task Dependency Graph extracted from the similarity between task

representations at the hidden and output layers. Solid lines in the dependency graph indicate

structural dependence whereas dashed lines indicate functional dependence. (C) Single tasking

performance of Tasks E and D, as well as multitasking performance for Tasks A & B and Tasks A & C

as a function of training on Tasks D and E (cf. Fig. 13). Error bars indicate the standard error of the

mean across 20 simulated networks.

Response time series after single task training. The results above focused on the

effects of shared representation in networks with non-linear processing units, and

evaluated in terms of multitasking accuracy. This complements a separate, but closely

related line of work pursued by Townsend and colleagues (Townsend, Ashby, et al., 1983;

Townsend, Ashby, Castellan, & Restle, 1978; Townsend & Wenger, 2004), developing

mathematical methods for inferring the extent of parallel processing involved in task
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performance from measures of cumulative reaction time (RT) distributions. These

methods assume that task performance relies on linear integration processes. Here, we

examine the extent to which these methods can be used to infer parallel processing (and

hence multitasking capability) in networks composed of nonlinear processing

mechanisms. In particular, we evaluate their sensitivity to shared representations, and

whether this aligns with the results described above using measures that infer

multitasking capability from network representations rather than performance.

Specifically, Townsend and Wenger (2004) showed that the cumulative RT

distribution for two non-interacting (i.e., parallelizable) linear integration processes TA

and TB both reaching a fixed threshold before time step t lies within the bounds

formulated by Colonius and Vorberg (1994):

PA(TA ≤ t) + PB(TB ≤ t)− 1

≤ PAB(TA ≤ t AND TB ≤ t) ≤

min[PA(TA ≤ t), PB(TB ≤ t)] (5)

where PA(TA ≤ t) and PB(TB ≤ t) are the probabilities of each task reaching its

threshold, respectively, conditioned on having a feature present in the stimulus

dimension relevant to each task and the responses being the correct ones for those

stimuli. Conversely, interactions between two processes (i.e., cross-talk) should lead to

violations of these bounds (Townsend & Wenger, 2004). Here, we tested whether similar

properties are observed for performance in networks with non-linear processing units

and distributed representations; that is, whether tasks implemented in such networks

that are functionally independent obey the inequalities above, while ones that are

functionally dependent violate it, and the extent to which this is sensitive to the relative

strength of the pathways involved. To do so, we assessed PAB(TA ≤ t AND TB ≤ t) for

Tasks A and B, as well as PAC(TA ≤ t AND TC ≤ t) for Tasks A and C in the networks

described above, as a function of the strength of Tasks D and E, where t corresponded
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to the time taken by the LCA to reach threshold.25

The results indicate that, while multitasking both pairs of tasks (A & B, and A &

C) strictly violated the inequality, this effect was distinctively greater for Tasks A and B

when the tasks that mediated the functional interference between them – Tasks D and

E – were strong (i.e., fully trained) compared to the other conditions (see upper right

panel of Fig. 15). In that case, Tasks A and B crossed the lower bound of the cumulative

RT distributions for independent processing channels at a much later point than in the

other conditions, indicating that it took more time for both tasks to reach a response

presumably due to functional interference. Thus, the degree of inequality violation

appears to clearly reflect the degree of functional dependence. The observation that the

inequality was also violated in the other conditions (though to a much less degree) is

consistent with an effect discussed earlier: Training on single tasks can lead the network

to learn to directly inhibit output representations that are not relevant to the current

task, causing multitasking interference at the output layer (see Simulation Study 1).

Response time series after multitasking training. While the discrepancy between

the analysis of RT distributions and the graph-theoretic analysis across conditions may,

as just noted, reflect the effects of learning, it is possible that this could also be due to

the non-linearity of processing and/or presence of distributed representations in the

network, both of which deviate from assumptions made by the RT analysis of Townsend

and Wenger (2004). To evaluate this, we sought to eliminate any effects of cross-task

interference by training the network explicitly on multitasking for Tasks A & B as well

as for Tasks A & C, and then evaluating its performance using the analysis of the RT

distributions. If this eliminated the violations of the inequalities, it would suggest that

those were due to the effects of cross-task interference that arose from single task

training, whereas if the violations persisted it would suggest that they were due to

deviations of the network architecture from assumptions made by the analysis.

In this simulation, 20 networks were trained until criterion on all five tasks as

25 We conformed to the same assumption used by Townsend and Wenger (2004), restricting our

analysis to only correct responses.
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Figure 15 . Cumulative RT distributions as a function of dependence (shared

representation) and training on interfering tasks (graded interference). Each plot shows the

lower (A+X − 1) and upper (min(A,X)) bounds (thin solid and dashed lines, respectively) for the

cumulative RT distribution of multitasking Tasks A and X (thick solid lines), where X is either Task B

(upper panels) or Task C (lower panels); see Fig. 13 for task configurations. Cumulative RT

distributions are shown for either 10% (left panels) or 100% (right panels) of training on Tasks D and

E, relative to the other tasks (as a manipulation of the strength of those pathways). Note that, whereas

the cumulative RT distribution evolves to fall below the lower bounds in all conditions, it does so to a

considerably greater degree for Tasks A and B when Tasks D and E strong (100% training condition;

upper right panel) compared to the other conditions; see text for discussion.

described above (with 100% training on Tasks E and D). In addition, each training

epoch included 100 patterns of multitasking Tasks A & B, as well as 100 patterns for

multitasking Tasks A & C. After training, the representational similarity between all

tasks, as well as the cumulative RT distribution for both multitasking conditions was

assessed as described above.

Multitasking training virtually eliminated representational sharing between tasks

that relied on a common stimulus dimension (Tasks A and D, as well as Tasks B and E;

see Fig. 16A), and thus eliminated the functional interference between Tasks A and B,

which was required to achieve criterion in training on multitasking performance. We

will consider these effects of multitask training on shared representations in greater
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detail in Part II (Simulation Study 5), Here, we note that the analysis of RT

distributions accurately reflects this effect, now showing strict adherence to the

inequalities indicative of full parallel processing (Fig. 16B). These results suggest that

the methods described by Townsend and Wenger (2004) can be extended to the analysis

of non-linear systems (at least those implemented in the networks described above), and

that measurements using these methods align with an assessment of parallelism in such

networks based on the graph theoretic analysis as well as the accuracy of multitasking

performance of such network evaluated directly in simulations. These results also

suggest that for the simulations involving single task training reported above, the

analysis of RT distributions was able to detect interactions between tasks that arose

during learning, but were not predicted by graph theoretical analysis of representations

at the hidden and output layers (see Simulation 1 for a discussion).
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Figure 16 . Representational task similarity and cumulative RT distributions after

multitasking training. (A) Average correlations between learned task representations in the hidden

layer (cf. Fig. 14). (B) Each plot shows the lower (A+X − 1) and upper (min(A,X)) bound for the

cumulative RT distribution of multitasking Tasks A and X, where X corresponds to either Task B

(upper panel) or Task C (lower panel); see text and Fig. 15 for explanation of bounds; and Fig. 13 for

task configurations.

2.3.4 Simulation Study 3: Interaction Between Shared Representation

and Persistence in Multitasking. While training can be used to overcome

multitasking interference due to functional dependence – a topic to which we will return
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at length in Part II – it is of course also possible to overcome such interference by

executing the individual tasks in series. However, a large body of evidence suggests

that, for humans, serial execution of tasks is also associated with costs. Serial task

execution has been studied in a number of experimental paradigms, the two most

prominent of which are the PRP procedure (Telford, 1931) and the task switching

paradigm (Allport et al., 1994; R. D. Rogers & Monsell, 1995). Interestingly, however,

little work has addressed the relationship of effects between these; that is, between

dual-task interference in the PRP paradigm and switch costs associated with

task-switching (Koch et al., 2018). Furthermore, a neural mechanism underlying both

effects remains elusive. Here, we suggest that both reflect interference arising from the

same underlying mechanism: an interaction between shared representations and the

persistence characteristics of representations in neural architectures.

In the PRP procedure, participants are asked to respond as quickly as possible to

two tasks within the same trial. Each trial begins with the presentation of a stimulus

relevant to the first task (Task 1), followed by an experimentally manipulated delay (the

stimulus onset asynchrony; SOA) and then the stimulus for the second task (Task 2;

Fig. 17). Participants tend to respond more slowly to the second stimulus as the SOA is

reduced (Telford, 1931). The additional amount of time that it takes to respond to the

second task in the presence of a short SOA is referred to as the PRP. If the two tasks

could be performed fully in parallel, then participants should execute Task 2 as soon as

the relevant stimulus is available, and there should be no PRP. Therefore, observation

of a PRP has been interpreted as evidence for a serial processing architecture, in which

both tasks rely on a central, limited capacity control mechanism. The latter is assumed

to impose a bottleneck on processing, which delays the execution of Task 2 while Task 1

is still being executed (e.g., Welford, 1952; Broadbent, 1957, 1958; Pashler, 1984, 1994).

Alternatively, production system models closer in spirit to the multiple resource theory

have suggested the PRP effect can be explained by bottlenecks that arise within more

local resources (e.g., perceptual or motor processes) shared by the particular tasks that

are competing for execution, rather than a “central executive” (Byrne & Anderson,
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2001; Kieras & Meyer, 1997; Meyer & Kieras, 1997b; Salvucci & Taatgen, 2008).

However, those models do not explain why such bottlenecks exist; nor, to our knowledge,

have they used the same mechanisms to explain effects in task switching paradigms.26

Task 1 Stimulus
1

Response
1Processing Task 1

Reaction Time
for Task 1

Stimulus
2

Response
2Processing Task 2PRP

Reaction Time
for Task 2

Task 2 SOA

Figure 17 . Psychological refractory period (PRP) procedure (Telford, 1931). See text for

description.

In task switching experiments participants are required to respond to only one

task per trial, but must switch periodically between tasks across trials. A large

literature reports a number of effects consistently observed in such experiments (for a

review, see Kiesel et al., 2010). Here we focus on the explicit task-cuing procedure, in

which each trial is preceded by a task cue indicating the next task to be performed

(Meiran, 1996; Sudevan & Taylor, 1987). Task switch trials require the participant to

perform a different task relative to the previous trial, whereas task repetition trials

require the participant to perform the same task again. Participants reliably exhibit a

switch cost on task switch trials; that is, they respond more slowly and/or less

accurately on task switch relative to task repetition trials. Switch costs have been

attributed to various cognitive processes. Some have suggested that switch costs reflect

an active process of task-set reconfiguration (Mayr & Kliegl, 2000; Meiran, 1996;

R. D. Rogers & Monsell, 1995; Rubinstein, Meyer, & Evans, 2001) that relies on a

control mechanism. Others have suggested that switch costs arise from passive

processes, such as: proactive interference (sometimes referred to as “task-set inertia”)

26 In Part II we return to the question of why such bottlenecks might arise, providing an account in

terms of the value of shared representations during learning. Here we focus on an explanation of PRP

and task switching effects in terms of common underling mechanisms.
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from the previous task-set (Allport et al., 1994); inhibition of the previously executed

task-set (Altmann, 2007; Mayr & Keele, 2000); repetition priming of the task cue

(Logan & Bundesen, 2003; Anderson & Lebiere, 2014); or repetition priming of stimulus

features (Waszak, Hommel, & Allport, 2004; Wylie & Allport, 2000). Note that all of

these accounts assume some form of persistence of information encoded about the

previous task. In a neural network architecture, this is naturally interpreted as the

persistence of the activity patterns used to represent such information.

The persistence of activity is a common computational feature of neural network

architectures, that enables integration of information over time. Persistence

characteristics have been used to account for a variety of cognitive phenomena,

including sequential processing of stimuli (Braver, Barch, & Cohen, 1999; Elman, 1990),

working memory (Engle, Kane, & Tuholski, 1999), integration of sensory input in

perceptual decision-making (Curtis & Lee, 2010; Major & Tank, 2004; Mazurek,

Roitman, Ditterich, & Shadlen, 2003; Shadlen & Newsome, 2001; Usher & McClelland,

2001), temporal credit assignment in reinforcement learning (O’Reilly & Frank, 2006),

and the evolution of context representations proposed to underlie event segmentation

and temporal encoding in episodic memory (Hasson, Chen, & Honey, 2015; Lerner,

Honey, Silbert, & Hasson, 2011). Persistence of activity also suggests that the effects of

shared representation on multitasking performance may extend to the sequential

execution of two tasks: the more that a representation of a previously executed task

persists in time, the more it can interfere with a subsequent task that shares the same

set of representations. Here, we show that such an interaction between persistence of

activity and shared representations can explain interference effects associated with the

sequential execution of tasks, both in the context of PRP experiments as a function of

SOA, and task switching experiments as a function of response set overlap and stimulus

congruency.

Network architecture, processing and task environment. Using the same neural

network model and task environment as described in the previous section, we trained 20

networks on Tasks A-E (see Fig. 13) until each network reached the performance
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criterion across all tasks. After training, we introduced persistence in the computation

of the net input of a unit i in the hidden and output layers,

net
T
i = (1− p) · netTi + p · netiT−1

, (6)

where netiT−1 corresponds to the time averaged net input from the previous time

step, netTi corresponds to the instantaneous net input, and p determines how much the

time averaged net input of the current time step netTi depends on the time averaged net

input from the previous time step.27 Thus, the higher the value of p, the longer activity

persists in a given state over time. For each network, we considered different values of

p ∈ {0, 0.5, 0.8, 0.9}.

PRP after single task training. We simulated the PRP paradigm for Tasks A and

B, as well as Tasks A and C. As demonstrated in the previous section, after single task

training, Tasks A and B were functionally dependent and interfered with each other

when executed simultaneously, whereas Tasks A & C were independent and interfered

less (cf. Fig. 14). Here, we examined the effects of sequentially executing each pair of

tasks, with Task A always executed second. Thus, we first presented the network with a

feature from the stimulus dimension relevant to Task 1 (Task B or Task C), by

activating the corresponding unit in the stimulus input layer and by keeping all other

stimulus input units inactivated. After a number of time steps (determined by the

SOA), we presented the network with a feature from the stimulus dimension relevant to

Task 2 (Task A) by activating a unit in the stimulus dimension relevant to that task

while the stimulus feature for Task 1 (Task B or Task C) was still present. PRP studies

27 This implementation of persistence by integrating (“time-averaging”) the net input to each unit

follows similar implementations (e.g., Cohen et al., 1990), though it can also be achieved through

recurrent excitatory connections (e.g., Usher & McClelland, 2001). For efficiency of simulation, training

occurred without integration so that, after training, integration during processing causes activity

patterns to asymptote on the learned patterns. Similar results were shown to apply when integration is

applied throughout training (Herd et al., 2014), so long as sufficient time is afforded during each

training trial for the activity of the network to approach asymptote.
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commonly instruct participants to prioritize Task 1 (Meyer & Kieras, 1997b). We

therefore activated the task input layer unit for Task 1 at the beginning of each trial,

and deactivated it as soon the network had responded to that task. For Task 2 we

assumed that participants sought to optimize the outcome of performance by choosing

to initiate execution at a time that maximized reward rate. Accordingly, we determined

the optimal onset of the task unit for Task 2 such that the joint reward rate for both

tasks was maximized, with

Reward Rate = P (correct)Task 1P (correct)Task 2

(ITI + RTtotal)
(7)

where P (correct)Task 1andP (correct)Task 2 correspond to the accuracies of Task 1

and Task 2, respectively; ITI corresponds to an inter-trial interval of 0.5s;28 and RTtotal

is the RT that was determined by the time of the response to the last task to be

executed, measured from the onset of the trial. We then assessed RTs for Task 1 (Task

B or Task C) and Task 2 (Task A) as a function of SOA, by varying the SOA from 1s to

8s in steps of 1s (with each simulation step amounting to 0.1s).

PRP after dual-task training. A number of studies have demonstrated that the

PRP can be eliminated after a sufficient amount of dual-task training (Allport et al.,

1972; Hazeltine, Teague, & Ivry, 2002; Liepelt et al., 2011; Schumacher et al., 2001;

Wickens, 1976), yielding “virtually perfect time sharing.” Accordingly, we tested

whether the PRP remained if the network was trained on dual-tasking Tasks A and B,

as well as on Tasks A and C. To do so, we trained 20 networks to criterion on all five

tasks as described above (with 100% training on Tasks E and D, to allow for the

possibility that shared representations and functional interference would develop

between Tasks A and B). In addition, each training epoch included 100 patterns of

dual-tasking for Tasks A and B (to determine whether any PRP effects that occurred

following single task training were eliminated by dual-task training), as well as 100

patterns for dual-tasking Tasks A and C. After training, we measured the PRP as a

28 The duration of the ITI varies across PRP studies. Here, we choose an ITI of 0.5, similar to

Halvorson et al. (2013).
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function of SOA, as well as the the amount of representation sharing that developed

between tasks (see Simulation Study 2).

Results: PRP after single- and dual-task training. Simulation results validated the

expected effect that higher persistence prolonged RT for both Task 1 and Task 2, due to

slower rates of integration (Fig. 18). Critically, following single task training, the model

exhibited a PRP effect for all non-zero values of persistence, showing a delay of Task 2

as a function of SOA (Fig. 18B). This effect was greater when Task 2 (always Task A)

followed Task B versus C, indicating that Task B interfered more with the subsequently

executed Task A. This is consistent with persistence of shared representations between

Tasks A & D, as well as Tasks B & E, that produced functional interference between

Tasks A and B but not A and C, and therefore that the effects of functional interference

can be mediated by persistence in shared representations, even when tasks are executed

serially. Interestingly, a PRP effect, albeit smaller, was also observed when Task A

followed Task C. This is consistent with the results of Simulation Studies 1 and 2

suggesting, once again, that interference between tasks can arise through suppression of

responses at the output layer acquired during single task training (see Simulation 1 for

a discussion). The results here suggest that persistence can amplify this effect, and

produce a PRP even for tasks that are functionally independent according to the

graphic theoretic analysis. It is also worth noting that, in line with prior observations

(Marill, 1957; Pashler, 1994), the RT of Task 1 remained unaffected by the SOA,

irrespective of whether Task 1 was functionally dependent or independent of Task 2

(Fig. 18A). That is, a potentially early execution of Task 2 did not interfere with an

ongoing execution of Task 1. This reflects the instructed strategy of the model to

prioritize Task 1, by activating the task unit for Task 1 before the task unit for Task 2.

This strategy allowed the model to elicit a response for Task 1 before the activity of the

task unit for Task 2 became high enough to cause interference.

Finally, Fig. 19 shows that dual-task training, which greatly diminished

representational sharing (Fig. 19A), all but eliminated the PRP effect; it is now

observed only at the highest levels of persistence (p ≥ 0.8, Fig. 19B).
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Figure 18 . Simulated PRP after single task training. RTs for (A) Task 1 and (B) Task 2 in the

PRP procedure as a function of persistence p, as well as Task 1 (B or C). Error bars show the standard

error of the mean across 20 simulated networks trained only on single tasks.
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Figure 19 . Simulated PRP after multitasking training. (A) Average correlations between

learned task representations in the hidden layer. (B) RT of Task 2 in the PRP paradigm as a function

of persistence p and task. Error bars show the standard error of the mean across 20 simulated networks.

Task switching. A large number of empirical studies have shown that switch costs

can vary, depending on whether the pairs of tasks involved share the same set of

(bivalent) responses or whether they use different (univalent) sets of responses. Our

analysis of task dependence suggests a refinement of this distinction, such that task

pairs with with bivalent responses are structurally dependent (e.g. Task A and Task E),

whereas task pairs with univalent responses may be either functionally dependent (e.g.

Task A and Task B) or independent (e.g. Task A and Task C). This, in turn, suggests

more refined predictions concerning switches between tasks that have univalent

responses: ones that are functionally dependent should exhibit switch costs, whereas
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ones that are independent should not. We tested these predictions in the same networks

trained for the PRP simulations, by comparing performance in three task-switch

sequences (see upper panels of Fig. 20): Task E to Task A (structural dependence),

Task B to Task A (functional dependence), and Task C to Task A (independence), and

computing the switch cost of each relative to a repetition sequence (Task A twice in a

row).

Each task in each sequence was simulated by setting its unit in the task input

layer to 1 and all others to 0; randomly selecting a stimulus pattern (either congruent or

incongruent, cf. Fig. 10) for the stimulus input layer (with one unit active in each

stimulus dimension)29; and allowing the network to process the input until it reached a

response. Task 1 was either Task E, Task B or Task C in task switch sequences, and

Task A in task repetition sequences. It was followed by the presentation of Task 2

(always Task A). We measured switch costs as the difference in RT between the switch

and repeat conditions, averaged over 100 randomly sampled congruent stimuli and,

separately, averaged over 100 randomly sampled incongruent stimuli, calculated

separately for the three switch scenarios. As in Simulation Studies 1 and 2, the RT of

the network was determined by the response threshold that maximized reward rate for

a given combination of task and stimulus inputs. Note that the model did not

implement any mechanism by which the RT was explicitly delayed on task switches as

opposed to task repetitions. Thus, a slower RT on task switch trials relative to task

repetition trials would reflect a normative strategy of raising the response threshold to

maximize reward rate.

Results: task switching. Fig. 20 shows the RTs for Task A in all three switch

sequences and congruency conditions, compared to those for the repeat condition. The

network exhibited switch costs (i.e., a higher RT for task switches, Allport et al., 1994;

R. D. Rogers & Monsell, 1995) compared to task repetitions for all three sequence

types. The results also indicate that switch costs for structurally dependent tasks (Task

29 Stimuli for which the features of the stimulus dimensions for both tasks are present are commonly

referred to as “bivalent” stimuli as they afford the application of a competing task.
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Figure 20 . Effects of shared representations on task switching. The three upper panels show

task pairs used in simulations of each of the three switch sequences. Lower panels show corresponding

RTs for Task 2 (always Task A) in each of the three switch sequences (dashed lines) compared to the

repetition sequence (solid lines), for congruent and incongruent stimuli, and a persistence of p = 0.9.

Error bars show the standard error of the mean across 10 simulated networks.

A and Task E) and functionally dependent tasks (Task A and Task B) were higher for

incongruent stimuli compared to congruent stimuli. Such an interaction between task

transition and stimulus congruency has frequently been reported for structurally

dependent tasks (using “bivalent” responses; e.g. Fagot, 1995; Goschke, 2000; Meiran,

Chorev, & Sapir, 2000; R. D. Rogers & Monsell, 1995; Wendt & Kiesel, 2008). Previous

accounts have suggested that higher switch costs for incongruent stimuli reflect an

increase in “proactive interference” (Kiesel et al., 2010). In our simulations, persistence

of shared representations from the previously executed task mediated this effect, and

the longer RTs observed for incongruent trials reflect the effects of such interference. As

expected, we did not observe this effect for independent tasks (Task A and Task C)

although persistence of activity from the to be repeated task facilitated task repetitions

relative to task switches. Note, however, that this makes the novel prediction that

switch costs for pairs of tasks with univalent responses (i.e., that involve different

response dimensions) should nevertheless differ, based on whether they are functionally
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dependent tasks (such as Tasks A and B) or independent (such as Tasks A and E). To

our knowledge, this is an effect that was not yet examined in the literature.

Finally, Fig. 21 illustrates the effect of persistence on the switch costs, averaged

across all stimuli, for each of the three sequence types. Switch costs increase with

persistence in all three though, over most of the range, switch costs are greater for

structurally dependent tasks than functionally dependent and independent tasks,

mirroring the empirical observation that switch costs for tasks with bivalent responses

are higher compared to tasks with univalent responses (Brass et al., 2003; Meiran et al.,

2000). Again, however, the model makes the novel prediction of a distinction among

univalent tasks, that can be empirically tested.
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Figure 21 . RT switch costs for incongruent stimuli in all task switching scenarios (see

text) as a function of persistence.

2.4 Summary, Discussion and Conclusions for Part I

2.4.1 Summary. We introduced a graph-theoretic approach to compute the

multitasking capability of feed-forward, single-layer, non-linear networks from

task-related patterns of activity over their hidden and output layers, and used this to

predict network performance for different multitasking conditions. This involved

representing the network as a bipartite graph, and using that to generate a task

dependency graph that provides a compact representation of its multitasking capability.

Determining the MIS in the dependency graph identifies the maximum number of

concurrent tasks that can be executed without performance loss. The dependency graph

can also be used to identify all combinations of tasks that can be performed in parallel.
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Building on this formalism, we conducted a quantitative analysis of the multiple

resource theory, demonstrating that the multitasking capability of the network drops

drastically with the sharing of representations in the network. Furthermore, we showed

that the sharing of representations interacts with the strength of processing pathways

and the persistence characteristics of network representations, to define a continuum in

the dependence on control, and a commensurate one between parallel and serial

processing for given combinations of tasks. Finally, we showed how these factors can

provide a mechanistic account of widely observed interference effects between tasks,

including the PRP and task switch costs, and generate new predictions concerning these

phenomena as a function of the persistence characteristics and sharing of

representations between tasks.

Below, we review implications of the analytical results for the multiple resource

theory, and discuss how the underlying graph-theoretic framework can be applied to

predict multitasking performance from neural correlates. We then describe the

relationship between estimations of multitasking capability based on neural measures,

on the one hand, and behavioral measures on the other (Townsend & Altieri, 2012;

Townsend & Wenger, 2004). Finally, we consider some broader implications that

viewing task performance and control dependence through the lens of shared

representations has for the interpretation of classic phenomena, such as the PRP, task

switching, and cognitive control more broadly.

2.4.2 A Quantitative Approach to the Multiple Resource Theory. As

noted above, the graph-theoretic framework permits a quantitative analysis of the

multiple resource theory, according to which parallel processing limitations can arise

due to local processing bottlenecks of shared task representations rather than a central

capacity limitation of the control system itself (Allport et al., 1972; Allport, 1980;

Navon & Gopher, 1979; Wickens, 1991). Analytical investigations of the multitasking

capability of two-layer networks confirmed previous numerical results (Feng et al.,

2014), showing that small increases in the average number of tasks that share a

representation lead to dramatic constraints on the number of tasks that can be executed
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simultaneously without cross-talk.

One may argue that the constraints that shared representations impose on

multitasking are negligibly small in a processing system as large as the human brain.

The structural capacity of a network may grow both with the number of nodes per

processing layer and the number of processing layers. Our analytical results suggest

that the multitasking capability of a two-layer network increases in a dramatically

sub-linear way with the number of nodes in a processing layer, yielding diminishing

returns. That is, the limitations imposed by shared representations may not be easily

circumvented by increasing the number of nodes per processing layer in a network.

Furthermore, although exact analysis of networks quickly becomes intractable as the

size of the network grows, a probabilistic approach to the analysis of deep networks

reveals that multitasking capability decreases even further as the number of processing

layers in a network increases, since the two layers with the smallest multitasking

capability constitute a bottleneck for the entire network (Alon et al., 2017). Note that

the detrimental effect of depth on multitasking capability stands in contrast to the

benefit of depth for the learning of complex functions (Goodfellow et al., 2016;

Simonyan & Zisserman, 2014; Telgarsky, 2016). Altogether, these analyses suggest that

high amounts of representation sharing between tasks, paired with a high number of

processing layers may be sufficient to yield significant limitations in multitasking

capability, even in neural architectures with high a structural and representational

capacity such as the brain.

An potential appeal of using neural network architectures to understand

constraints on processing is that, in principle, they can be tested by directly examining

brain function. Unfortunately, in practice, though both representational mapping and

connectomics have become important areas of progress in neuroscientific research,

current methods are not sufficient to provide a precise measure of the constructs

corresponding to those used in our analyses. That is, it is still not possible to reliably

distinguish pools of units responsible for each dimension of processing in a task, for

multiple tasks, and at the same time the patterns of synaptic connectivity among them.
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Nevertheless, suggestive lines of evidence are beginning to appear.

For example, analyses of functional networks of the macaque cortex, that treat

distinct brain areas as nodes and inter-cortical tracts connecting them as edges, yield

node degrees ranging from 20 to 40 (Sporns, Honey, & Kötter, 2007; see also Rubinov &

Sporns, 2010; Young, 1993). If different brain areas are assumed to represent different

forms of information, and the tracts between them correspond to processing pathways

used for task execution, then the estimated node degrees are in a range for which we

observed asymptotically low multitasking capabilities. Of course, as noted, such findings

are at an extremely coarse grain of analysis, and allow for the obvious possibilities that

a given brain area may support multiple distinct pools of representations, and that

connections among them could remain distinct within intracortical tracts. More

detailed studies are needed to directly quantify structural overlap between task

pathways, including ones of the human brain. An important factor to consider in such

studies is the distribution of node degrees, as the analyses we report suggest that

multitasking limitations are sensitive not only to the density, but also to the entropy of

connectivity in a network. It will, of course, be equally important to relate such factors

to task performance, as considered below and in Part II of this article.

2.4.3 Application of Analytic Methods to Prediction of Multitasking

Capability. The results of Simulation Study 1 indicate that it is possible to estimate

the multitasking capability, and predicted multitasking performance of a network based

solely on measures of similarity among representations associated with individual tasks.

These methods are of a form that it may also be possible to apply them to the analysis

of brain activity, to predict multitasking performance in humans and perhaps even

other species. For example, if patterns of neural activity (measured using direct

neuronal recordings and/or fMRI) can be identified for a set of individual tasks, then

the analyses described above can be used to predict multitasking performance for all

combinations of those tasks. This might be impossible to determine directly (i.e., by

measuring performance for all task combinations individually), as the number of

combinations grows factorially with the number of tasks (for example, with just five
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input and five output dimensions, from which 25 tasks can be formed, the number of

multitasking combinations is over 1500). In contrast, the methods we have described

require measuring only the pattern of activity associated with each task individually,

which grows linearly with the number of tasks. That is, these analyses may be

particularly useful in situations in which exhaustively assessing the entire space of task

combinations is empirically intractable (e.g. combinations of tasks that can be

performed in a pilot cockpit).

The application of graph-theoretic methods to analyze connectionist models in

particular, and neural systems more broadly, is still early in its development, and

requires making simplifications. An important simplification in our analyses, that could

be relevant to its use in empirical applications, is the thresholding of real-valued

correlations among task representations in order to construct the binary bipartite and

dependency task graphs used to determine multitasking capability. As we noted above,

simulation results suggest that the methods are robust across a wide range of thresholds

and learned task representations (see Petri et al., 2020). Nevertheless, generalizing the

methods to address graded interference effects (e.g., using weighted graphs) is an

important avenue for future research. More generally, it will be important to explore

the extent to which these methods can be extended to networks with more complex and

realistic architectures (e.g., recurrent networks, or ones subject to more complex

dynamics such as gating).

2.4.4 Relationship to Response Time Methodology. As discussed above,

sophisticated mathematical methods have been developed for using measurements of

response time distributions to infer the extent to which performance of a task relies on

parallel processing (e.g. Townsend & Altieri, 2012; Townsend & Wenger, 2004), based

on Systems Factorial Design Technology (Townsend & Nozawa, 1995) and theoretical

results concerning RT inequalities for independent information channels (Colonius &

Vorberg, 1994; Grice, Canham, & Boroughs, 1984; Grice, Canham, & Gwynne, 1984;

J. Miller, 1982). Applications of these methods to paradigms such as short-term

memory search (Townsend & Fifić, 2004), visual search (Fifić, Townsend, & Eidels,
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2008) and the Stroop task (Eidels, Townsend, & Algom, 2010) have generated insights

into the extent to which mental processes rely on parallel vs. serial processing. The

approach presented here complements this work in several ways. Like these behavioral

measures, the approach presented here provides a means for estimating multitasking

capability when the underlying task structure is not known. However, here we suggest

how this can be done by measuring internal representations engaged by the individual

tasks rather than behavior. We have demonstrated this in artificial neural networks,

and suggested how it might be applied empirically (e.g., using patterns of activity

measured from direct neuronal recordings or neuroimaging methods such as fMRI).

Second, while the analysis of RT distributions requires measurements for every

combination of the tasks of interest — which, as noted above, can rapidly become

impractical for even modest numbers of tasks — the methods we have described can be

used to predict multitasking capability and performance from measurements made of

each task individually, which may be more practical in realistically complex task

settings. Third, our application of the methods used to analyze response time

distributions to neural network simulations shows that, although the derivation of those

methods was based on assumptions of linear processing, they appear to apply

reasonably well to non-linear processing mechanisms and distributed representations

commonly used in neural network models, comporting both with predictions made by

our graph theoretic methods and direct measures of multitasking accuracy. Finally, and

perhaps most importantly, while the two approaches offer complementary ways to infer

multitasking capability from empirical data, the simulation studies presented here also

sought to identify and examine the influence of a causal factor — shared representations

— that determines the multitasking capability of a system. In this respect, we hope

that our findings contribute to providing a “linkage of quantitative concepts [. . . ] with

neural mechanisms” (Townsend & Wenger, 2004, p. 1016).

One apparent disparity between the degree of parallelism estimated from RT

distributions and predicted from the analysis of shared representations was the

observation, in Simulation Study 2, that the RT bounds of the independent channels
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model (Colonius & Vorberg, 1994) were violated for tasks that did not appear to share

representations in the hidden or output layer of the network. While this might be taken

to suggest that the RT bounds for a linear independent channels model may not

generalize fully to non-linear systems, we observed that after multitasking training,

cumulative RT distributions fell within the predicted bounds of the independent

channels model. This suggests that methods based on this model can be usefully

applied to the behavior of network with nonlinear processing units, at least of the sort

used in our simulations and, furthermore, that it is sensitive to sources of cross-task

interference that can arise between tasks that are not detected graph theoretic analysis

of shared representations at the hidden and output layers. One source for such

interference is interactions mutual inhibition of response dimensions among tasks that

arises during single-task training, but is diminished with multitask training (see

Simulation Study 1 for a discussion). While the graph theoretic analyses we described

here were not sensitive to this, it is possible that those can be extended, and or other

similar measures developed that are able to detect such interactions from internal

representations (Bernardi et al., 2018; Henselman-Petrusek et al., 2019; Chung, Lee, &

Sompolinsky, 2018). It is important to note that, irrespective of methods of analysis,

such interference at the output layer is consistent with the general proposition that

limitations in multitasking performance, and the concomitant need for control, reflect

local competition among task-specific representations (in this case, at the output layer

of the network) rather than a limitation in the capacity for control itself.

2.4.5 Dual-Task Interference and the PRP. A large body of empirical

work on dual-task interference suggests that limitations in multitasking can extend to

situations in which two tasks are executed in sequence (Koch et al., 2018; Pashler, 1994;

Salvucci et al., 2009). One of the hall-marks of dual-task interference is the PRP, a

period during which processing of a second task is delayed because a first task is still

being processed (Telford, 1931). The PRP was an explanandum for some of the earliest

theories of modern cognitive psychology, in which the processing delay for the second

task was interpreted as evidence of a central information processing bottleneck that
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limits processing to only one task at time (Broadbent, 1957, 1958; Welford, 1952).

Pashler (1994) introduced a refinement of this theory, suggesting that the central

bottleneck occurs at an intermediate processing stage that excludes stimulus perception

and motor response production, referred to as “response selection.” Kieras and Meyer

(1997, p. 4) offered a definition of this as a “process that converts the stimulus code to an

abstract symbolic code for a physical response based on some set of innate or previously

learned stimulus-response associations.” Note that the two-layer network used in

Simulation Study 1-3 (see Fig. 9) implements this process, by mapping stimulus codes

in the stimulus input layer, through an internal, distributed representation in the hidden

layer, to a representation in the output layer. Thus, the processes encoded in the 3-layer

network follow a perceptual processing stage and precede a motor production stage, and

can be summarized as an intermediate, “response selection” stage. However, unlike the

response-selection bottleneck account (Pashler, 1994), the neural network model allows

that: (1) structurally, the process of response selection can occur in parallel for two or

more tasks, albeit with the potential for interference (i.e., a shared representation may

integrate incongruent information from the task processes); responses to the second task

may be strategically delayed to avoid interference from the first task, mimicking a

bottleneck. Accordingly, the PRP depends on the amount of interference induced by

shared representation. That said, this does not preclude the possibility that dual-task

interference can arise at other points in processing or for other reasons; for example

competition among task representations, a possibility to which we will return below.

More importantly, the original suggestion that a bottleneck in the response

selection stage of processing is responsible for the PRP assumed that this was

modality-general, and thus closely related to if not identical to the idea that the PRP

reflects a constraint in a centralized processing mechanisms. In contrast, the neural

network models described here align more closely with accounts that build on the

multiple resource theory, suggesting that processing bottlenecks responsible for the PRP

lie in local, task-specific resources (Byrne & Anderson, 2001; Meyer & Kieras, 1997b;

Navon & Gopher, 1979; Salvucci & Taatgen, 2008). However, previous theories have
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generally implemented these resources in production system (symbol processing)

architectures as discrete, predefined sets of processing modules. Here, we did so using

neural network models based on the parallel distributed processing framework

(McClelland et al., 1986), in which task-specific resources are representations that can

learned, engaged in a graded way (based on the strengths of connections in the

network), distributed across multiple processing units that permit varying degrees of

overlap, and have persistence characteristics that can also cause processes to overlap in

time — features that are generally thought to be characteristics of computation in the

brain. These can explain a number of effects that have not been — and might not be

easily — addressed using strictly symbolic approaches. For example, while some studies

have observed that the PRP effect at an SOA of 0 matches the RT of the first task (e.g.,

Welford, 1952), as predicted by central bottleneck models, others have reported a

smaller-than-predicted PRP (Karlin & Kestenbaum, 1968). Simulation Study 3 showed

that the PRP can match the RT of the first task if it and the second task are

functionally dependent and there is a high amount of persistence in the network.

However, the PRP can be lower if the tasks are only partially dependent or if

persistence is low (see Fig. 18B). Conversely, longer persistence of shared

representations can explain a PRP (delayed execution of a second task) that exceeds

the RT for the first task (Welford, 1952; Marill, 1957). That is, the response to the

second task can be slowed even if the stimulus for the second task is presented after

response to the first task; something that discrete, symbolic processing mechanisms

might find difficult to explain (Pashler, 1994).

The neural network implementation also provides a natural and quantitative

account of how the number of tasks that a system can perform may impact its

multitasking abilities, as well as the effects of practice. We discussed the quantitative

analyses of multitasking capability above. With regard to practice, Simulation Study 3

replicated the finding that the PRP can be eliminated with sufficient practice on

dual-tasking (Hazeltine et al., 2002; Liepelt et al., 2011; Schumacher et al., 2001).

Central bottleneck models have proposed that this reflects a reduction in preparatory
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demands for both tasks (Pashler, 1994), and/or shortens the central processing stage

(Ruthruff, Johnston, Van Selst, Whitsell, & Remington, 2003). Neural network models

offer potential mechanisms for these effects of practice; for example, increasing the

strength of each processing pathway could reduce integration times and thus the effects

of persistence, and/or accelerate their engagement by control. Here, however, we have

focused on a qualitatively different effect of dual task practice, that is specific to

network architectures and more closely related to the multiple resources account: that

this can lead to the separation of representations between tasks — an effect to which we

will return in detail in Part II.

The graded nature of representations in neural network architectures, and their

potential for overlap in both space and time, also provides a mechanistic grounding for

other accounts of dual-task interference in terms of “dimensional” (Liepelt et al., 2011;

Hazeltine et al., 2006) or “representational” (Göthe et al., 2016) overlap. Here,

“dimensional” or “representational” overlap can be defined in terms of the degree to

which tasks share representations that may induce structural or functional dependence,

and the interactions that this has with the persistence characteristics of those

representations. These factors also make a number of novel predictions. For example,

they predict that functionally dependent pairs of tasks should be associated with a

longer PRP compared to independent pairs of tasks. They also predict a longer PRP for

tasks that rely on representations with longer persistence characteristics, such as tasks

that require integration of information over longer periods of time (Hasson et al., 2015).

Despite the implementational differences between our approach and ones using

symbolic processing mechanisms to implement the multiple resource theory (see Section

“Relationship to Existing Theories of Dual-Task Limitations” in the General

Discussion), these approaches agree in at least two fundamental ways: (1) that PRP

effects are driven by the potential for local conflicts in processing, and (2) that these are

avoided by strategically delaying the second task to prevent interference from first. This

was first described as strategic response deferment (SRD) within the EPIC framework

by Kieras and Meyer (1997); Meyer and Kieras (1997b), in which a response to the
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second task could be deferred by an executive (control) mechanism until after sufficient

progress had occurred on the first task. Similarly, in Simulation Study 3, response to

the second task was deferred by increasing the response threshold of the LCA for that

task, to circumvent persisting interference from the first task. In our simulations we

further assumed that these adjustments were made in a normative fashion, in order to

optimize the joint reward rate for both tasks. More sophisticated algorithms for making

such normative adjustments, and neural mechanism that implement them, are the focus

of several ongoing lines of work (Lieder et al., 2018; Simen et al., 2009; Shenhav et al.,

2013; Westbrook et al., 2020). Such normative adjustments could, of course, also be

added to a symbolic processing architectures such as EPIC (Meyer & Kieras, 1997a,

1997b) or threaded cognition (Salvucci & Taatgen, 2008). However once again, such

mechanisms are likely to be constrained to making discrete adjustments, whereas their

implementation in a neural architecture would permit graded adjustments, and allow

these to be learned.

Finally, there is at least one set of observations from the PRP paradigm that the

models we have described do not directly address: that performance of the first task

can, under certain conditions, be affected by features of the second. For example,

Hommel (1998) demonstrated that the RT of the first task can vary as function of

compatibility between the response to the first task and the response to the second

task. In that study, participants responded to the color (red or green) of a letter

stimulus with a button press (left or right; Task 1) before responding to the identity of

the letter (“H” or “S”) with a verbal response (“left” or “right”; Task 2). Processing of

the first task was delayed if the response to the second task (e.g. say “left”) was

incompatible with the response to the first task (e.g. press the right button). In a

different PRP study, Logan and Schulkind (2000) presented participants with two

digits. Both tasks required categorizing a digit by its magnitude (i.e. judging whether

the digit was larger or smaller than 5). RTs for the first task were faster if the both

digits belonged to the same category. Logan and Gordon (2001) proposed a

computational model that explains these effects in terms of category-level cross-talk:
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The outcome of any categorization process (this may involve categorizations of stimulus

features for the first and the second tasks, both of which may occur in parallel) is

attributed to the object that is currently given priority (the digit relevant to the first

task), leading to a speed-up in processing the first task if the categories for both tasks

are compatible. These, and other studies lend support to the claim that the two tasks

are being processed in parallel rather than in serial (Ellenbogen & Meiran, 2008;

Fischer, Gottschalk, & Dreisbach, 2014; Hommel, 1998; Logan & Schulkind, 2000;

Schubert, Fischer, & Stelzel, 2008). The effect described by Hommel (1998) may arise

in a neural network model that learns a shared representation between location of the

stimulus for Task 1 (left or right) and the verbal response for Task 2 (“left” or “right”)

in the same (hidden) layer. This may be achieved by training the network to represent

the general concept of left and right. Alternatively, feedback connections from the

representation of the verbal response in the output layer to the representation of the

stimulus location in the hidden layer could introduce to cross-talk from the response for

the (second) location-verbal task to the (first) color-manual task. While these

possibilities are compatible with extensions of the models we described here, those

extensions remain to be implemented and tested in future work.

2.4.6 Performance Costs Associated with Task Switching. The

simulations we reported showed that the same mechanisms used to account for the PRP

can also explain effects observed in task switching paradigms. Costs associated with

task switching — one of the most robust findings in the cognitive literature — have

previously been considered in isolation of, and in different terms than the PRP (Koch et

al., 2018). One prominent account of switch costs is the task-set inertia hypothesis,

according to which the task-set of a previously executed task carries over to the next

(Allport et al., 1994). Simulation Study 3 provides a mechanistic interpretation of this

hypothesis, in which the task-set is represented as patterns of activity over the hidden

and output layers of the neural network,30 its inertia corresponds to the persistence of

30 In connectionist systems, a task-set can be defined as the “internal state of the network at a given

time that biases it to respond to a multivalent stimulus configuration” (Grange & Houghton, 2014, p.
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those representations, and switch costs arise as a consequence of the interaction between

the extent to which the patterns of activity are shared with the next task to be

performed, and persist during its performance. This suggests that switch costs should

scale with (1) the amount of shared representation between tasks and (2) with their

persistence in the network. Simulation Study 3 demonstrated that these effects provide

a mechanistic account for a number of widely replicated findings in the task switching

literature, such as greater costs associated with incongruent stimuli on a switch between

tasks that use the same (bivalent) responses (e.g., Fagot, 1995; Goschke, 2000; Meiran

et al., 2000; R. D. Rogers & Monsell, 1995; Wendt & Kiesel, 2008), as compared to

tasks using distinct (univalent) responses (e.g. Brass et al., 2003; Meiran et al., 2000;

R. D. Rogers & Monsell, 1995).

The model also makes novel predictions with respect to switch costs for tasks with

univalent responses. The simulation results indicated that: (1) tasks with univalent

responses should exhibit greater switch costs if they are functionally dependent relative

to independent tasks; and that (2) tasks with univalent responses may be sensitive to

response congruency. For instance, in the extended Stroop task (see Fig. 5A), color

naming is predicted to be functionally dependent on word mapping, but not on word

reading. Thus, switching from word mapping to color naming may require more time

than switching from word reading to color naming.31. Moreover, when switching from

word mapping to color naming, the model predicts a higher cost of switching for

incongruent Stroop stimuli compared to congruent Stroop stimuli, since incongruent

stimuli would lead to stronger functional interference.

The assumption that task representations persist in time, and that the persistence

of a previously activated task-set leads to a benefit of task repetitions over task switches

is certainly not unique to neural network models. Symbolic models, for example ones

based on ACT-R (Anderson & Lebiere, 2014), explain a portion of switch costs in terms

of repetition priming of task-relevant information in declarative memory: Recently

180-181).

31 This assumes that word reading and word mapping are comparable in performance



RATIONAL BOUNDEDNESS OF COGNITIVE CONTROL 80

activated task-sets32 are more likely to be retrieved from a declarative memory buffer,

leading to a facilitation of task repetitions (Altmann & Gray, 2008; Sohn & Anderson,

2001). One important difference between the effects of persistence in symbolic and

neural network models is that, in the latter, persistence characteristics can interact with

distributed representations, and thus have graded effects determined by the degree of

representational sharing — a characteristic that is ripe for investigation in domains

where distributed representations have played a critical explanatory role, such as

semantics (we will return to this in the General Discussion). However, even within the

scope of neural network models, there are conceptual differences with regard to where

persistence may occur. For example, some neural network models of task switching

assume that task-sets persist in the form of stimulus-response associations that are

updated each trial (Brown et al., 2007; Gilbert & Shallice, 2002), while others attribute

this to the persistence of task-related activity patterns (e.g., Herd et al., 2014, and the

model we report here). It remains an important avenue for future research to tease

apart the different types of persistence, and their contribution to performance costs in

task switching.

Finally, we note that the models described above were not intended to address a

number of other important task switching phenomena, such as repetition priming effects

of task cues (Altmann & Gray, 2008; Logan & Bundesen, 2003; Sohn & Anderson,

2001). We suspect that adding the elements to the model necessary to address such

effects (e.g. processing units that represent task cues), coupled with the features we

have described (such as persistence characteristics), may be sufficient to address such

phenomena. Nevertheless, these too remain as targets for future work.

2.4.7 Broader Implications. Altogether, Simulation Studies 1-3 suggest

that an interaction between (1) the potential for conflict introduced by shared use of

representation between tasks, and (2) the persistence of task representations over time,

define a continuum in the extent to which a set of tasks be executed in parallel (i.e.,

32 In symbolic architectures, a task-set often corresponds to task-relevant chunks (e.g. chunks that map

stimuli to particular responses) in declarative memory.
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concurrently multitasked), permit rapid switching, or require full sequential execution

(i.e., “serial processing”). Furthermore, insofar as control mechanisms are responsible

for regulating the execution of a task in order to mitigate the conflict that can arise

from parallel or overly rapid serial execution, then these factors also define a continuum

in the extent to which a task must rely on control (i.e,. its “automaticity”), as a

function of the context (i.e., the other tasks in contention) in which it must be

executed. We have shown that this perspective can provide a quantitative grounding of

the multiple resource theory, including the influence that the number of tasks that share

representations in a network has on its multitasking capability; as well as a unifying

account of two sets of phenomena classically associated with control-dependent

processing, but previously considered largely independently of one another: the PRP

and task switching costs.

Intriguingly, this perspective predicts that there should be a relationship between

the performance costs associated with dual-tasking (such as the PRP) and those

associated with task switching, as a function of the extent to which the tasks involved

share representations (i.e., are structurally or functionally dependent). Although, to our

knowledge, there has not yet been a direct empirical test of this prediction,

modality-specific effects in both dual-task and task switching paradigms suggest such a

relationship (Stephan Koch, 2010). For example, several studies have reported smaller

dual-task interference for pairs of tasks with compatible stimulus response mappings

(e.g. a visual-manual task paired with an auditory-vocal task) compared to tasks with

incompatible stimulus-response mappings (e.g. a visual-vocal task paired with an

auditory-manual task; Greenwald, 1970; Greenwald & Shulman, 1973; Göthe et al.,

2016; Halvorson et al., 2013; Hazeltine et al., 2006; Liepelt et al., 2011; Shaffer, 1975).

Similarly, Stephan and Koch (2010) found that participants can switch faster between

pairs of tasks with compatible stimulus-response mappings relative to pairs of tasks

with incompatible stimulus-response mappings, and that this effect diminishes as the

time between the last response and next stimulus increases, suggesting that the

interference induced by modality compatibility ceases to persist in time.
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Finally, it is worth noting that approach taken here may resolve a longstanding

puzzle concerning the relationship of empirical evidence for a response-selection

bottleneck in dual-tasks experiments (e.g., the PRP) with the classic interference effect

observed for color naming of incongruent stimuli in the Stroop task. Keele (1973)

pointed out that the latter is difficult to reconcile with evidence for a response selection

bottleneck in dual-tasking: If the responses for two tasks cannot be selected at the same

time in dual-tasking scenarios, how could the color naming response be influenced by

the response associated with the word stimulus in the Stroop task? Pashler (1994, p.

237) addressed this paradox, suggesting that “[. . . ] recent investigations of neural

networks suggest some possible ways of reconciling the two lines of evidence. Consider,

for example, so-called “pattern completion networks” composed of simple units

connected with variable strengths. Selection of one response may involve a particular

pattern of activity emerging in some subset of the units, whereas selection of a different

response involves producing a different pattern in the same units. Putting different

inputs into such a network might involve activating different subsets of units. The

network could not select two different responses at the same time simply because the

output units could not settle into two different states at the same time. On the other

hand, different input units could be activated at the same time [. . . ]. If the irrelevant

input was associated with a different response than the relevant one, it could retard the

process of settling into a final output state”.

The neural network models described above provide a mechanistic implementation

of this account: Shared representations in the hidden layer pose the risk of cross-talk

between tasks, leading to the simultaneous activation of competing output states for

those tasks. Resolving this competition results in a delayed response, providing an

explanation for Stroop interference, as well as the PRP in dual-tasking scenarios.

Critically, Pashler (1994, p. 237) pointed out that such an account would rely on

assumptions about the nature of task representations: “One unattractive feature of this

explanation is that there is no independent motivation for supposing that different

outputs would be represented in the same units and different inputs would be represented
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in different units”.

In Part II we directly address this concern, showing that interactions between the

task environment and learning can provide a normative motivation for the sharing or

separation of representations between tasks.

3 Part II: Shared vs. Separated Representations and Learning Efficacy vs.

Processing Efficiency

The findings reported in Part I support the proposition of multiple resource

theory: that limitations associated with control-dependent processing reflect cross-talk

that arises from the sharing of representations between task processing pathways —

cross-talk that control mechanisms are responsible for managing. However, the

assumption of shared resources poses an explanatory gap, as pointed out by Kieras and

Meyer (1997, p. 11): “One [. . . ] [concern] is that the concept of multiple resources lacks

sufficient principled constraints. In the absence of such constraints, there is a

temptation to hypothesize new sets of resources whenever additional problematic data

are collected. This could lead ultimately to an amorphous potpourri of theoretical

concepts without parsimony or predictive power”.

To address this explanatory gap, Wickens (1991) derived a taxonomy of resources

from empirical data, building on the assumption that dual-task interference arises when

two tasks share a common set of resources. For instance, it was observed that dual-task

interference is higher if two tasks share the same perceptual modality (McLeod, 1977).

These and other findings lead Wickens (1991) to conclude that each perceptual

modality is associated with a separate, dedicated processing resource. A similar

proposal has been made with respect to motor modalities (e.g., Glucksberg, 1963;

Treisman & Gelade, 1980; Treisman & Davies, 1973). More generally, Wickens (1991)

proposed that task processing resources can be distinguished along four dimensions:

processing stage (perceptual vs. central vs. response-related), processing code (verbal

vs. spatial), input modality (verbal vs. auditory), and response modality (manual vs.

vocal). Similarly, McCracken and Aldrich (1984) proposed a segmentation of resources
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into visual, auditory, cognitive and psychomotor components, each representing a local

resource that may be shared with other tasks.

Computational implementations of multiple-resource theories, such as the EPIC

framework (Meyer & Kieras, 1997a, 1997b) and threaded cognition (Salvucci &

Taatgen, 2008), adapted the resource taxonomy by Wickens (1991) and others to define

shared resources. For example, EPIC assumes distinct processors for auditory and

visual inputs, as well as vocal and verbal outputs. Kieras and Meyer (1997) argued that

perceptual and motor resources are constrained to be operating in serial (i.e. being able

to handle only one task process at a time), whereas other, cognitive resources, such as

working memory, can be used for multiple tasks in parallel. The theory of threaded

cognition assumes the same set of perceptual and motor processes in addition to two

cognitive resources, one declarative resource for memory encoding and retrieval, and one

procedural resource for coordinating goal-directed behavior (Salvucci & Taatgen, 2008).

Similar to Wickens (1991), these instantiations of multiple resource theory motivate

their set of resources based on the type of behavioral data that they seek to explain

(e.g. a shared resource for visual processing is motivated by the observation that

participants fail to perform two visual tasks in parallel).

While the resource taxonomies used by multiple-resource theories enabled initial

mechanistic insights into multitasking phenomena, they neither account for the

circumstances under which shared representations arise, nor do they provide a rationale

for why shared representations, that introduce the need for control, be favored over

dedicated representations that render a task independent of others and capable of

automatic processing. Addressing this concern requires an understanding of when and

why a cognitive system would develop shared as opposed to separated representations

between tasks. As noted by Meyer and Kieras (1997a, p. 68), models such as EPIC

“have chosen to embody [their] theoretical ideas in an architectural production system

and symbolic computation, rather than in hypothetical [...] neural mechanisms, simply

because the former level of representation is perhaps most appropriate for initially

characterizing functional aspects of executive cognitive processes and multiple-task
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performance”. Here, we suggest that addressing the neural mechanisms — or at least

taking account of their computational properties — may in fact be useful in helping to

characterize multitasking performance, by providing insights into the processes that

give rise to shared vs. task-dedicated representations, and thus reliance on cognitive

control versus the development of automaticity. As in many other applications of neural

network modeling, such insights derive from considering how learning shapes

representations.

It is well established the types of representations learned in neural networks are

heavily influenced by the statistics of the environment in which they are trained. In

particular, networks are likely to acquire shared representations for different tasks if

those tasks share similar statistics (e.g., they involve similar input and/or output

representations). This has been studied heavily in the context of semantic tasks, in

which the network is presented with physical features of objects and trained to report

their functional properties and/or category memberships. Networks develop

representations that are shared between semantic concepts if those concepts are

statistically related (e.g., Caruana, 1997; Bengio, Courville, & Vincent, 2013; Higgins et

al., 2018; Hinton et al., 1986; McClelland & Rogers, 2003; A. M. Saxe et al., 2019). For

example, A. M. Saxe et al. (2019) have shown, in formal analyses of network learning,

that multi-layer linear networks learn overlapping representations for objects that share

features relevant for categorization (e.g. salmon and sunfish) compared to objects that

don’t share category-relevant features (e.g. salmon and canary). In psychological

research, this has been used to explain empirical phenomena (such as semantic priming

and similarity judgements; T. T. Rogers & McClelland, 2004), and in machine learning

it has been exploited to promote generalization (as we will discuss further below).

Interestingly, however, such work has focused almost exclusively on conditions in which

the network is required to perform only one task at a time (i.e., is presented with a

single stimulus to which it must respond), with almost no attention paid to conditions

in which the system is expected to perform more than one task at a time. The results

presented in Part I suggest that the propensity to develop shared representations with
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single task training presents an impediment to multitasking performance which, in turn,

incurs reliance on control; they also showed that this can be overcome by training

explicitly on multitasking, which enforces the development of separated, task-dedicated

representations that permit parallel execution. These observations pose an interesting,

and fundamental question: Why should a system favor shared representations, at the

expense of a seriality constraint in processing and an attendant dependence on control,

over task-dedicated representations that afford the efficiency of multitasking capability.

There are several reasons why why a neural system might favor the learning of

shared representations. An obvious one is that shared representations are more efficient

with respect to storage capacity. While this is certainly a possibility, this seems unlikely

to be a strong constraint, considering the enormous representational resources of the

brain, and the cost of seriality and dependence on control. A more compelling reason is

that shared representations permit transfer to novel tasks; that is, more effective

learning through generalization (Baxter, 1995; Caruana, 1997; Bengio et al., 2013). In

the domain of machine learning, this often discussed in the context of “multi-task

learning,” which refers to the ability of an agent to learn multiple different tasks from

experience with only limited exposure to those tasks during training. Note that this is

distinct from “learning to multitask”: the latter requires the agent to perform two or

more tasks simultaneously (as elaborated in Part I), whereas in multi-task learning the

agent is trained to perform a set of auxiliary tasks, one at a time, in addition to a target

task. If the auxiliary tasks share similarities with the target task, then exploiting this to

learn shared, more general learned representations has been shown to improve

acquisition of the target task. These benefits of shared representation are strongly

linked to the ability of the network to learn and process representations by

simultaneously taking into account a large number of interrelated and interacting

constraints among them (McClelland et al., 1986). This allows them to detect and

encode complex forms of similarity (e.g., high order correlations among features).

In Part I we showed that shared representations incur the risk of conflict, and thus

reliance on control to impose seriality of processing that limits multitasking capability.
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In this part of the article, we investigate how these limitations weigh against the

benefits of shared representation. Specifically, we describe a set of computational,

mathematical and behavioral studies that examine the tension between the efficiacy of

learning afforded by shared representations (i.e., transfer to novel tasks) and the

efficiency of processing afforded by separated representations (i.e., automaticity and the

capability for multitasking) . We begin by examining circumstances that promote

shared representation and attendant multitasking constraints in neural networks.

Specifically, we use computational simulations to investigate the learning of shared

representations between tasks as a function of (1) shared structure between tasks in the

environment, and (2) the effects of of training on single task (serial) vs. multitasking

(parallel) performance. We then describe a combination of mathematical analysis and

computational simulation to further characterize the tension between between the

learning of shared versus separate representations, and report the results from a

behavioral experiment that tests predictions of these theoretical studies. Finally, we

discuss a normative theory of multitasking, which suggests that constraints on

multitasking may reflect a preference for learning efficacy (i.e., transfer) over

performance efficiency (i.e., multitasking).

3.1 Learning Biases for Shared vs. Separated Representations

There are various external factors that can bias a neural system towards shared

vs. separated representations. Here, we use computational simulations to demonstrate

that shared representations are function of both the task environment, as well as the

training regime. In the first simulation study, we examine the effect of structural overlap

between task-relevant stimulus features on the learning of overlapping representations

between tasks. In the second study, we investigate the differential effects of single vs.

multitasking training on the learning of shared vs. separate task representations.

3.1.1 Simulation Study 4: Impact of the Task Environment on the

Development of Shared Representations. A key feature of neural network

architectures is their ability to discover latent structure in the training environment,
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exploiting similarity between stimulus features in the form of shared representations

(Bengio et al., 2013; Caruana, 1997; Hinton et al., 1986; A. M. Saxe et al., 2019). This

has been clearly shown to benefit learning efficacy through transfer (Baxter, 1995;

Caruana, 1997). Furthermore, formal analyses of learning in networks with linear

processing units have characterized interactions between the statistical structure of the

training environment and the emergence of representations, showing that the most

widely shared features (e.g., corresponding to the highest level, or broadest categories)

are learned faster than features shared more narrowly (corresponding to lower level or

more specific categories (A. M. Saxe, McClelland, & Ganguli, 2013; A. M. Saxe et al.,

2019). For example, in learning about living things, the distinction between plants and

animals is learned more quickly than the distinction between different kinds of plants or

animals.

While this work focused mostly on inference (e.g., object categorization and the

learning of semantics), the network architectures and learning mechanisms involved are

homologous to those used in Part I to address tasks involving actions, and thus the

same principles should apply. Interesting, however, work in the domain of inference did

not consider how the acquisition of shared representations effects performance efficiency

(i.e., multitasking; e.g., the ability to recognize more than one object at the same time).

Here, we replicate the findings concerning the acquisition of shared representations

referred to above, using the neural network model described in Part I, and then extend

this work to directly examine the impact that shared structure between tasks and the

development of shared representation has on both the speed of learning and on

multitasking performance.

Network architecture. We used a variant of the network architecture described in

Part I, that allowed us to examine a graded range of similarity structure of the stimuli

within subsets of tasks. The input layer consisted of 54 units, nine of which were used

to represent the current task, and 45 to represent the current stimulus. As before, tasks

were coded as binary “one-hot” vectors: a single unit was assigned to each task, with

the unit for the current task assigned a value of 1, and all other units assigned 0.
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Similarly, a different set of five stimulus features were assigned as being relevant to each

of the nine tasks, corresponding to the stimulus dimensions assigned to each task in the

models described in Part I. However, whereas in Part I we simulated environments

made up of three subsets of three tasks each, in which the same set of features was

relevant to all three tasks within a given subset, here we simulated environments that

differed in the degree to which tasks within a given subset shared features (see below).

To implement the degree of sharing in a continuous manner, input patterns were

continuous valued (rather than binary, “one-hot”) vectors, each unit of which was

assigned a value between 0 and 1. These input patterns were used to define different

tasks, as described below. The remainder of the network was configured in a manner

similar to those described in Part I: the hidden layer consisted of 100 units; and the

output layer consisted of 15 units organized into three response dimensions of five units

each, in which each response was coded as binary, “one-hot” value.

Task environment. Each task was implemented as a rule that determined how a

pattern of activity over five stimulus input units assigned to that task should be

mapped to one of the five output units in the response dimension assigned to the task

(see Fig. 22). The task rules were randomly generated. Each task rule assigned a

pattern over the stimulus input units relevant for that task to a distinct response within

the dimension used for that task.33 Using this procedure, we generated six

environments that varied the similarity among tasks within each subset. Similarity was

defined by stimulus feature overlap; that is, the number of stimulus input units shared

between a pair of tasks within a subset that were associated with different response

dimensions. At one extreme (full overlap), resembling the environment used in Part I,

the nine tasks were divided into three subsets, with all of the tasks within a subset

sharing the same stimulus input units (Fig. 22A and upper row of Fig. 23A); at the

other extreme (no overlap), every task was assigned a separate pool of stimulus input

units (Fig. 22 B and bottom row of Fig. 23A). In addition, four environments with

intermediate levels of similarity were generated by varying the number stimulus input

33 Task rules were generated such that every output unit was equally likely to be required for execution.
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Figure 22 . Task environments of varying feature overlap. Figure illustrates relationships

between stimulus features and responses on which the network was trained (i.e., not the network itself,

which included hidden units and for which connections were learned). For each task, the network was

trained to map a subset of five stimulus features onto a subset of five responses. The two panels show

examples of extremes of overlap within each set of three tasks (e.g., Tasks A-C). (A) Complete overlap,

in which the stimulus features are the same for all the three tasks in each set. (B) No overlap, in which

each task within a set uses a distinct set of features.

units shared from 1 to 4 while ensuring that all tasks involved the same number of

“relevant” input units (see intermediate rows of Fig. 23A).34 Note that, despite the

sharing of stimulus input units, tasks within a set were structurally independent of one

34 The task structures defined by these schemes allow tasks to be implemented that do not necessarily

align with naturally defined stimulus dimensions (such as shape, size, color, etc.). This accords with

the more general, formal definition of a task described in Lesnick et al. (2020), in which a task is

defined as a mapping from any set of input features to a set of output features; and allows us to

examine how the variation in the similarity structure among inputs — which may be a characteristic of

real world tasks, such as semantic ones that involve more complex combinations of features — impacts

the structure of the representations learned by a network and, in turn, how that impacts its ability to

perform those tasks in parallel.
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another insofar each was associated with a distinct response dimension.

Training and analysis. We trained 100 networks using the backpropagation

learning algorithm (Linnainmaa, 1970; Rumelhart et al., 1986; Werbos, 1982) in each of

the six different task environments described above. The networks were initialized with

a set of small random weights and then trained on all nine tasks with the same set of 50

stimulus samples (selected as described above) until the network achieved criterial

performance (MSE of 0.01). For each training trial, an input pattern was generated by

selecting a task (i.e., activating one of the nine task units), and assigning an activity to

each stimulus unit by randomly sampling from a uniform distribution U [0, 1]. Note

that, although the activity of stimulus input units was assigned randomly, the

procedure for generating tasks insured that there was a mapping from any arbitrary

input pattern in the stimulus dimension for a given task to one of the five output units

in the response dimension for that task (see above). Thus, every pattern of activity over

the set of stimulus units in the input layer was associated with a fully specified response

for each task at the output layer; and, given the procedure for generating these

mappings, random sampling of input values insured an equal likelihood of sampling

(and generating a corresponding error signal) for each response during training.

Based on previous work reviewed above, we hypothesized that the amount of

stimulus feature overlap between two tasks would affect how similar the two tasks

would be represented in the hidden layer of the network after training; and, based on

the results reported in Part I, this would impact the multitasking capability of the

network. As in Simulation Studies 1 and 2 in Part I, we focused our analysis on the

weights from each task unit to the hidden layer (see Footnote 24), by computing the

Pearson correlation between weight vectors from the two task units to the hidden layer

for each pair of tasks. This analysis was restricted to pairs of tasks that are structurally

dependent based on some amount of overlap with respect a stimulus dimension but

mapped to a different response dimension (e.g. Tasks A and B in Fig. 22), in order to

evaluate the extent to which the development of shared representations in the hidden

layer could be attributed to similarity structure in the input. Also as in Part 1, we
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measured multitasking accuracy for the corresponding pairs of tasks by activating the

two corresponding task units and evaluating the concurrent processing performance in

the response dimensions for the two tasks. Finally, as a measure of learning efficacy, we

assessed the average number of training iterations it took to train a network to criterion

on all 9 tasks for each environment.
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Figure 23 . Effects of task similarity. (A) Networks were trained in task environments that

differed by the number of features shared by subsets of tasks in their stimulus dimensions (“feature

overlap”). Yellow and pink shades designate task-relevant stimulus features for each of two tasks within

a subset, with orange designating features shared between two tasks (see text). The effects of feature

overlap are shown with respect to: (B) average similarity of the learned representations at the hidden

layer; and (C) average number of iterations required to train the network to criterion (colors of each

data point in Panel C indicate the multitasking accuracy). Vertical bars in (B) and (C) indicate the

standard error of the mean across networks.

Results. The simulation results confirm the well-characterized behavior of neural

networks trained with backpropagation (Hinton et al., 1986; McClelland & Rogers,

2003; Rumelhart, Todd, et al., 1993); viz., that similarities in the input are encoded as

similarities among learned internal representations. This is shown in Fig. 23B, in which

greater overlap among stimulus features between tasks within a subset was associated

with higher correlation between the vector of weights from the task unit for each task to

units in the hidden layer. Critically, greater overlap among stimulus features also

promoted faster learning of all tasks, as shared structure between tasks can be exploited

in the form of shared representations (Fig. 23C). Interestingly, there is a non-linear

relationship between stimulus feature overlap and learning speed, with a substantially
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greater improvement in the efficacy of learning at the highest levels of overlap. As

predicted by the analyses in Part I, we also found that the learning of shared

representations progressively degraded multitasking accuracy (colors of dots in

Fig. 23C). Thus, this simulation clearly illustrates that similarity in the input among a

set of tasks not only shapes the similarity among the internal (hidden) representations

learned by a network, favoring the development of shared representations; but,

critically, the acquisition of such shared representations has a direct, and graded impact

on the network’s multitasking accuracy.

3.1.2 Simulation Study 5: Impact of Training Regime on the

Development of Shared Representations. The previous simulation showed that,

when tasks share similar inputs and the network is trained on tasks one at a time, there

is strong bias toward the development of shared representations and concomitant

limitations in multitasking capability. However, as discussed in Part I, empirical studies

involving dual-task training indicate that participants can overcome such limitations

through multitasking training (Hazeltine et al., 2002; Liepelt et al., 2011; Schumacher

et al., 2001), an effect that we captured qualitatively in Simulations 2 and 3. These

observations indicate that multitasking capability does not depend only on similarity

between the tasks, but also on the nature of the training itself. However, the details of

this effect have not been well studied, either empirically or in neural networks. This

former was noted by Schumacher et al. (2001), after observing that not all participants

achieved interference-free multitasking performance after dual-task training: “Why do

some but not all people readily achieve virtually perfect time sharing? Would practice

eventually enable everyone to time-share perfectly? Can special training regimens

promote this perfection?” (p. 107). Furthermore, some have suggested that

multitasking performance can improve through single task practice alone (Ruthruff,

Van Selst, Johnston, & Remington, 2006), while others have argued that multitasking

training combined with single task training leads to greater improvements in

multitasking performance as compared to single task training alone. For instance,

Liepelt et al. (2011) assessed multitasking performance for a verbal-manual task and an
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auditory-vocal task for two groups of participants. The first group was trained to

perform a mixture of single task and multitasking trials over seven sessions (hybrid

practice group) and the second group received practice on only single task trials over

the same number of sessions (single task group). Multitasking performance, assessed in

a final eighth session, was higher for the hybrid practice group compared to the single

task group. However, while these studies have provided evidence for the benefits of

multitask training on multitask performance (unsurprising in itself), they do not

address the mechanisms involved. For example, while some have argued that such

benefits reflect improvements in the efficacy of control mechanisms, the results

presented in Part I of this article suggest that they result from the learning of

separated, task-dedicated representations.

A recent neuroimaging study provided evidence of an association between

improvements in multitasking performance and representational separation between

tasks (Garner & Dux, 2015). In their fMRI study, Garner & Dux described two training

groups. In the experimental group, participants were trained to perform two single

tasks in isolation, as well both tasks simultaneously. In the control group, participants

were trained to execute a visual search task instead. The authors observed that

multitasking training in the experimental group lead to a higher separation of neural

representations associated with the two individual tasks compared to the control group.

However, the study leaves open the question of which aspects of the training procedure

were responsible for the observed effects. For example, the observation of

representational separation and concurrent improvements in multitasking, may have

been due to the practice on single task executions, training on concurrent processing of

both tasks, or both.

Here, we report the results of simulations that characterize: (1) the degree to

which the relative amount of multitasking versus single task training has on the

development of separated, task-dedicated representations; (2) the shape of its influence

on multitasking performance; and (3) which aspects of multitasking training lead to

most effective separation of task representations, in particular the extent to which the
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potential for interference between tasks drove the development of separated

representations. We did this by comparing single task training to variable amounts of

multitasking training in each of two types of multitasking training regimes: training to

execute groups of tasks simultaneously in response to congruent stimuli; and training to

execute groups of tasks simultaneously in response to incongruent stimuli. In addition

to providing a more detailed characterization of the effects of training on the

development of shared representations and multitasking capability, our goal was to

generate predictions concerning the dynamics of acquisition that can be tested in future

empirical studies.

Network architecture and training environment. The network architecture and

processing were the same as those reported in Part I, with the following exception. The

number of units in the input and output layers was adjusted to accommodate a task

environment with three stimulus dimensions and three response dimensions, and with

three features in each dimension. Thus, the stimulus input and output layers each had

nine units, and the network could support a total of 3 ∗ 3 = 9 possible tasks.

Training and analysis. 100 instances of the network were implemented and

initialized. We then generated nine copies of each initialized network and applied

different training regimes to each. All regimes involved training the network on 500

patterns per training iteration. The nine training regimes were divided into three types:

single task (one), multitask congruent (four), and multitask incongruent (four). As in

Part I, for the “congruent” conditions, stimuli were chosen such that, for structurally

dependent tasks (that is, ones that shared the same response dimension), they were

associated with the same response across those tasks (see Fig. 10 in Part I); whereas in

the “incongruent” conditions, stimuli were chosen that were associated with competing

responses. In the single task regime, all of the training patterns in every iteration were

sampled with replacement from the set of all single task training patterns. In the

multitask congruent regimes, a proportion of the training patterns was sampled with

replacement from all multitasking patterns that involved executing three tasks at the

same time using congruent stimuli (either 20%, 40%, 60% or 80%), whereas the
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remaining proportion was sampled from all single task patterns. In the multitask

incongruent regimes, a proportion of the training patterns was sampled with

replacement from patterns that involved performing three tasks at the same time using

incongruent stimuli (either 20%, 40%, 60% or 80%). Each regime was executed for 1000

training trials.

For tasks trained in each of the three types of regime, we assessed: (1) the average

number of training iterations it took to reach an MSE of 0.01 on all single tasks (in the

single task regime); (2) multitasking accuracy at the end of training (after 1000 training

trials); and (3) how similarity of the hidden layer representations between tasks changed

over the course of training (using the similarity measure described for Simulation Study

4). We focused the similarity analysis on task pairs that used the same stimulus

dimension since, as suggested by the results of Simulation Study 4, the network should

have developed shared representations for those tasks pairs when only trained on single

tasks. Similarity was assessed at the end of each training procedure for each of the 100

networks trained using a given regime, and then averaged over all 100 networks for a

given training trial and training regime. We visualized the relationship between task

representations learned under each training regime using multi-dimensional scaling

(MDS). This involved measuring the hidden representation for performing each of the

nine tasks alone, and projecting all nine single task representations to a 2-dimensional

plane. The projection was performed such that the Euclidean distance between the

single task representations was preserved.

Results. As in previous simulations, networks trained only on single tasks yielded

poor multitasking performance (Fig. 24A). However, networks trained on single tasking

were able to acquire all single tasks much faster than the networks trained on

multitasking (Fig. 24B). As expected, an increase in multitasking training also yielded

better multitasking performance at the expense of slower acquisition of single tasks.35

35 Note that neither multitasking training on congruent stimuli alone, nor multitasking training on

incongruent stimuli alone yields perfect multitasking performance, as the multitasking performance is

assessed across the set of all congruent and incongruent stimuli.
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Critically, all three effects were stronger when multitasking training was performed with

incongruent stimuli as opposed to congruent stimuli. The effects of the different

training regimes on the learning of shared representations is clearly observed in the

MDS projections of the patterns of activity for the hidden layer of each network

(Fig. 25). For single task training (upper left panel), the representations project

perfectly into three points, one corresponding to each stimulus dimension, confirming

that tasks that shared a stimulus dimension developed extremely similar hidden unit

representations (as was observed in the correlations reported for previous simulations).

As the proportion of multitasking increased, representations for different tasks showed

progressively more separation; however, this effect was considerably less for the

congruent than the incongruent conditions. The persistence of clustering by stimulus

dimension in the congruent condition even at the highest levels of multitasking training,

and a similar trend even in the incongruent condition, indicates a strong bias toward

shared representation. Nevertheless, at the highest levels of multitasking training with

incongruent stimuli, the network develops fully separated representations, indicated by

distances among them that are roughly equivalent for tasks associated with the same

and different stimulus dimensions.
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Figure 24 . Effects of training regime on performance. (A) Average multitasking accuracy and

(B) iterations of training required for networks to achieve criterial single-task performance (MSE =

0.01 across all tasks individually) as a function of the proportion of multitasking training (abscissa) for

each of the three training regimes (shades of gray — see legend, and see text for explanation of regime

types). Vertical bars indicate standard errors of the mean across networks.
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Figure 25 . Effects of training regime on representational separation. Projections of hidden

representations for each task in example networks trained with varying proportions of multitasking.

For each network, MDS was used to make projections onto a 2-dimensional plane while maintaining

Euclidean distances between its hidden unit representations for each task. Each panels depicts the

projections for an example network trained with each of the nine training regimes; each point depicts

the hidden unit representation for each of the nine tasks in a regime; and colors depict representations

for tasks associated with the same stimulus dimension. Note that in the 100% Single Task Training

regime there are in fact 9 dots, but all three for each input dimension are fully overlapping, indicating

fully shared representations. Insets correspond to the mean (M) and standard deviation (SD) of the

average Pearson-correlation between the hidden unit representations of tasks that are associated with

the same stimulus dimension.

Shared vs. Separated Representations and the Tradeoff between

Learning and Processing Efficiency

In the preceding section we investigated the conditions under which networks

favor the development of shared versus separated representations, showing that shared

representations are learned more quickly and that there is a bias toward doing so even

under conditions of modest exposure to multitasking training. Here, we turn to detailed

analyses of how this impacts the trade-off between the efficacy of learning efficacy

provided by shared representations and the efficiency of processing provided by

separated representations. We begin by presenting a mathematical analysis that builds
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on exact solutions to learning dynamics in deep linear networks (A. M. Saxe et al.,

2013), that we apply to the tradeoff between learning efficacy and processing efficiency

in such networks. We follow this, in Simulation Study 6, with a validation of the results

of that analysis in simulations involving non-linear networks. Then, in Simulation 7, we

illustrate how shared representations of learned tasks can facilitate transfer to novel,

related tasks. Finally, we report results from an empirical study using the extended

Stroop paradigm that tests predictions from these analyses.

3.1.3 Mathematical Analysis: Tradeoff Between Learning Efficacy vs.

Processing Efficiency in Linear Networks. To analyze the tradeoff between

shared and separated representations in neural networks, we introduce a simplified

version of the networks considered in the previous sections, that uses linear processing

units. As part of this simplification, task units and their projections to the hidden and

output layers are replaced with “gating signals” that regulate the activity of units in the

hidden and output layers (as described below). With these simplifications, the

dynamics of learning for the mapping of stimuli to responses for sets of tasks can be

solved exactly using methods developed by A. M. Saxe et al. (2013).

The simplified model, shown in Fig. 26, consists of stimulus and response

dimensions in the input and output layers, respectively. As in the models described in

Part I (cf. Fig. 3), units in the hidden layer are separated into sets corresponding to

stimulus dimensions, and sets in the output layer corresponding to each response

dimension. We analyze two types of such model: one with full sharing of stimulus input

representations in the hidden layer (i.e., the minimal basis set representation, Fig. 26A),

and one with full separation (i.e. the tensor product representation, Fig. 26B). Unlike

the models described above, hidden and output units use linear rather than non-linear

activation functions. Furthermore, tasks are specified by gating the activity in sets of

hidden and output units corresponding to task-relevant dimensions. Specifically, the

activity is zeroed for all units in all sets at the hidden layer except those that receive

input from the task-relevant stimulus dimension(s); similarly, activity is zeroed for all

units in all sets at the output layer except those corresponding to the task-relevant
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response dimension(s). The activity of units in sets corresponding to task-relevant

relevant dimensions is allowed to “pass through.”
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Figure 26 . Gating model used for mathematical analysis of the tradeoff between the

learning efficacy vs. processing efficiency. (A) Network with shared representations in the hidden

layer for tasks associated with the same stimulus dimension (minimal basis set representation). Since

the same input-to-hidden weights are used for the M different tasks associated with a given stimulus

dimension, this increases learning speed by a factor
√
M relative to learning the tasks with separated

representations as shown in (B) (see text). However, in this configuration, functional dependence

prevents two tasks that rely on different stimulus dimensions to be performed at the same time, due to

crosstalk at the output layer (convergent red and green arrows). (B) Network with separated

representations, grouped by output representations (tensor product representation). As elaborated in

Part I, dedicating separate hidden units to each individual task allows tasks associated with different

stimulus dimensions to be performed simultaneously, as long as they also don’t share a response

dimension (also see Fig. 3 and Fig. 5); here, tasks are grouped by those sharing a response dimension,

so that one from each group can be performed at the same time. However, only tasks within a group

share weights from the input to the hidden layer, yielding a learning speed of
√
M/Q, where Q is the

number of groups (see text).

Crucially, with this implementation, the output of the network is a linear function

of units in the task-relevant dimensions (i.e., that are not zeroed). This, coupled with

the gating scheme, permits closed-form analysis of the learning dynamics, which

amounts to the aggregation of a set of linear solutions across training examples. To

illustrate the effects of the gating scheme, consider the network with a minimal basis set

representation, in which the input-to-hidden weights for one stimulus dimension are
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shared by all tasks that rely on that stimulus dimension, and a task that maps the first

stimulus dimension to the first response dimension (see Fig. 26A, red). This will rely on

the weights W 1
hs, mapping stimulus dimension x1 to response dimension y1. In a linear

network without gating to the hidden layer, the output y1 could be corrupted by the

other stimulus dimension x2 (Fig. 26A, green), as information from other stimulus

dimensions would simply pass through the network with impunity. Furthermore,

without gating to the output layer, the network would produce a response in the

irrelevant response dimension y2. As in non-linear networks, we assume that control

mechanisms manage such cross talk. To implement a comparable mechanism in the

linear network, a gating signal is configured such that irrelevant stimulus dimensions

(x2) are gated off in the hidden layer and the irrelevant response dimensions are gated

off in the output layer (y2), allowing only information from the task-relevant stimulus

dimension x1 to pass to the task-relevant response dimension y1. The gating scheme can

be configured to perform all other tasks in an analogous manner, if these tasks are

performed alone. In the minimal basis set representation, gating allows each

input-to-hidden weight matrix to be shared across the tasks corresponding to different

response dimensions. This leads to a factor
√
M speedup in learning speed relative to

learning the tasks with separated representations (see Appendix C).

While the sharing of representations in the network speeds learning, it impedes

multitasking as in non-linear networks. For example, in the minimal basis set

configuration shown in Fig. 26A, gating more than one task through to the output will

lead to interference due to functional dependence between tasks. As discussed in Part I,

this can be mitigated by separating hidden unit representations into sets dedicated to

each individual tasks (i.e., tensor product representations), as shown in Fig. 26B (cf.

Panel B of Fig. 3). This allows a maximum of Q tasks (i.e., the number of output

dimensions) to be performed simultaneously; however, the number of shared weights

projecting from the input to the hidden layer is reduced across tasks by a factor Q,

which slows learning. These effects can be formalized, providing an analytic expression

of the tradeoff between learning speed and multitasking ability as follows:
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t2 ∝ kQ/M (8)

where t is the number of iterations required to learn all tasks, Q is the maximum

number of concurrently executable tasks, M is the number of tasks sharing the same

stimulus dimension, and k is a proportionality constant that summarizes the statistical

strength of the stimulus-response associations for each task, the learning rate, and the

performance criterion used to decide when learning is complete (see Appendix C for the

derivation and complete form of this expression).

A key observation from this expression is that, as noted above, learning speed

increases in proportion to
√
M — that is, the number of tasks that share the same

stimulus dimension. In full nonlinear networks of the sort described in Part I (and used

in the simulations below), random initial weights from task units to the hidden and

output layers can be thought of as implementing a random sampling of (weak) gating

schemes. Equation 8 indicates that gating schemes that can exploit shared

representations at the hidden layer will learn more quickly. This should bias networks in

which the weights from the task units to the hidden output layers are learned, to

develop task weights that induce shared representations at the hidden layer for tasks

that share similar inputs. In the section that follows, we test the link between speed of

learning and multitasking performance through causal manipulation of representation

sharing in non-linear networks.

3.1.4 Simulation Study 6: Tradeoff Between Learning Efficacy vs.

Processing Efficiency in Non-Linear Networks. The mathematical analysis of

linear networks presented above suggests that the presence of shared representation

should result in (1) faster learning of single tasks and (2) decrements (at least initially)

in multitasking performance. Simulation Studies 4 and 5 exhibited effects that suggest

that these relationships generalize to non-linear networks as well, showing that single

task training on tasks with shared structure was associated with the acquisition of

shared representation, and that this was accompanied by faster learning and poorer

multitasking performance. However, those simulations did not establish a causal
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relationship between the presence of shared representation and the consequences for

learning and processing in those networks. That is, faster learning and poor

multitasking performance could have resulted from the task environment and training

regime alone, irrespective of whether the network learns shared representations for tasks.

To test whether the learning of shared representations is a cause of faster learning

in non-linear networks, we biased the network toward learning either shared or separate

representations through weight initialization. Architectural biases in artificial systems,

such as weight initialization, may correspond to innate constraints of biological neural

systems. Thus, studying the effects of architectural biases toward shared representation

may yield insights into why neural systems like the human brain would prefer

representation sharing over representational separation, and may provide a rationale for

resulting limitations in multitasking.

Network architecture and task environment. We used the same network

architecture and task environments as described in Simulation Study 4. However, here

we restricted simulations to three environments, in which tasks were divided into

subsets that shared either 100%, 80% or 0% of their stimulus features (see Simulation

Study 4). We also added a manipulation of initial task weights as described below.

Training and analysis. To manipulate sharing, we initialized the weights from the

task input units to units in the hidden layer (“task weights”), as these determine the

amount of overlap between task representations at the hidden layer. Specifically, for

each subset of tasks that shared input features, we initialized the task weights within the

subset such they had a correlation of r. The weight vectors for tasks of non-overlapping

stimulus dimensions were constrained to be uncorrelated. For each of the three task

environments described above, we constructed a separate set of networks that varied r

from 0 to 0.975 in steps of 0.025. Finally, all task weights to the hidden layer were

scaled to be on average five times higher than the weights between other layers in the

network.36. 100 networks were trained per initialization condition, using the same values

for all other parameters as those reported for Simulation Study 4. For every pair of

36 This was done to enhance the effects of different initial task similarities on learning.
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tasks that mapped to different response dimensions, we assessed the similarity between

the task weights learned for the two tasks, and the networks’ multitasking performance

for that pair (see Simulation Study 4). In addition, we assessed the number of learning

iterations required to reach training criterion (MSE = 0.01) across all single tasks.
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Figure 27 . Effects of bias toward sharing in weight initialization. (A-C) The average

similarity in task weights, after learning, between pairs of tasks in the same subset associated with

different response dimensions, as a function of the initial similarity in their weights, for environments

with (A) 100%, (B) 80% and (C) 0 % stimulus feature overlap among tasks within the subset. (D)

Mean multitasking accuracy (averaged over pairs of tasks within a subset associated with different

response dimensions) plotted against the mean number of iterations required to train the network to a

fixed criterion on all single tasks (MSE=0.01). All data points represent the mean measures across

networks initialized with the same task similarity for tasks in the same subset and same environment.

(E) Enlarged view of 100% feature overlap condition showing that, unlike in the other conditions,

initial bias toward sharing was positively correlated with faster learning and negatively correlated with

multitasking accuracy.

Results. As might be expected, networks with a higher initial bias toward sharing

(i.e., higher correlation of the task weights between pairs within a set) developed more
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similar representations at the hidden layer for those tasks (in terms of the final

correlations between task weight vectors; Fig. 27A-C). Furthermore, as observed in

Simulation Study 4, shared structure in the task environment influenced the correlation

between learned task representations, with higher stimulus feature overlap between

tasks within a set leading to higher correlations between the representations of those

tasks. Critically, in environments with high feature overlap between tasks, stronger

initial biases toward shared representation lead to increased learning speed (i.e. fewer

iterations required to achieve a given level of single-task performance), as similarities

between tasks could be exploited by means of shared representations (Fig. 27D-E).

That is, biases toward shared representation amplified learning benefits from shared

structure between tasks, suggesting a direct link between the presence of shared

representation and learning efficacy. However, this came at the cost of multitasking

performance. Networks that learned faster (due to biases toward shared representation)

showed lower performance in multitasking, at least for environments with high amount

of feature overlap (Fig. 27E). Not surprisingly, learning benefits from shared

representations were less prevalent in environments with less feature overlap between

tasks (in fact, there was a trend toward the opposite effect). Nevertheless, the effects of

shared representation on impairments in multitasking remained (Fig. 27D). These

results suggest that, to the extent it is advantageous for an agent to be able to respond

to the same set of stimuli in more than one way (e.g., point to an object such as a ball

or a rock, pick it up, or kick it) then an “inductive bias” (such as small, random initial

weights) that favors the development of shared representations may be valuable insofar

as it ensures faster learning of different responses to those objects (i.e., tasks), even

though they will be dependent on control and risk multitasking interference if several of

those objects must be processed in different ways at the same time. That is, systems

that must function flexibly in rich environments may, at least by default, favor efficacy

of learning over the efficiency of parallel processing. We address this tradeoff more

directly in the section titled “A Normative Theory of Automaticity: Meta-control and

the Tradeoff between Shared and Separated Representations”.
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3.1.5 Simulation Study 7: Cognitive Flexibility and Transfer to Novel

Tasks. In addition to more rapid learning, shared representations have been

associated with improved transfer; that is, facilitated acquisition of novel tasks that

share structure with those on which the network was already trained (Bengio et al.,

2013; Caruana, 1997; Collobert & Weston, 2008; Zamir et al., 2018). The ability to

flexibly acquire novel tasks is often attributed to cognitive control (Diamond, 2013;

Goschke, 2000; Kriete et al., 2013; Shiffrin & Schneider, 1977; Verguts, 2017). That is,

cognitive control is thought to support rapid learning of novel tasks, allowing organisms

to flexibly adapt to changing demands. Some have suggested that the brain can achieve

this flexibility by leveraging existing representations for novel tasks (Kriete et al., 2013;

Verguts, 2017). For instance, Verguts (2017) suggests that the rapid acquisition of novel

stimulus-response mapping tasks can be accomplished by synchronizing existing

representations for stimuli and responses that are needed to perform the task. However,

Vergut’s study did not illuminate how flexible task learning depends on the presence of

existing representations.

In machine learning, the learned representations of pre-trained tasks are found to

improve the generalization performance on a primary, related task (Baxter, 1995;

Bengio et al., 2013; Caruana, 1997; Collobert & Weston, 2008; Zamir et al., 2018).

Similarly, prior learning of simple task-related information was shown to facilitate the

transfer to novel, more complex tasks (Bengio, Louradour, Collobert, & Weston, 2009;

Chang, Gupta, Levine, & Griffiths, 2018; Elman, 1993; Krueger & Dayan, 2009; Rohde

& Plaut, 1999). Such transfer effects are often studied in the context of “multi-task

learning” paradigms (Caruana, 1997), in which an agent is be pre-trained on a set of

auxiliary tasks before it is trained on a primary (target) task.

While research in machine learning has primarily related the effects of pre-training

to improvements in performance on a primary task, we adopt the multi-task learning

paradigm to demonstrate that shared representations give rise to the computational

benefits of cognitive control in terms of the ability to rapidly acquire novel tasks. We

test this hypothesis in the non-linear networks used above by studying the learning
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performance of a set of target tasks as a function of the number of tasks that a network

is pre-trained on. Specifically, we investigate whether learned representations for

stimulus dimensions in the hidden layer of a network facilitate the learning of tasks that

are associated with the same stimulus dimensions.

Network architecture and task environment. The network architecture and

processing used in this simulation were the same as those reported in Simulation Study

6. However, features in each stimulus dimension were coded as one-hot vectors, as in

Simulation Studies 1-3. In addition, the number of units in the input and output layers

was adjusted to represent a task environment with three stimulus dimensions and six

response dimensions, and with three features in each dimension. Thus, the stimulus

input layer had nine units and the output layer had 18 units, so that the network could

support a total of 3 ∗ 6 = 18 possible tasks. However, as described below, the network

was trained initially on only a subset of those tasks, and then tested on how quickly it

could acquire others.

Training and analysis. 80 instances of the network were implemented and divided

equally into four groups, in which the networks were pre-trained either on no auxiliary

tasks, or one, two or three auxiliary tasks (see Fig. 28A, auxiliary tasks are depicted as

thin, dashed arrows). Networks in all groups were trained until they reached an MSE

criterion of 0.001. Each of the auxiliary tasks was associated with different stimulus and

response dimensions. After their initial training (in the groups that received

pre-training), networks in all four groups were trained on the same set of three target

tasks, each of which was (like the auxiliary tasks) associated with different stimulus and

response dimensions. Critically, target tasks shared the same relevant stimulus

dimensions as the pre-trained auxiliary tasks, whereas they were associated with a

different set of response dimensions. The networks were trained on all target tasks until

they reached an MSE criterion of 0.001. For each group of tasks, we assessed transfer

performance: the number of training iterations required to reach criterion on all target

tasks. In order to visualize the the similarity between the hidden representations of

auxiliary tasks and target tasks, we used MDS to project the single task patterns for all
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nine tasks in the hidden layer on a 2-dimensional plane, such that the Euclidean

distances between task representations were preserved (see Simulation Study 5, cf.

Fig. 25).

Results. Fig. 28B shows the MDS projections of the hidden layer patterns of

activity for the auxiliary tasks (shown as thin circles) and target tasks (shown as thick

circles) from an example network in each group. In each example, the representations of

the tasks cluster into three groups, one for each of the stimulus dimensions.

Furthermore, for networks that were pre-trained on auxiliary tasks, the representations

for the target task were close to those for the auxiliary task that shared the same

stimulus dimension. This suggests that target tasks re-use the representations for the

stimulus dimension that they share with a pre-trained auxiliary task. The average

learning curve for each group is shown in Fig. 28C. The learning curves indicate that

target tasks are acquired faster if the network is pre-trained on more auxiliary tasks.

Without any pre-training, networks required on average 27.55 (SD = 0.76) training

iterations. When pre-trained on one, two or three auxiliary tasks, networks learned all

target tasks on average in 22.10 (SD = 1.37), 15.35 (SD = 1.18) and 11.10 (SD = 0.55)

training iterations, respectively.

These results support the conjecture that shared representation do not just give

rise to serial processing constraints, as explored in previous sections, but do also

facilitate rapid acquisition of novel tasks, i.e. cognitive flexibility. This suggests that

representation sharing enables tasks to be learned quickly at the expense of inducing

structural and functional dependencies with other tasks, forcing novel tasks to be

processed in serial. In the next section, we empirically test this prediction in a modified

version of the Stroop paradigm.

3.1.6 Empirical Study: Learning, Shared Representations and

Functional Dependence. The mathematical analysis and simulation studies above

make clear the consequences of the tradeoff between shared and separated

representations for learning efficacy vs. processing efficiency. These make three

predictions with regard to human performance: (1) learning a new task involving a
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Figure 28 . Effects of pre-training on the acquisition of novel tasks. (A) Pre-training

conditions. Pre-training was performed in a network with three stimulus dimensions in the input layer

(shown in grey) and six response dimensions in the output layer (shown in green). The hidden layer is

shown in blue and depicts hypothesized learned representations of each stimulus dimension. Networks

were pre-trained on no, one, two, or three auxiliary tasks (thin, dashed arrows) before they were

trained on three target tasks (thick, solid arrows). (B) Projections of hidden representations for each

task in a trained example network onto a 2-dimensional plane while maintaining Euclidean distances

between the representations using MDS. Each plot in (B) corresponds to the pre-training condition

shown above in (A). Projections of auxiliary tasks are shown as thin circles and projections of target

tasks are shown as thick circles. Circles with the same color correspond to projections of tasks that

share the same stimulus dimension. (C) Mean squared error on the target tasks as a function of

training iterations for different pre-training conditions. Vertical bars represent standard errors of the

mean across different networks.

stimulus dimension for which there are already representations (i.e., that is used by

other familiar tasks) should be associated with rapid acquisition (by exploiting the



RATIONAL BOUNDEDNESS OF COGNITIVE CONTROL 110

shared use of those representations); (2) it should not initially be possible to perform

that task simultaneously with others that rely on that input representation; however,

(3) extensive practice on such multitasking should make it possible to perform them

simultaneously. The idea that performance of a novel task may be control-dependent,

but that extensive practice can lead to automaticity (and associated multitasking

capability) has of course been demonstrated by a number of classic studies (e.g.,

Logan, 1988; MacLeod & Dunbar, 1988; Shiffrin & Schneider, 1977). However, neither

those studies nor any others of which we are aware explicitly addressed the role of

shared representations in mediating the observed effects. To do so, we conducted an

empirical study using a modified version of the Stroop paradigm (cf. Fig. 5), and

analyzed both overt performance (i.e., RT and accuracy) as well the extent to which

multitasking performance reflected serial parallel vs. parallel processing, using the

measures discussed above (Townsend & Wenger, 2004, see Simulation Study 2).

In the classical Stroop (1935) paradigm (described in Part I, in the section titled

“A Simple Neural Network Model”), the canonical observation of poorer performance

for color naming of incongruent stimuli (e.g., responding “red” to the word GREEN

displayed in red) is widely considered to reflect response interference (Glaser & Glaser,

1982; Morton & Chambers, 1973; Roelofs, 2003) arising from shared phonological

representations (see Fig. 2). This represents an instance of structural interference, as we

defined it in Part I (see Section “Definitions”). This not only precludes multitasking

but, as the Stroop effect demonstrates, can even degrade single task performance in the

case that it involves one that is weaker than those with which it shares representations

(as in the case of the color naming versus word reading; J. D. Cohen et al. (1990)).

Here, we use an extended version of the Stroop task to address functional interference,

and test the first and second predictions enumerated above; viz., that learning an new

task preferentially relies, when possible on the use of existing representations, and that

doing so can lead to functional interference that impairs multitasking performance.

The study involved three single task conditions and two dual-task conditions, all

of which used the same Stroop stimuli. In all conditions, a trial consisted of presenting
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a Stroop stimulus (color word displayed in a congruent or incongruent color) at one of

four eccentric locations on a computer screen.

Single task conditions. In the single task conditions, participants were asked either

to say the color of the stimulus out loud (color naming, CN), to map the location of the

stimulus to a key press (location mapping, LM), or to map the color word to a key press

(word mapping, WM). Note that location mapping and word mapping are considered

novel tasks in the sense that participants were required to learn arbitrary associations

between color words and locations (as stimuli) and keys (as responses). Trials in which

the ink color and the color word matched were considered to be congruent trials

whereas trials in which they did not match were considered to be incongruent trials.

As discussed in Section “Graph-Theoretic Analyses” of Part I, there are at least

two ways participants could learn to perform the word mapping task: They could

exploit existing orthographic representations (i.e., those used for word reading), and

learn to map these to manual responses (see Fig. 29A); alternatively, they could learn a

new set of orthographic representations dedicated to mapping words to manual

responses (see Fig. 29B). The former involves the sharing of existing representations

(e.g., between word reading and word mapping) that is predicted to be relatively quick,

but should lead to control-dependence of the word mapping task and, in particular, the

inability to multitasking it with color naming; while the latter involves the development

of new representations dedicated to the word mapping task, that are separate from

those used for word reading, which should take longer but allow the word mapping task

to be multitasked with color naming. The multitasking conditions of the experiment

were designed to test predictions made by each of these possibilities.

Multitasking conditions. In the first multitasking condition, participants were

asked to perform the color naming task concurrently with the word mapping task

(CN+WM). If participants learned to perform the word mapping task using shared

orthographic representations (Fig. 29A), then performance in this multitasking

condition should be subject to considerable interference. This is because it would

require the allocation of control to the hidden representations for words, which are
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Figure 29 . Two Neural Network Models of the Extended Stroop Paradigm. Each network

implements simplified examples of the four tasks (using only two features for each stimulus and

response dimension): color naming (CN), word reading (WR), word mapping (WM) from a word to a

key press, and location mapping (LM) from a location to a key press. Both networks are capable of

performing color naming and location mapping at the same time because both tasks are independent of

one another (i.e., they do not share any representations). However, the two networks show different

performance when asked to multitask color naming and word mapping. (A) In the first network, the

word mapping task shares a representation for words with the word reading task at the hidden layer,

introducing functional dependence between the word mapping task and the color naming task. As a

consequence, the network is not able to accurately perform color naming and word mapping at the

same time. (B) In the second network, the word mapping task has a separate representation for words.

As a consequence, these are independent, and the network can perform color naming and word

mapping simultaneously.

shared with the word reading process. This would implicitly engage the word reading

process, which interferes with color naming, thus producing functional dependence

between word mapping and color naming. Such functional dependence would induce

greater interference for incongruent Stroop stimuli compared to congruent Stroop

stimuli. In contrast, if participants learned a set of orthographic representations

dedicated to the word mapping task (Fig. 29B), then this multitasking condition would

not introduce functional dependence and any attendant interference, and therefore

performance should be unaffected by congruency. Thus, the use of shared vs. separated
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representations for word reading vs. word mapping make different predictions regarding

performance for multitasking color naming and word mapping, which can be used to

adjudicate between the two possibilities. Based on the formal analyses above, we

predicted that learning of the word mapping task in the second single task condition

should favor the exploitation of shared representations (i.e, use of existing orthographic

representations for word reading), which should not only produce an impairment of

multitasking performance for color naming and word mapping but, critically make this

sensitive to congruency.

In the second multitasking condition participants were asked to multitask color

naming and location mapping (CN+LM). This served as a control for the effects

predicted above. According to the network model depicted in Fig. 29, these tasks are

fully independent, and thus it should be possible to perform them concurrently without

interference, by allocating control to the hidden representations that map the two

stimulus dimensions (color and location) to the response dimensions associated with

each task (verbal and manual, respectively). For the same reasons, performance in this

condition should be unaffected by stimulus congruency.

Below, we present additional details of the experimental procedure, simulations

using the neural network model presented in Part I that formalize our predictions, and

empirical data regarding human performance that test these predictions.

Experiment procedure. The experiment consisted of the three single task

conditions and two multitask conditions described above. Participants first performed

the three single task conditions (CN, WM, LM) in the fixed order described above, and

then performed the two multitask conditions (CN+WM, CN+LM). The order of the

multitask conditions was counter-balanced across participants.

In all conditions, a trial began with a grey screen and a fixation cross at its center

for an inter-trial interval (ITI) of 500ms. After the fixation cross, a Stroop stimulus was

presented for 850ms. Each Stroop stimulus consisted of one of four color words (“RED”,

“GREEN”, “BLUE”, “BROWN”) displayed in one of four colors (red, green, blue,

brown) at one of four locations (left, top, bottom, right). The color, word, and location
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of the stimulus was fully counterbalanced across conditions. Thus, each condition

contained one block of 64 trials (reflecting a fully crossed 4 x 4 x 4 design involving the

three factors (color, word and location) with four levels each. All single task conditions

were performed before multitask conditions, and before each of the single task

conditions participants performed five practice trials of the task for that condition.

In each condition, participants were instructed to indicate their response(s) while

the stimulus was on the screen. In the CN condition, participants responded to the color

of the stimulus with their voice, by naming the color out loud. In the LM condition,

participants were instructed to respond to the left, top, bottom and right position of the

stimulus with the keys “1”, “2”, “3” and “4” respectively. In the WM condition,

participants were asked to respond with the same set of keys to the four color words,

with specific assignments counterbalanced across participants. In each of the single task

conditions, participants were instructed to ignore the two task-irrelevant stimulus

dimensions (e.g. during the CN condition, participants were told to ignore the word and

location of the stimulus). In the two multitask conditions, participants were instructed

to respond to the two task-relevant stimulus dimensions simultaneously, using the same

response mappings as in the single task conditions, while ignoring the third stimulus

dimension irrelevant to both tasks. Thus, in the CN+WM condition, participants were

instructed to name the color of the stimulus at the same time as pressing the key

corresponding to the word learned for the WM condition, while ignoring the location of

the stimulus; whereas in the CN+LM condition, they were instructed to name the color

in which the stimulus was displayed while simultaneously pressing the key corresponding

to the location of the stimulus relative to the center dot, while ignoring the word.

Sample. Thirty individuals were initially enrolled to participate, but three were

disqualified based on technical malfunctions or misunderstanding of instructions. We

excluded another 6 participants whose accuracy was below chance (25%) in at least one

of the single task conditions, yielding 21 participants (14 female) ages 18 to 34 years (M

= 21.52 years) who were included in data analysis. All participants gave written

informed consent and were debriefed about the purpose of the study after the
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experiment. The study was approved by the Institutional Review Board of Princeton

University.

Data analysis. The response time (RT) and accuracy for each task in each trial

was recorded. Reaction times for verbal responses were determined by plotting the

waveform for the audio response for each trial and having graders manually select the

time of speech onset. Manual grading was necessary to ensure that random acoustic

signals, such as coughing or deep breaths, were not counted as speech onset. The

graders were blind as to which trials came from which conditions. Mean RT and

accuracy was computed separately for congruent and incongruent trials in each single

task condition for each participant. For the multitask conditions, we computed

accuracy by considering a trial to be correct if the response for both tasks was correct.

The RT of a multitasking condition corresponded to the slower of the two responses and

was conditioned on correct trials only. As with the single task conditions, multitasking

accuracy and RTs were computed separately for congruent and incongruent trials.

We first conducted one-tailed t-tests for each multitasking condition to determine

whether accuracy was above chance level for each condition. In order to investigate the

effects of multitasking condition (CN+WM vs. CN+LM) and stimulus congruency

(color-word congruent/incongruent), we used two linear mixed effects regression models:

(1) a generalized linear mixed effect regression of multitasking accuracy, assuming

binomial distribution of response variables with a logit link function and (2) a mixed

effect linear regression of multitasking RT. In the first model, accuracy (as defined

above) was the dependent measure, with fixed effects estimated for multitasking

condition, stimulus congruency, and the interaction between multitasking condition and

congruency. In the second model, RTs were used as the dependent measure, with the

same fixed effects as the first model. Both models also included a random effect of

participant to account for individual differences.

Previous work has shown that accuracy and RT measures are insufficient

indicators of parallel versus serial processing (Townsend, 1972, 1990). Moreover,

accuracy or RT differences between multitasking conditions may be the result of
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performance differences in the single tasks. Thus, it is difficult to infer whether

participants operated more or less parallel in one multitasking condition versus the

other when investigating multitasking accuracy and RT alone. To overcome for these

limitations, we computed a metric of parallel processing capacity proposed by Townsend

and Wenger (2004) for both multitasking conditions. In their work, Townsend Wenger

introduce a load capacity coefficient C(t) that assesses the degree two which two task

processes operate in parallel at time point t, by assessing the distribution of RTs for

each individual task, and comparing it to the distribution of RTs at which participants

respond to multiple tasks simultaneously. The capacity coefficients can be used to

assess the degree of interaction between two tasks, taking into account performance for

each single task.

For each participant, the capacity coefficient in the CN+WM condition was

defined as

CCN+WM(t) = log(P (TCN ≤ t)) + log(P (TWM ≤ t))
log(P (TCN ≤ t AND TWM ≤ t)) (9)

where P (TCN ≤ t) corresponds to the probability that the participant responded

to the color naming task before time t in the CN condition, P (TWM ≤ t) corresponds to

the probability that the participant responded to the word mapping task before time t in

the WM condition, and P (TCN ≤ t AND TWM ≤ t) corresponds to the probability that

the participant responded to both tasks before time t in the CN+WM condition. The

capacity coefficient for the CN+LM condition, CCN+LM(t), was defined an analogous

manner. We computed the capacity coefficients in both multitasking conditions across

all stimuli and separately for each participant. Similar to Townsend Wenger (2004), we

conditioned these measures on correct trials.37 A capacity coefficient of 1 would indicate

that the two tasks were executed in parallel at time point t, suggesting that the

underlying task processes are independent. A capacity coefficient larger than 1 would

37 Townsend and Altieri (2012) propose similar metrics taking into account multitasking accuracy.

However, our experiment did not yield sufficient numbers of trials for both correct and incorrect

responses to compute those metrics.
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indicate that the two task processes facilitate each other when executed in parallel

(yielding faster RTs for both tasks compared to when each task is executed alone).

Conversely, a capacity coefficient smaller than 1 would indicate that the two task

processes interfere with one another. We predicted that CCN+WM(t) < CCN+LM(t) at

any time t if the color naming and word mapping task are functionally dependent by

means of a shared representation between word reading and word mapping.

Neural network simulation. We simulated the experiment using the same general

neural network architecture and learning parameters as described in Simulation Study

2.38 The stimulus input layer was comprised of three stimulus dimensions (representing

color, word and location) with four input units per dimension. The output layer was

compromised of two response dimensions (verbal and manual), with four output units

per dimension. The task input layer was comprised of four task units, one each for the

color naming, word reading, word mapping and location mapping tasks.

We trained 21 networks on each of the four individual tasks using the entire set of

Stroop stimuli used in the experiment. As in Simulation Study 2, we sampled 100

patterns for each of the single tasks (CN, WM and LM) per epoch. We also trained the

network on twice as many patterns for the word reading task to simulate prior training

on WR (cf. J. D. Cohen et al., 1990). The network was trained until it reached an

average MSE of 0.001 over all three relevant single tasks.

After training, we used the procedure described in Simulation Study 1 to extract a

task dependency graph based on the single task representations in the network. To

assess the similarity between the learned representations for each task in the hidden

layer of the network, we projected each task representation onto a 2-dimensional plane

as described in Simulation Study 5. We also computed the average accuracy across all

networks for all single tasks (CN, WM and LM), as well as for both multitasking

conditions (CN+WM, CN+LM), separately for congruent and incongruent stimuli.

38 Note that the network was not fit to experiment data. Instead, we used the same parameters as in

previous simulations to derive qualitative predictions about the network’s performance in the extended

Stroop paradigm.
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Finally, we investigated the effects of multitasking condition (CN+WM vs. CN+LM)

and stimulus congruency (color/word congruent/incongruent) in a mixed effect linear

regression. We modeled multitasking accuracy as a function of multitasking condition,

stimulus congruency, as well as their interaction. Differently initialized networks were

treated as a random effect.
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Figure 30 . Neural network simulation of modified Stroop paradigm. (A) Hidden unit

representations in an example of a trained network for color naming (CN), word reading (WR), word

mapping (WM) and location mapping (LM) projected onto a 2-dimensional plane while maintaining

Euclidean distances between the representations using MDS. Each circle corresponds to a projection for

a given single task (see Fig. 25 for additional details). (B) The bipartite task graph extracted from

representations in the hidden and output layers of the example network. (C) The corresponding task

dependency graph, with structural dependencies shown as solid lines and functional dependencies as

dashed lines. (D, E) Accuracies for single tasks and multitasking conditions after network training for

(D) congruent and (E) incongruent Stroop stimuli, averaged across all networks. Each dot corresponds

to performance of a single network in a given condition.

Results: neural network simulation. Fig. 30A shows projections of the patterns of

activity in the hidden layer for the four single tasks after training in an example

network. The representations for word reading and word mapping form a cluster,
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suggesting that the neural network exploits structural similarity between the two tasks

by learning a shared representation. As a consequence, both tasks share an input node

in the extracted bipartite task graph (Fig. 30B). Thus, the corresponding task

dependency graph predicts functional dependence between the color naming and word

mapping tasks (Fig. 30B-C). However, neither structural nor functional dependence is

predicted between the color naming and location mapping tasks. The performance

overall all networks was consistent with this prediction: they were more accurate in

multitasking color naming and location mapping (CN+LM) than color naming and

word mapping (CN+WM), (β = −0.2701, SEM = 0.0070, p < 10−52). Notably,

multitasking performance in the CN+LM condition was comparable to the high overall

performance on all single tasks, and stimulus congruence showed no main effect on

multitasking accuracy (β = 0.0030, SEM = 0.0070, p = 0.6683). However, the mixed

effect regression revealed a significant interaction between multitasking condition and

stimulus congruency (β = −0.2564, SEM = 0.0100, p < 10−40), suggesting that

incongruent stimuli had a detrimental effect on accuracy when multitasking CN+WM

but not when multitasking CN+LM (Fig. 30D-E).

Results: human performance. Table 1 lists accuracies and RTs for all experiment

conditions. Performance dropped for multitasking CN+LM, but participants’ error rate

was still above chance (multitasking chance performance = 6.25%) for congruent trials

(M = 76.02%, SD = 33.83%), t(20) = 9.4520, p < .0001, and incongruent trials

(M = 71.54%, SD = 28.67%), t(20) = 10.4357, p < .0001. Note that human

performance in the CN+LM condition was notably lower compared to the neural

networks’ performance in this condition. This suggests that there may be factors over

and above functional dependence that contributed to impaired multitasking

performance (see Summary and Conclusions for Part II). However, as predicted by the

simulation results, performance for CN+WM was much lower, despite the fact that

participants could perform each of these tasks on their own extremely well (see

Fig. 31A-B). The error rate for congruent CN+WM trials was still above chance

(M = 28.03%, SD = 33.83%), t(20) = 3.7092, p < .001. For incongruent CN+WM
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trials, where the color and word were in conflict, accuracy was also above chance

(M = 11.47%, SD = 28.67%), t(20) = 2.2564, p < .05.

Condition Accuracy in % (M ± SD) RT in s (M ± SD)

Congruent Incongruent Congruent Inongruent

Single Tasking

CN 100.00 ± 0.00 96.49 ± 4.56 0.641 ± 0.086 0.696 ± 0.074

LM 96.63 ± 7.41 97.10 ± 4.75 0.498 ± 0.088 0.502 ± 0.083

WM 88.35 ± 16.57 89.68 ± 8.26 0.720 ± 0.101 0.775 ± 0.088

Multitasking

CN+LM 85.71 ± 35.86 80.95 ± 40.24 0.971 ± 0.087 0.991 ± 0.074

CN+WM 33.33 ± 48.30 9.52 ± 30.08 0.883 ± 0.151 0.964 ± 0.124
Table 1

Accuracies and RTs for extended Stroop task. M and SD correspond to the mean and standard

deviation across participants, respectively. Results are reported for single task conditions color naming

(CN), location mapping (LM), word mapping (CM) and multitasking conditions color naming +

location mapping (CN+LM), as well as color naming + word mapping (CN+WM).
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Figure 31 . Behavioral results for human participants in modified Stroop paradigm. (A, B)

Accuracies for single tasks (color naming, CN; location mapping, LM; word mapping WM) and

multitasking conditions for (A) congruent and (B) incongruent Stroop stimuli averaged across all

participants. Each dot corresponds to performance of a single participant in a given condition. (C)

Capacity coefficient for both multitasking conditions as a function of time (see text) averaged across all

participants (solid lines). Shaded area around each line indicates standard error of the mean across

participants.

The linear mixed effects regression models further illustrate the differences
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between multitasking condition and stimulus congruency; accuracy was significantly

lower on CN+WM trials compared to CN+LM trials

(β = −1.9630, SEM = 0.2813, p < .0001), and RTs significantly slower

(β = 0.1834, SEM = 0.0317, p < .0001). As expected, RTs were overall slower on

incongruent compared to congruent trials (β = 0.0641, SEM = 0.0202, p < 0.01).

However, accuracy was overall higher on incongruent compared to congruent trials

(β = 0.5660, SEM = 0.2076, p < .01). A post-hoc analysis revealed that incongruent

trials were associated with higher accuracy than congruent trials on in the CN+LM

condition (β = 0.5172, SEM = 0.2175, p < 0.05); as predicted by functional

dependence of CN and WM, participants performed worse on incongruent trials relative

to congruent trials in the CN+WM condition (β = −0.9072, SEM = 0.2672, p < .001).

As a consequence, accuracies yielded a significant interaction between multitasking

condition and congruency (β = −1.7031, SEM = 0.3421, p < .0001), while there was

no significant interaction between multitasking condition and congruency for RTs

(β = 0.0650, SEM = 0.0421, p = 0.1237).

Fig. 31C shows the capacity coefficient for both multitasking conditions as a

function of time within trial. The capacity coefficient stayed below 1 across all

participants for both multitasking conditions, suggesting that in both multitasking

conditions overall the two tasks interfered with one another. For short response times

(< 0.74s), the capacity coefficient was significantly lower in the CN+WM condition

compared to the CN+LM condition, suggesting a greater degree of interference at early

stages of processing (note that the capacity coefficient ensures a fair comparison by

taking into account the RT of each single task). For longer response times, the two

multitask conditions were comparable in terms of their capacity coefficient.

Overall, these results indicate that human participants performed poorly in the

CN+WM condition relative to the CN+LM condition, as predicted by the network

model. This supports the conjecture that participants leveraged existing representations

(e.g. for WR) when acquiring a novel task (WM), leading to functional interference

between CN and WM. This is further supported by the observation that performance
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decrements in multitasking CN+WM are greater for both the network model and

human participants when stimuli were incongruent as opposed to congruent. One could

argue that participants shouldn’t exhibit this behavior if they had learned separated

instead of shared representations for WM and WR. This begs the question: Why would

humans prefer learning shared over separated representations, at the cost of limitations

in multitasking capability? In the next section, we review a normative theory of the

tradeoff between shared and separated representations to explore this question.

3.1.7 A Normative Theory of Automaticity: Meta-control and the

Tradeoff between Shared and Separated Representations. The tradeoff

between shared versus separated representations, and its consequences for learning

efficacy versus processing efficiency, raises a higher level question about strategic

decision making, and the allocation of cognitive control. This involves an intertemporal

choice between the more immediate value of acquiring a skill quickly using shared

representations, but at the expense of control-dependence and the inefficiency of serial

processing (e.g., playing the piano with one finger at a time), vs. the potentially greater

value of processing efficiency afforded by separated representations, but that is deferred

due to the additional time (as well as effort, and possibly even expense) required to

acquire task dedicated representations (e.g., playing chords with several fingers at the

same time).39 This can be framed as an optimization, or bounded rationality problem

(Gigerenzer, 2008; Simon, 1957; Todd & Gigerenzer, 2012), along the lines of recently

proposed theories of cognitive control (Shenhav et al., 2013, 2017) by taking into

account both the rewards and costs associated with each option. Here we present work

that pursues such an approach as applied to the choice between learning shared versus

separated representations.

3.1.8 Model Structure. Sagiv, Musslick, Niv, and Cohen (2018) constructed

an abstract model of the tradeoff between shared and separated representations. This

modeled an agent that learns to perform a set of tasks involving a common set of

39 This is consistent with the proposition that intertemporal choice is a fundamental feature of all

decisions about the allocation of control (J. D. Cohen, 2017).
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stimulus and response dimensions (along the lines of those described in Fig. 3), by

progressively sampling and modifying through learning the efficacy of one or both of

two ways of performing the task: one with the properties of a minimal basis set

representation, that was learned more quickly but imposed a serialization cost that

scaled with the number of tasks that had to be performed in a given trial; and another

with the properties of a full tensor product representation, that took longer to learn but

permitted full multitasking (i.e., concurrent performance) of any number of tasks thus

averting any serialization costs. On each trial, the agent was required to perform some

number of tasks (ranging from 1-5), and could choose which of the two ways to perform

them. The agent was rewarded for the performance of each task independently based on

the accuracy for that task, and the goal of the agent was to optimize overall

future-discounted reward rate (discussed further below). Critically, if the method

corresponding to a minimal basis set was used, each task had to be performed one at a

time, whereas for the one corresponding to the tensor product all tasks were performed

at once. Thus, for equal levels of performance, using the former yielded a reward rate

that was a fraction of the other (that is, it scaled inversely with the number of tasks

performed in a given trial).

Both methods were initialized to generate poor performance, but each time one

was chosen (once per trial), performance using that form improved according to a

pre-specified (logistic-shaped) learning curve. Thus, initially improvement was slow, but

then accelerated, and eventually asymptoted at maximal performance. While the slope

of the two learning functions was the same, the offset for the minimal basis method was

less than for the tensor product method, thus implementing faster learning for the

former compared to the latter. The agent was initialized with high uncertainty around

the true values of the offset and slope (learning rate) of the learning curves, but then

observed and learned about the rate at which each method improved with use — by

observing the outcome of performance and using this to improve its estimate of the

offset and slope parameters for each learning function. The agent used Bayesian

inference to estimate both the learning rate for each learning function as well as the
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probability of receiving task-sets of different sizes (i.e., opportunities for multitasking)

in the environment. These estimates were then used to compute, on each trial, the

expected discounted future value of each method, and choose which to execute for that

trial. Thus, the model implemented a normative solution to the question of whether to

more quickly achieve acceptable levels of performance using the method corresponding

to a minimal basis set representation, at the expense of the serial costs and lower

achievable reward rate when more than one task had to be performed; or to invest in

learning the method corresponding to a tensor product representation, that took longer

but yielded a higher asymptotic reward rate once it was learned.

3.1.9 Results. The model was simulated for a range of serialization costs

associated with the minimal basis set method, differences in learning rates between the

two methods, and the discount factor used to estimate the cumulative future reward

associated with each.40 The results exhibited robust and clearly separated ranges of

parameters that favored each method. This numerical result was complemented by a

closed form analysis of a simplified version of the task, that characterized the conditions

under which it was optimal to choose one method versus the other. That is, it defined

the serialization cost and frequency of multitasking opportunities below which it was

optimal to learn the minimal basis method, and above which it was optimal to learn the

tensor product method. This analysis indicated that the minimal basis set method is

more advantageous if: (1) shared representations lead to high improvements in learning

speed; (2) there is a low cost associated with executing tasks sequentially; and (3) the

agent’s time horizon is finite (i.e. it has a limited amount of time to learn and perform

the tasks). In general, the results suggest that it is optimal for the agent to choose the

minimal basis set method over the tensor product method for a wide range of

parameters. This provides the outline of a normative account for why, under many

conditions, it is advantageous to favor control-dependent processing during initial

acquisition of a task, and only invest the effort required for automatization under

40 Alternatively, this can be thought of as different durations over which the agent expected to be

performing these tasks (i.e., horizons over which future discounted value was computed).
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conditions in which it is evident that this is worthwhile.

3.2 Summary and Discussion of Part II

In Part II of this article, we addressed the question of why a neural system would

favor shared over separated task representations, given the reliance on control and

constraints that this imposes on processing efficiency — that is, the multitasking

capability of a network. We framed this in terms of a tension between shared versus

separated representations, according to which the former affords more effective learning

(and better transfer), while the latter affords greater efficiency of processing (i.e.,

multitasking capability). In the first two simulation studies of Part II, we showed that

neural networks are likely to develop shared representations between tasks if they rely

on similar stimulus features, and if the networks are trained to execute one task at a

time. Conversely, training the networks on unrelated tasks, or training the network to

perform multiple tasks at the same time lead to the acquisition of separated,

task-dedicated representations.

We then investigated the computational tradeoff between these types of

representations. We began with a formal analysis of linear networks, that revealed a

fundamental dilemma faced by neural network architectures: Increasing the number of

shared representations between similar tasks increases the speed with which the

network can learn those tasks, but decreases the number of tasks that the network can

ultimately perform at the same time without interference. We then showed that this

tradeoff also applies to non-linear networks, by using weight initialization to bias such

networks towards more or less shared representations. Furthermore, we showed that a

bias toward shared representation arises “naturally” when a network is trained on

multiple tasks that have shared input structure, and that such shared representations

promote cognitive flexibility by facilitating transfer to novel tasks. Predictions about

human performance made by these simulations were confirmed in a behavioral study

using an extended version of the Stroop task, consistent with the hypothesis that

human participants rely on shared representation of prior tasks (e.g. word reading)
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when learning a new task (e.g. word mapping) at the expense of multitasking

performance (e.g. naming the color while pointing according to a word). Finally, we

described a normative treatment of the tradeoff between shared and separated

representations, showing that shared representations — and attendant limitations in

multitasking — may be an optimal choice under a wide range of circumstances,

providing an explanation for why performance of novel tasks often relies on

control-dependent processing, and providing a formal framework for examining

conditions under which the choice may be made to pursue automaticity.

Here we consider how the framework we have described relates to treatments of

multiple resource theory and, more generally, how it relates to mechanisms described for

learning and representation in the domain of semantic cognition, as well as machine

learning.

3.2.1 Shared Representations and Multiple Resource Theory. One of

the major criticisms of the original multiple resource theory (Allport et al., 1972; Navon

& Gopher, 1979; Wickens, 1991), and more recent, computational implementations of it

(Meyer & Kieras, 1997b; Salvucci & Taatgen, 2008), concerns the lack of specificity

with regard to its core assumption; that is, which resources are shared between two

tasks, and the extent to which they are shared. This explanatory gap allows arbitrary

sets of resources to be proposed to account for any particular set of data (Hirst &

Kalmar, 1987; Meyer & Kieras, 1997b). To address this explanatory gap, we studied the

circumstances under which shared task representations emerge in neural network

architectures.

Our simulation results suggest that statistical regularities between task-relevant

stimulus features may help rationalize and constrain future instances of multiple

resource theory. Simulation Studies 4 and 5 demonstrated that a subset of stimulus

features that is statistically independent of other stimulus features is likely dedicated a

separate resource (representation) in a neural network whereas statistically correlated

features may be dedicated a common resource (representation) (see Lesnick et al. (2020)

for a more formal definition of a stimulus and response dimension). That is, neural
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networks develop variable amounts of shared representation as a function of structural

similarity between tasks: The more task-relevant stimulus features are shared between

two tasks, the more a neural network is likely to learn shared representations for those

two tasks. This observation reflects a fundamental and well-recognized characteristic of

neural network architectures and learning algorithms: that they encode similarity

structure of the environment and exploit this in learning in a graded manner, as

functions of both degree of similarity and training (Hinton et al., 1986; A. M. Saxe et

al., 2019; Rumelhart et al., 1993). This characteristic provides a rationale, and a

quantitative grounding for the core assumption of multiple resource theory: In addition

to perceptual similarity, at a finer scale, if the structure of information within a modality

is shared across tasks, then those tasks will like rely on shared representations of that

structure. Conversely, Simulation Study 4 showed that a neural system may learn

different representations for tasks, even if they rely on the same perceptual modality, if

the stimulus features on which they rely are uncorrelated. For instance, colors and

words are both visual inputs but may be regarded as separate stimulus dimensions if

they are statistically unrelated. Results from Simulation Study 4 are in line with

findings of P. Lindsay, Taylor, and Forbes (1968), showing that even if two tasks rely on

the same sensory modality (e.g. for visual inputs), they may not interfere with one

another if they rely on representations for different sets of task-relevant features41.

Results from Stimulation Study 4 are also in line with insights gained from the

study of semantic knowledge acquisition, showing that neural networks develop shared

representations for stimuli that share similar semantic features (Hinton et al., 1986;

McClelland et al., 1995; Quinn & Johnson, 1997; Rumelhart et al., 1993). This has

received empirical support from fMRI studies, which suggest that stimuli with similar

semantic features overlap in terms of their neural patterns of activity, both within and

across individuals (Kriegeskorte & Kievit, 2013; Carlson, Simmons, Kriegeskorte, &

Slevc, 2014; Connolly, Gobbini, & Haxby, 2012). A recent mathematical analysis of

41 Note that a lack of interference requires the two tasks are also functionally, and not just structurally

independent (see Section “Graph-Theoretic Analyses”).
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semantic development by A. M. Saxe et al. (2019) suggests that the learning of shared

representation based on statistical similarities reflects the outcome of an optimal

learning process.42 Thus, the same principle — that learning of shared representation

between tasks reflects an optimization process in learning statistical regularities over a

set of inputs — seems to apply across cognitive domains, from simple sensorimotor

tasks to more complex domains such as language. In the General Discussion, we relate

these ideas more generally to the study of semantic cognition and category formation.

3.2.2 Multitasking Practice and Representational Separation. Despite

constraints on multitasking, a number of studies have suggested that the ability to

execute two or more tasks simultaneously can improve with extensive practice

(Hazeltine et al., 2002; Liepelt et al., 2011; Ruthruff et al., 2006; Schumacher et al.,

2001). While some have suggested that these improvements can result from practice on

performing each single task alone (Ruthruff et al., 2006), others have argued that larger

improvements can be achieved through multitasking training (Liepelt et al., 2011).

Simulation Study 5 is consistent with the latter observation, showing that repeated

simultaneous execution of multiple tasks can lead to greater improvements in

multitasking performance compared to single task training.

The benefit of dual-task training over single task training has lead some

researchers to suggest that dual-task training improves inter-task coordination that can

generalize to other dual-task conditions (Bier, de Boysson, & Belleville, 2014; Hirst,

Spelke, Reaves, Caharack, & Neisser, 1980; Kramer, Larish, & Strayer, 1995; Liepelt et

al., 2011; Strobach, Frensch, & Schubert, 2012). While this may be true, Simulation

Study 5 suggests an alternative possibility: that dual-task practice promotes the

acquisition of separated, task-dedicated representations in order to minimize processing

conflict — a training signal that is generally absent in single task practice.43 The results

42 A. M. Saxe et al. (2019) define optimal learning as identifying the smallest norm weights in a linear

neural network to solve a given task.

43 Note that, in our simulations, we observed a small amount of representational separation even with

single task training. This is consistent with the observation that single task training alone can improve

dual-task performance (Liepelt et al., 2011; Strobach et al., 2012; Ruthruff et al., 2006)
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of Simulation 6 further suggest that representational separation between tasks may be

sufficient to improve dual-tasking performance, and does not require improvements in

inter-task coordination. Critically, representational separation would predict no positive

transfer of practice from one dual-task condition to other dual-task conditions because

representational separation would only apply to the tasks being practiced. This is

consistent with the results of empirical studies that have found little or no such transfer

effects (Strobach et al., 2012; Liepelt et al., 2011).

3.2.3 Neural Mechanisms Underlying Multitasking Performance.

While most behavioral studies of dual-task training suggest that performance can

improve with sufficient practice, they have not addressed the neural mechanisms that

underlie such improvements. Neuroimaging studies have suggested at least three

plausible candidate mechanisms: (1) improved efficiency of existing brain regions

(efficiency account; Dux et al., 2009; Jonides, 2004; Kelly & Garavan, 2005; Poldrack,

2000), (2) a reduced recruitment of brain regions associated with cognitive control with

concomitant redistribution of task processes to other areas (redistribution account;

Chein & Schneider, 2012; Dux et al., 2009; Kelly & Garavan, 2005; Petersen, Van Mier,

Fiez, & Raichle, 1998) and (3) the segregation of neural representations between tasks

within a task-specific brain region (divergence account; Garner & Dux, 2015). The

efficiency account suggests that multitasking improvements can be attributed to more

efficient processing of individual tasks, e.g. by a strengthening of synapses or formation

of new synapses in underlying brain regions responsible for a single task (Münte,

Altenmüller, & Jäncke, 2002; Rioult-Pedotti, Friedman, & Donoghue, 2000; Schlaug,

2001). This account is consistent with the proposition that multitasking improvements

can be accomplished by reducing temporal overlap between tasks in the presence of

processing bottlenecks, e.g. by compiling task processes into smaller chunks (Newell &

Rosenbloom, 1981; Rosenbloom, Laird, & Newell, 1993; Taatgen & Anderson, 2002, see

Section “A Mechanistic Account of Control-Dependent Versus Automatic Processing

Based on Shared Versus Separated Representations” in the General Discussion). The

redistribution account is based on the assumption that multitasking limitations arise
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from the reliance on capacity-limited mechanisms in brain regions associated with

cognitive control, such as the prefrontal cortex. A number of fMRI studies have

observed that task practice leads to a decreased activity of prefrontal regions in

conjunction with increased activity in other brain areas during multitasking (Debaere,

Wenderoth, Sunaert, Van Hecke, & Swinnen, 2004; Sakai et al., 1998; Shadmehr &

Holcomb, 1997). Thus, the redistribution account postulates that improvements in

multitasking through training are accomplished by re-routing of task processes away

from regions presumed to implement capacity-limited control mechanisms to

task-specific sensory-motor pathways (Dux et al., 2009). Finally, the divergence account

suggests that multitasking training leads to a separation of task-representations,

thereby reducing interference between them. Garner and Dux (2015) showed that if

participants are explicitly trained to multitask, they are able to do so by developing

separated task representations. Improvements in multitasking were highest for

participants whose task representations were most separated after multitasking training.

The results of Simulation Study 5 are most consistent with the divergence

account, suggesting that improvements in multitasking training can be achieved

through a separation of task representations. Those simulation results suggest that

single task training alone can lead to some representational separation between tasks,

but that effect is modest (see Footnote 43). Representational separation is substantially

greater if: (1) a network is trained to execute multiple tasks simultaneously; and (2)

executing multiple tasks simultaneously leads to response conflict (i.e., the tasks are

trained on incongruent as opposed to congruent stimuli). Note that Garner and Dux

(2015) found that the relationship between representational separation and multitasking

improvement was specific to frontoparietal and subcortical brain regions, suggesting

that multitasking limitations can be attributed to shared representation between tasks

in those regions. However, other studies have found that the relationship between

representational separation and multitasking performance may not be specific to any

particular region (Nijboer, Borst, van Rijn, & Taatgen, 2014). The present work

suggests that representational separation may be greatest in regions that encode
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task-relevant associations between stimulus and response dimensions, rather than

regions that just exert control over those44.

Simulation Study 5 also provides a mechanistic basis for the findings offered in

support of the redistribution account; viz., that training on multitasking leads to

diminished engagement of control-related areas (e.g., Dux et al., 2009). While this is

interpreted as evidence that multitasking training reduces reliance on control, it does

not say how or why this comes about. Simulation Study 5 provides such an

explanation. As illustrated in Fig. 3 in Part I, the minimal basis set representation

(with overlapping task processing pathways) requires two control units per task — one

to specify the relevant stimulus dimension and one to specify the relevant response

dimension — whereas the tensor product representation (with separated task processing

pathways) requires only a single control unit per task. Thus, the separation of task

representations through multitasking reduces the representational requirements for

control. Note that this inverts the traditional interpretation that a lesser engagement of

control regions reflects the need to circumvent capacity limitations associated with the

control system (Dux et al., 2009). However, according to the framework presented here,

lesser engagement of those regions may reflect a reduced requirement for control due to

the separation of representations between tasks in other regions. That is, in terms of

the analogy of firemen as the control system and fire as processing conflict induced by

shared representations, the absence of firemen as a need to avoid them, the absence of

firemen may simply be interpreted as the absence of the fire itself.

3.2.4 Learning Efficacy Versus Multitasking Capability. Our analyses

provide an indication of why agents may favor shared over separated representations, at

least initially during training: shared representations afford faster learning if the tasks

involved have similar structure (by way of more frequent weight updating for

representations that are shared), or if a new task must be learned that can profitably

exploit existing representations (i.e., by sharing with those existing ones). The

44 See General Discussion for how the costs and benefits of shared versus separated representations

may apply to regions relevant for task control.
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mathematical analysis of linear models also predicts that the efficacy of learning gained

by shared representation is dependent on the task environment: The higher the

structural similarity between tasks, the larger the improvements in learning speed due

to shared representation. Thus, the tradeoff between learning efficacy and multitasking

capability should only be present in environments with shared structure between tasks.

The results from Simulation Study 6 indicated that both of these effects also apply to

non-linear networks. They also showed that biases toward shared representation only

benefit learning if tasks are related to one another. However, regardless of the task

environment, biases toward shared representation between tasks yield lower

multitasking performance. Altogether, the mathematical and computational results

provide both a quantitative and normative foundation for multiple resource theory.

One may argue that the benefits to learning of shared representation observed in

Simulation Study 6 are relatively small, and thus insufficient to outweigh the

detrimental effects for multitasking performance. However, a recent computational

analysis of this tradeoff in deep neural networks revealed even larger effects of shared

representation on learning speed in such networks(Ravi, Musslick, Hamin, Willke, &

Cohen, 2020). In that study, a multilayered neural network was trained to perform

various visual recognition tasks in a virtual environment. The network was provided

with two stimulus dimensions: an input providing coordinates that designate the

location of the object in a 3D image space, and a 2D image resembling the object. The

network was trained to perform four tasks: (1) map 3D coordinates provided as input

to a location in the 2D space of an image (coordinates → location)(2) label the object

at a specified location in 3D space (coordinates → label); (3) identify the location of the

object in the 2D image (image → location); and (4) label the object in the 2D image

(image → label). Forcing the network to share representations between tasks with the

same stimulus dimension (e.g. Tasks 3 and 4 performed on the image) lead to large

benefits in learning speed. However, as predicted by the mathematical and

computational studies presented above, this resulted in poor multitasking performance.

Furthermore, learning benefits were larger for the two tasks relying on a more complex
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stimulus dimension (e.g., tasks relying on a visual image versus simple location

coordinates). In addition, the benefits of shared representations for learning increased

even further when the difficulty of learning both tasks was increased (by adding white

noise to the inputs). Together, these observations suggest that more complex task

environments impose a higher pressure for neural agents to rely on shared

representations at the expense of multitasking capacity. In the next section we discuss

the role of these benefits for cognitive flexibility, i.e. rapid transfer to novel tasks.

3.2.5 Cognitive Flexibility, Control, and Multitasking Capability. The

term “cognitive flexibility” includes the human ability to rapidly acquire novel tasks

(Kriete et al., 2013; Shiffrin & Schneider, 1977; Verguts, 2017).45 As discussed in

Simulation Study 7, a growing literature in machine learning suggests that agents can

learn novel tasks more quickly if they leverage existing representations for pre-trained

tasks. In that field, “multi-task learning” refers to the ability of an agent to learn

multiple different tasks from experience with only a limited subset of those tasks during

training (Bengio et al., 2013; Caruana, 1997; Collobert & Weston, 2008; Zamir et al.,

2018). The development of a common representation through the acquisition of

auxiliary tasks can be understood as an inductive bias (Caruana, 1997) that causes the

neural network to prefer some representations over others when learning a novel, but

related task. Building on a decision-theoretic framework for neural networks (Haussler,

1992), Baxter (1995) showed that the number of samples required to achieve good

generalization performance for a task decreases with the number of related tasks on

which a network is trained. In practice, training a network on multiple, related tasks

has been shown to significantly improve learning in computer vision (Girshick, 2015;

Long & Wang, 2015; Lu, Li, & Mou, 2014), natural language processing (Collobert &

Weston, 2008; Duong, Cohn, Bird, & Cook, 2015) as well as speech recognition (Deng,

45 Cognitive flexibility is also used to refer to other distinct characteristics of human cognitive function,

including problem solving, planning and, in the task switching domain, the ability to rapidly switch

between already acquired tasks (Goschke, 2000; Kiesel et al., 2010; Koch et al., 2018; Musslick, Jang,

Shvartsman, Shenhav, & Cohen, 2018). In this section, we focus specifically on the ability to learn

novel tasks from scratch.
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Hinton, & Kingsbury, 2013). In line with intuitions from multi-task learning, results

from Simulation Study 7 indicated that novel tasks were acquired much faster if the

network was pre-trained on a set of similar, related tasks. Such positive transfer effects

were promoted by leveraging existing representations for tasks that shared the same

stimulus dimension.

The benefit of shared representation for transfer suggests a “snowball effect:”

Once novel tasks build on existing representations, those representations are honed by

more training signals, making them more useful for other tasks (Baxter, 1995) and

further enhancing learning benefits as more tasks use those representations. The results

we present here suggest that this is also associated with a correspondingly rapid

increase in the potential for interference, and thus reliance on control and concomitant

constraint on how many tasks can be performed at once. This suggests that the use of

shared representations can provide a mechanistic account of the association between

cognitive flexibility, control-dependence, and constraints on multitasking. This was

evidenced in the results of the empirical study reported above (see Section “Empirical

Study: Learning, Shared Representations and Functional Dependence”), in which

participants were able to quickly learn a new task (i.e., map color words onto an

arbitrary set of response keys) by using an existing set of (orthographic) representations,

although this prevented them from being able to multitask this with another task (color

naming) due to the sharing of those representations with an interfering task (word

reading). These findings are consistent with a bias toward exploiting the advantages of

shared representations for cognitive flexibility (i.e., learning and transfer), at the cost of

constraints in multitasking capability and the potential demands for control that this

may impose. Nevertheless, we did observe impairments in multitasking performance for

tasks that were hypothesized to be independent. Such impairments may be attributed

to other factors, such as meta-control processes required to determine the best strategy

to execute two tasks in parallel (Liepelt et al., 2011; Fischer & Plessow, 2015; Jiang,

Saxe, & Kanwisher, 2004), or a default bias toward suppressing other response

modalities that is generically useful in single task performance.
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3.2.6 Shared Representations, Semantics, and Multitasking. As noted

earlier (in Section “Shared Representations and Multiple Resource Theory”), the

principles governing the development of shared representations in the service of simple

sensorimotor tasks may be closely related to those that govern the development and use

of semantic representations. In general, the role played by control in the models

presented here is comparable to that of the effects of higher level representations of

context in models of language processing, such as the effects of words on letter

perception (Plaut & Booth, 2000), or of previous sentential elements and/or discourse

representations on interpretation of word meaning (McClelland, St. John, & Taraban,

1989). The present work provides suggests a direct relationship between reliance on

such context effects and the nature of the underlying semantic representations that have

been learned for different linguistic element (i.e., whether those are shared or distinct,

e.g. T. T. Rogers & McClelland, 2004). More specifically, it suggests that the sharing of

representations should be associated with corresponding reliance on control (i.e.,

relevant context representations), and even perhaps effects of constraints on

multitasking in semantic inference that parallel those we have reported here for

sensorimotor tasks. Support for this conjecture comes from a study of semantic

interference in lexical decision tasks, that provides behavioral evidence for an

association between the use of shared representation and constraints on multitasking

(Chen & Rogers, 2010). In their study, Chen & Rogers deployed a dual-task paradigm

to examine whether lexical decisions (e.g. word recognition) rely on semantic processing

(or other non-semantic forms of linguistic processing, such as phonological and/or

orthographic “lookup”). To investigate this question, participants were asked to

perform a lexical decision task in conjunction with a sound judgement task. The lexical

decision task required participants to press a key to indicate whether a string of letters

was a word or a non-word. The sound judgement task required participants to

categorize a sound using a verbal response. In the non-semantic condition, the

participants performed the sound judgement task on complex tones to indicate whether

the sound was ascending or descending in pitch. In the semantic condition, participants
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judged whether an animal sound was produced by a bird or not. The authors

hypothesized that if the lexical decision relied on semantic representations then

participants should perform worse in the visual lexical decision task when

simultaneously executed with the semantic sound judgement task compared to the

non-semantic sound judgement task46. The authors observed that the recognition of

word stimuli was significantly impaired when executed in conjunction with the semantic

sound judgement task compared to the non-semantic sound judgement task.

Interestingly, the semantic sound judgement task exhibited less interference if the

orthographic structure of the words provided a sufficiently strong cue for lexicality,

suggesting that when access to the (presumably shared) semantic representations was

not necessary, multitasking was easier. These results provide convergent support, from

the domain of language processing and semantics, that reliance on shared

representations for different tasks — even when they involve highly distinct modalities

(such as lexical decision and acoustic judgements) — comes at the cost of a limitation

in multitasking performance. In the General Discussion we elaborate on the potential of

dual-task interference for investigating the nature of semantic representations.

3.2.7 Rationalizing the Trajectory From Controlled to Automatic

Processing. While under many circumstances people prefer the speed of learning

afforded by shared representations, there are clearly others in which they are willing to

devote the time and effort to develop automaticity, In the final section of Part II, we

reviewed recent work that directly examined the tradeoff between learning efficacy

versus processing efficiency, including a model that provided a formal analysis of this

tradeoff. While that model made a number of assumptions, it provides a promising

foundation for a formally rigorous, normative theory of how people might chose between

learning to perform a task quickly but at the expense of control dependence and

seriality versus expending the additional time (and effort) to learn to perform it in a

way that affords automaticity and the efficiency of multitasking. One of the important

simplifications of that model was that each form of processing was learned

46 Both sound judgement tasks were matched in terms of overall difficulty.
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independently of the other. This was addressed in the study by (Ravi et al., 2020)

described above, that explored the tradeoff between learning efficacy and processing

efficiency in a deep learning network. That model, which involved the learning of

representations at multiple layers of the network, also implemented a Bayes-optimal

meta-learning mechanism responsible for deciding on each trial whether to train on

single task or multitask performance. In that network, there were no constraints on the

extent to which single task training transferred to multitasking or vice versa (the

network was free to develop and use whatever representations it liked). The results

replicated those of (Sagiv et al., 2018), with the meta-learner preferring single task over

multitask training if the seriality penalty was low (and also, as noted above, if the

environment was noisy), and conversely if the seriality penalty was high. In the General

Discussion, we consider the question of meta-control within the broader context of the

Expected Value of Control Theory (Shenhav et al., 2013, 2017), which proposes that the

human cognitive system has the capacity to evaluate the portfolio of control-dependent

tasks that it can pursue in any given setting, and select ones that it estimates will yield

the greatest value, factoring in a cost of control.

All in all, the results presented in this article lay the foundation for a normative

and mechanistic account of the trajectory from controlled to automatic processing: In

novel and/or noisy environments, shared representations afford the ability to generalize

what has been learned in other domains, thus enhancing cognitive flexibility. For

example, people can quickly learn how to play a melody on a piano by using their

knowledge of how to place fingers at designated locations. This reliance on existing

representations comes at the cost of a seriality constraint: they can only be used for one

purpose at a time (e.g., placing only one finger on the keyboard at a time). However,

with sufficient motivation and time (e.g., the desire to become a concert pianist, and

the opportunity to take lessons and practice) it is possible to acquire task-dedicated,

separated representations that afford automaticity and the capacity for parallel

processing (i.e., simultaneously and independently configuring all of the fingers required

to play a given chord).
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4 General Discussion

The limited ability to perform multiple control-dependent tasks at the same time

is one of the most salient characteristics of human cognition, and is universally

considered a defining feature of cognitive control (Posner & Snyder, 1975; Shiffrin &

Schneider, 1977). Despite these facts, the source(s) of multitasking constraints

associated with control have received considerably less attention in research than the

observation itself. Here we build on the idea that multitasking limitations arise from

shared representations between tasks (Allport et al., 1972; Allport, 1980; Kieras &

Meyer, 1997; Kinsbourne & Hicks, 1978; Navon & Gopher, 1979; McCracken & Aldrich,

1984; Meyer & Kieras, 1997b; Walley & Weiden, 1973; Wickens, 1991) and provide a

formal framework that permits studying the relationship between learned task

representations and the multitasking limitations associated with controlled processing in

neural architectures. The framework suggests that

• The multitasking capability of a network architecture decreases drastically with

the amount of overlap among task representations (i.e., sharing) – an effect that is

nearly invariant to the dimensionality of representations within layers of the

network, and exacerbated by the number of layers. Moreover, the particular

pattern of overlap among task representations can be used to predict the

multitasking profile of the network as a whole. Taken together, these factors

provide a quantitative grounding for multiple resource theory.

• The dependence among tasks induced by (1) shared representation, (2) the

amount of conflict and (3) the persistence of representations provides a single

mechanistic framework within which to account for the conditions under which

parallel processing and concurrent multitasking capability is possible (at an

extreme), and the rate at which tasks can be switched when serial execution is

required. This in turn provides a coherent account for psychological phenomena,

such as the PRP effect and performance costs associated with task switching, that

have mostly been treated as distinct in the cognitive literature.
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• Neural network architectures are subject to a fundamental tension between the

sharing of representation that promotes efficacy of learning efficiency and

generalization, and the separation of representations that permits parallel

execution and interference-free multitasking. When trained on single tasks, neural

systems exhibit a bias to learn shared representations in environments where there

is shared structure between tasks, which in turn is associated with a seriality

constraint on processing and a reliance on control to manage that constraint.

Conversely, training explicitly on multitasking, or in environments in which task

structure is not shared, networks favor the generation of separated (task-dedicated

representations) that permit parallel processing, full concurrent multitasking

capability and a minimization of reliance on control for those tasks.

• The foregoing factors provide a mechanistically explicit, and formally rigorous,

and potentially normative account of the commonly observed trajectory in skill

acquisition from controlled to automatic processing: When acquiring one or more

tasks that share structure (with each other or existing ones), the immediate value

of exploiting shared representations (faster acquisition) may usually be preferred

over the future discounted value of increased multitasking capability and

processing efficiency that comes with learning separated, task-dedicated

representations, but at the expense of slower acquisition (and greater effort).

Thus, on average, novel tasks are learned quickly, but at the expense of a seriality

constraint and control-dependence. However, when it is deemed worthwhile

through explicit training on multitasking (or possibly passively, with sufficient

experience; see Footnote 43), separated representations can be acquired that

afford parallel processing and multitasking capability – that is, automaticity.

In the remainder of this section we discuss the implications of these observations

and their relationship to fundamental principles in other domains of cognition.
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4.1 Relationship to Existing Theories of Dual-Task Limitations

There is a large literature on decrements in human performance associated with

the attempt to execute two tasks simultaneously (Kahneman, 1973; Logan & Gordon,

2001; Meyer & Kieras, 1997b; Pashler, 1994), commonly referred to as dual-task

interference. Broadly, three classes of theories have been proposed to account for the

observed effects, each of which points to a different source of dual-task limitations: (1)

structural bottleneck theories that attribute dual-task limitations to a central, structural

bottleneck in processing that can process only a single task at a time; (2) capacity

sharing theories that posit all tasks rely on a unitary, limited resource, and that parallel

execution can occur provided the resource is sufficient, but that competition arises as it

is depleted; and as we have discussed, (3) multiple-resource theories that assume

dual-task limitations arise only when the two tasks rely on use of a shared local resource

(i.e., specific to those tasks) for different purposes. The historical progression among

these theories, and the empirical evidence that has been offered in support of each, is

well reviewed in other work (e.g. Logan & Schulkind, 2000; Meyer & Kieras, 1997b;

Pashler, 1994; Wickens, 1991). Here, we focus on the core assumptions of these theories,

and compare them with the multitasking framework presented in this article.

4.1.1 Structural Bottleneck Theories. Structural bottleneck theories build

on Telford’s suggestion (1931) that organisms might be subject to a PRP that prevents

the rapid successive execution of two tasks. Telford argued that the PRP is analogous

to the refractory period of neurons that prevents the rapid initiation of an action

potential immediately after a preceding action potential.47 To explain the PRP and

related findings (e.g. Craik, 1948; Vince, 1948), Welford (1952) postulated a central

information processing channel that takes some “organizing time” to initiate a response

47 The analogy is flawed in the sense that the refractory period of neurons is a recovery phenomenon

whereas the PRP is thought to result from an actual bottleneck that precludes the second task from

being processed while the first is still executing (Meyer & Kieras, 1997b). Moreover, the neuronal

refractory period can be overcome by amplifying the input signal to the neuron. In contrast, the

dual-task PRP does not seem to become shorter if the intensity of the second stimulus is increased

(Pashler, 1994).
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to information provided by a stimulus. Critically, Welford suggested that “no two

central organizing times can overlap, so that information from a stimulus arriving while

information from a preceding stimulus is being dealt with has to be ‘held in store’ until

the central mechanisms are free” (Welford, 1952, p. 18).

This single-channel hypothesis assumes that humans can only process one task a

time (Welford, 1952, 1967; Davis, 1959). While Welford postulated that the central

channel “deal[s] with the information provided by a stimulus and [. . . ] initiate[s] a

response to it” (Welford, 1952, p. 18) it remained unclear whether the bottleneck

encompasses stimulus perception and/or motor execution, leading to subsequent debates

about the locus of the bottleneck. For instance, Broadbent’s (1957) early-selection

model of attention assumed that the bottleneck is located in the selection of

task-relevant stimulus features. Conversely, Keele (1973) contended that tasks may be

processed in parallel from perception up through response selection (see also Logan &

Burkell, 1986; Norman & Shallice, 1986; De Jong, 1993), but that there is a bottleneck

in response initiation. However, perhaps the most prominent, or at least enduring

account of the single channel hypothesis localizes the bottleneck to the response

selection process (De Jong, 1993; Pashler, 1984, 1994; Welford, 1967), described as a

decision mechanism that “converts the stimulus code to an abstract symbolic code for a

physical response based on some set of innate or previously learned stimulus-response

associations” (Meyer & Kieras, 1997b, p. 4). The decision mechanism is assumed to be

central in the sense that it is modality-independent; i.e. it handles response-selection for

all tasks. Despite growing evidence against a structural processing bottleneck (see

Section “Summary, Discussion and Conclusions for Part I”), the presumption of such a

bottleneck has had a profound influence on thinking about dual-task interference.

The input, hidden and output layer of the neural network models presented in this

article can be regarded as successive stages of processing. However, this model violates

a core assumption of structural bottleneck model about the modularity of stages of

processing: Once one is completed, factors influencing that stage cannot have any

subsequent effects on processing of a task (Sternberg, 1969). In contrast, neural network
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models allow that processing at one layer can continue to influence processing in layers

to which they project, including the output layer responsible for selecting a response

(McClelland, 1979). In the models we have considered, this can happen until one of the

output units reaches its response threshold. Simulation Study 3 showed that a neural

network model with such continuous processing can exhibit effects comparable to the

PRP, effects traditionally attributed to a structural bottleneck. Unlike other models

that implement versions of the multiple resources theory (De Jong, 1993; Keele, 1973;

Meyer & Kieras, 1997b), response initiation in our models could occur in parallel.

Nevertheless, maximizing reward rate required that the network delayed initiating a

response to the second task until cross-talk from the first task had sufficiently decayed.

As noted in Section “Summary, Discussion and Conclusions for Part I”, such cross-talk

can arise from functional or structural dependence between tasks due to shared

representations in the hidden layer. Insofar as the hidden layer links stimulus features

to responses, much as the response selection does in other models, then the presence of

structural and/or functional interference between two tasks can be thought of as

imposing a response-selection bottleneck. As stated by Pashler, “the predictions

described [...] do not require strict successiveness and might well be compatible with

selective influence on processes that normally operate in cascade (McClelland, 1979)).

(Key predictions depend on the idea that once a stage is completed, factors selectively

influencing that stage cannot have any later effects; in a cascade model, this would still

be the case if a stage reached its asymptotic output level and then maintained that state

for some period of time until following stages began to use that output.)” (Pashler,

1994, p. 238).

Nevertheless, a key distinction between neural network models and traditional

structural bottleneck models is that the former do not assume that a central constraint

in processing obtains for all tasks (this would be tantamount to assuming that all tasks

share representations at the hidden layer) – separated, task-dedicated representations

can exist at a given layer that the corresponding tasks to be performed simultaneously

with one another and/or others. Furthermore, such models provide a mechanistic and
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formally rigorous approach to understanding why and when tasks are likely to share

representations, exhibiting what amounts to a structural bottleneck and, as posited by

bottleneck theories, rely on control for execution.

4.1.2 Unitary Resource Theories. Structural bottleneck theories assert

that attention cannot be divided between tasks. Troubled by this assumption, and the

observation that under many conditions people can multitask, Kahneman (1973) and

others (Navon & Gopher, 1979; Navon & Miller, 2002; Tombu & Jolicœur, 2003)

proposed that attention constitutes a central resource that can be shared between

multiple tasks, but that it has a limited capacity. According to Kahneman’s theory,

tasks such as naming the color of a Stroop stimulus rely on dedicated structures (e.g.

for categorizing a color as green). Activation of a structure is assumed to depend on

attention allocated to that structure, as well as the presence of a specified stimulus (e.g.

a color patch), similar to a population of neurons coding for a task process. Attention is

assumed to be limited and may be allocated in a graded fashion between structures.48

Furthermore, allocation of attention is subject to voluntary control and the amount of

allocated attention depends on the demands of the task(s) being executed. Kahneman

assumed that increases in attention are generally insufficient to compensate for increases

in task complexity, as well as the demands imposed by executing more than one task at

a time. Thus, dual-tasking interference is primarily attributed to attentional demands

of competing tasks. Norman and Bobrow (1975) elaborated Kahneman’s theory,

suggesting that, in addition to attentional limitations, task performance may also be

“data-limited” which explains cases in which additional attention cannot improve

performance (e.g. if the signal-to-noise ratio of the sensory input is too low). The

assumptions that underlie unitary resource make distinctive predictions with respect to

dual-task phenomena. The first prediction concerns the voluntary aspect of graded

attentional allocation, suggesting that participants can trade off performance on one

task against performance on another task when performing the two tasks simultaneously

48 The limit itself is subject to momentary fluctuations and is assumed to be correlated with

physiological indices of arousal, such as pupil dilation (Kahneman, 1973).
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(Norman & Bobrow, 1975). Several studies provide support for this claim, showing that

participants are able to trade off performance between two tasks49 (Sperling &

Melchner, 1978; Gopher, Brickner, & Navon, 1982). Another prediction concerns the

presumption that dual-task interference reflects (global) “capacity interference”, that is,

competing demands for a central capacity-limited mechanism. The latter suggests that

dual-task interference should arise even if two tasks do not share any local resources, e.g.

for perception or motor execution. To support this claim, Kahneman (1973) describes

the observation that people often stop walking when asked to perform complex mental

arithmetic, suggesting that walking and mental arithmetic cannot be performed

simultaneously, despite seemingly independent neural circuits. The example, however,

neglects the possibility that walking may involve navigational processes, and that those

may draw upon representations shared with mental arithmetic (e.g. representations of

space and linearity, see Section “A Mechanistic Account of Control-Dependent Versus

Automatic Processing Based on Shared Versus Separated Representations” in the

General Discussion). A third prediction is that dual-task interference depends “in part

on the load which each of the [tasks] imposes, i.e. on the demands of the competing

[tasks] for effort or attention” (Kahneman, 1973, p. 179). This suggests that increasing

the complexity of one task should have detrimental effects on joint performance with

another task. However, the prediction does not apply in all cases, as demonstrated by

critics of central capacity-limited mechanisms (Wickens, 1991; North, 1977). For

instance, increasing the complexity of a digit processing task was found to have no

influence on the simultaneous performance of an object tracking task (North, 1977).

In his seminal work, Wickens (1991) outlined four behavioral phenomena that

challenge the assumption of a unitary attentional resource. The first concerns a set of

studies demonstrating that the difficulty of one task can have little to no effect on the

joint performance with another (“difficulty insensitivity”, (Briggs, Peters, & Fisher,

1972; Johnston, Greenberg, Fisher, & Martin, 1970; Kantowitz & Knight, 1974;

49 Note that smooth performance tradeoffs are also compatible with the assumption of a structural

bottleneck (Pashler, 1994).
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Kantowitz & Knight Jr, 1976; Wickens & Kessel, 1979). As outlined above,

Kahneman’s theory predicts that increases in complexity of one task should generally

decrease performance of a second, simultaneously executed task, unless performance of

the latter is data-limited (lower amounts of attention allocated to the task do not

change it’s performance; Norman & Bobrow, 1975; Wickens, 1991). Second, Wickens

pointed out that a unitary capacity-limited resource cannot explain perfect time

sharing, assuming executing multiple tasks requires a higher amount of attention than

is available. The third criticism concerns sensitivity of dual-task interference to the

compatibility of stimulus-response mappings between concurrent tasks (Greenwald,

1970; Greenwald & Shulman, 1973; Göthe et al., 2016; Oberauer et al., 2016; Halvorson

et al., 2013; Hazeltine et al., 2006; Liepelt et al., 2011). This includes instances in which

changes in the processing structure of one task (e.g. requiring a verbal instead of a

manual response) alter interference with another task, even if the difficulty of the two

tasks stays the same (Treisman & Davies, 1973; Wickens, 1991).50 The fourth criticism

regards observations in which the more difficult of two tasks brings about less

interference with a third task than the easier one (“uncoupling of difficulty and

structure”, Wickens, 1991).

The neural network models presented here share at least three assumptions with

Kahneman’s theory: First, tasks structures (i.e. task representations) require both

50 It is worth mentioning that Wickens’ third criticism, i.e. that dual-task interference can vary as a

function of task similarity, is accommodated by auxiliary assumptions of Kahneman’s theory. As

Kahneman notes, multitasking interference may also arise if tasks “occupy the same mechanisms of

perception or response” (Kahneman, 1973, p. 196). Thus, Kahneman’s theory does not only assume a

unitary resource, but also multiple task-specific resources (“structures”) that, when demanded by two

tasks for different purposes, lead to structural interference. Kahneman further concedes that this

assumption can accommodate effects of task similarity on dual-task interference, and thus, “it is useful

to retain the term of structural interference for situations of strong interaction between similar tasks,

and to apply the label of capacity interference to situations where difficulty is the main determinant of

results” (Kahneman, 1973, p. 199). From this perspective, Kahneman’s theory constitutes a special

case of multiple resource theory, with the additional assumption of a unitary resource required by all

tasks.
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sensory input and control to be sufficiently activated, unless a task process is highly

practiced. Second, multitasking interference arises when two tasks make competing use

of a shared resource (i.e. set of processing units in the neural network). Third, it is

assumed that the cognitive system can allocate cognitive control between tasks in a

voluntary and graded fashion, based on the demands of the tasks and the needs of the

agent.51 However, several critical assumptions about the nature and role of cognitive

control contrast with those of unitary resource theories. First, in our models, control is

not constrained by some upper bound on its allocation, as long as there is sufficient

influence of the control system over task representations (e.g. in the form of neural

connectivity). This turns is a crucial factor, as it permits three of the four phenomena

posed by Wickens (1991), that is, virtually perfect time sharing, insensitivity to task

difficulty, as well as the decoupling of difficulty and structure. That said, as discussed in

Section “A Mechanistic Account of Control-Dependent Versus Automatic Processing

Based on Shared Versus Separated Representations” below, there may be practical

constraints on how much control can be allocated, as a function of the current degree of

representational sharing in the network; although even this can be mitigated by an

investment in the acquisition of separated representations and automaticity, as

discussed in Section “Multitasking Practice and Representational Separation” in the

Summary and Discussion of Part II. This view leads to a different perspective on the

role of control in multitasking interference: Contrary to Kahneman’s theory, our work

suggests that multitasking interference can arise from allocating too much control to too

many tasks at the same time, rather than allocating too little control, since too much

control brings about the risk of cross-talk between task processes.

4.1.3 Multiple Resource Theories. Multiple resource theories renounce the

concept of a central processing bottleneck or unitary resource. Instead, they contend

that a cognitive system is equipped with many independent, specialized resources and

that different tasks rely on different such resources in various combinations. According

to this class of theories, multitasking limitations are the result of conflicts that arise

51 We assume that control is allocated such that reward rate is maximized.
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when two or more tasks demand use of the same resource for different purposes at the

same time. Instances of multiple resource theory vary in their assumptions about

whether a resource can ever be shared between two tasks at the same time, and whether

two tasks with different resources can interact with one another. Here, we review three

types of multiple-resource theories before contrasting them with the present framework.

Early instances of multiple resource theory borrowed from Kahneman’s notion of

capacity limitation, suggesting that each resource has its own capacity that can be

divided among several concurrent tasks (Navon & Gopher, 1979; Wickens, 1991).52 A

cognitive system would then supply resources to meet the demand determined by the

desired level of task performance for each task, subject to constraints imposed by

external and internal task parameters (e.g. predictability of the stimulus or task

practice, respectively). Building on the ideas developed by Kahneman (1974) Norman

and Bobrow (1975), Navon and Gopher (1979) and Wickens (1991), proposed a

taxonomy of such resources, categorizing them into stages of processing (encoding,

processing, responding), sensory modalities (visual, auditory), processing codes (verbal,

spatial), as well as response modalities (manual, vocal).53

Other instances of multiple resource theory assume that each resource can only be

executed by one task at a time (Allport et al., 1972; Byrne & Anderson, 2001; Meyer &

Kieras, 1997b; Salvucci & Taatgen, 2008). For instance, using the symbolic architecture

“EPIC”, Meyer and Kieras (1997b) proposed multiple perceptual and motor processors,

as well as a central cognitive processor and working memory. Operations in different

52 Note that Navon and Gopher (1979) assume that the capacity of each resource is fixed and

independent of task load, unlike the unitary resource proposed by Kahneman (1974).

53 While Wickens (1991) assumed, multiple specialized mechanisms, he acknowledged the possibility of

an undifferentiated, central mechanism “which is available to and competed for by all tasks, modalities,

codes and stages as required [. . . and] may be assumed to represent that which is conventionally

labelled attention, consciousness, the bottleneck, or the [limited capacity central processor] of the

structural theories” (Wickens, 1991, p. 25). However, Wicken’s also points out that the

acknowledgement of a central capacity-limited mechanism does not deflate the value of the multiple

resource concept.
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perceptual processors can be carried out in parallel, however each can only be used for

one purpose at a time, and thus conflict can arise when different tasks rely on

simultaneous use of the same processor for different purposes (i.e. for processing

incongruent information). In contrast, motor processors can only execute one task

process at a time, irrespective of the information being processed. Unlike earlier

instances of multiple resource theory, Meyer & Kieras entirely eliminated the

assumption of central processing limitations, and allowed that the central cognitive

processor could, in principle, execute an unlimited number of operations (called

“productions”) in parallel; it was constrained only by the potential for conflict among

task-related actions, in which case it could strategically suspend execution (strategic

response deferment) to avoid conflict among tasks in perceptual and/or motor

processors. Byrne and Anderson (2001) proposed a similar model, referred to as

“ACT-R/PM”, in which they adhered to the assumption of the ACT-R framework

(Anderson & Lebiere, 2014) that a central processor can operate only one task process

at the time, and show that this model can account for effects concerning the PRP just

as well as EPIC. Finally, Salvucci and Taatgen (2008) proposed a theory of threaded

cognition which is based on a production rule architecture in which all resources

(perceptual, cognitive and motor) were constrained to process only one request at a

time. Unlike prior proposals, their threaded cognition model implemented the

coordinative function of a general executive without dedicating a specific or central

mechanism to it: the scheduling of task processes was distributed among the

mechanisms responsible for execution of each task, following simple rules intrinsic to the

architecture. For instance, tasks (“threads”) were assumed to demand mechanisms in a

“greedy” manner, as soon as they were needed, and release resources to other tasks in a

“polite” manner, as soon as they were no longer required.

A third stream of multiple resource theories is often referred to as “cross-talk

models”. Cross-talk models assume that dual-tasking interference may occur even if the

tasks involved do not directly compete for the same resource. For instance, Kinsbourne

and Hicks (1978) proposed that the brain supplies tasks with limited “cerebral space”
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akin to the notion of a generalized processing. According to this account, much like the

unitary resource theories, high performance on a task requires more cerebral space

However, Kinsbourne’s version adds that the closer the functional cerebral space for two

tasks —measured in terms of the connectivity of associated brain regions— the more

likely they are predicted to interfere with one another. Similarly, Navon and Miller

(1987) suggest cross-talk between the processing channels of two tasks may lead to

“outcome conflict”, especially if the information content being processed in one task is

incongruent with the information content being processed in another task, as is the case

in the extended Stroop task described in this work. While Navon & Miller’s proposition

posed an interesting challenge for multiple resource theories, namely to account for the

phenomenon that dual-task interference is dependent on the information content being

processed, it did not come with a formal framework to test these predictions. Townsend

and Wenger (2004) provided such a framework, and used it to study cross-talk in

holistic cognitive processes, such as Gestalt-like phenomena. Similar to Navon & Miller

(1987), they argue that cross-talk between different processing channels can be both

facilitatory and detrimental, depending on the information content being processed (see

Section “Interference Versus Facilitation” in the General Discussion). The interaction

between resources, as well as the sensitivity of dual-task interference to the information

content being processed is a distinct prediction of such cross-talk models.54 However,

Townsend and Wenger (2004) remained agnostic to the neural mechanisms underlying

such cross-talk.

All three classes of multiple resource theories can account for a broad range of

experimental phenomena, including ones that troubled unitary resource-models.

Moreover, some of them are expressive enough to account for complex multitasking

scenarios outside the lab, such as driving a car while attempting to dial (Brumby,

Howes, & Salvucci, 2007; Brumby, Salvucci, & Howes, 2009; Salvucci & Macuga, 2002).

54 Some instances of multiple resource theory assume that resources can be used by tasks in parallel if

the information content being processed is congruent (Meyer & Kieras, 1997b; Byrne & Anderson,

2001; Salvucci & Taatgen, 2008). However, they lack a mechanistic explanation for this policy.
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However, multiple-resource theories also face a number of theoretical concerns. First,

unlike theories that posit a central processing mechanism, multiple resource theories

must explain why multitasking appears to be so commonly limited to a small number of

tasks (e.g. in the absence of limitations imposed by motor or sensory processes, why

can we only have one stream of thought at the same time?), despite the enormous

structural capacity of the human brain. In this light, it is perhaps not surprising that

most multiple resource theories concede the existence of a central capacity-limited

mechanism on which many, or even most processed rely (Byrne & Anderson, 2001;

Navon & Gopher, 1979; Meyer & Kieras, 1997b; Salvucci & Taatgen, 2008; Wickens,

1991). Second, multiple-resource theories rely on auxiliary assumptions about the

number and types of task-dedicated resources and are thus, less parsimonious compared

to theories that posit a central limitation. Too much freedom in the choice of resources

would make a multiple resource theory too flexible, and thus, unfalsifiable (Kinsbourne

& Hicks, 1978; Navon & Gopher, 1979; Wickens, 1991). While some resource

taxonomies are informed by effects of task-similarity on dual-task interference (e.g.,

Meyer & Kieras, 1997b; Wickens, 1991), this risks circularity (Treisman & Davies, 1973)

that, to be avoided, requires more than behavioral criteria when deciding about the

number and types of task-dedicated mechanisms. That is, there is a risk of adding an

increasingly large number of auxiliary assumptions about resource sharing as the

number of explained behavioral phenomena grows. Finally, multiple resource theory, let

alone any account of the PRP, lack mechanistically explicit implementations above and

beyond symbolic architectures.

The work presented in this paper addresses the theoretical limitations of multiple

resource theory by leveraging the formalisms offered by neural network modeling. First,

it provides a more stringent test of the multiple resource theory by evaluating

multitasking capability in architectures that, prima facie, extensive resources (i.e.,

numbers of processing units and pathways) are available. Our finding that shared

representation drastically limits multitasking capability, even in large networks, formally

supports multiple resource theory in such settings. That is, neither the assumption of a
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central unitary resource, nor a single local resource bottleneck may be necessary to

account for the striking limitations of human multitasking behavior. Second, it

formalizes the construct of local resources as the source of constraints in multiple

resource theory, in terms of the extent to which the representations used by different

tasks overlap with one another; i.e., are shared. Furthermore, it directly relates this to

statistical similarities between tasks in the environment, as well as the training regime:

two tasks are more likely to share a representation if they rely on similar features, and if

both tasks were acquired without pressure to perform them simultaneously.

Formulating the extent to which different tasks rely on shared resources also

allowed us to extend the analysis from direct, structural interference on which most

previous instances of multiple resource theory have focused, to the case of functional

interference addressed by cross-talk models: Even if two simultaneously executed tasks

don’t directly share the same resources, they may still interfere with one another by

means of a third task that introduces functional dependence between the two. The

phenomenon of functional dependence, as illustrated in the extended Stroop task,

results from the role of control in processing: It is assumed that, in order to execute a

task, cognitive control needs to be allocated to the representations for that task.

Allocating control to two structurally independent tasks (e.g. color naming and word

mapping) may implicitly engage a third task (e.g. word reading) that shares a

representation with one of the tasks (e.g. word representation shared between word

mapping and word reading), and a representation with the other task (e.g. verbal

output representation shared between color naming and word reading). We showed that

multitasking performance can be reliably predicted from the measurement of such

functional dependencies. Moreover, the present theory provides a mechanistic

explanation for why dual-task interference depends on the content of information being

processed. Interference between two functionally dependent tasks (e.g. color naming

and word mapping) is predicted to be higher if the stimulus features relevant to the

interfering task (word reading) are associated with a different response than the

stimulus features relevant to the task subject to interference (color naming). We found
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evidence for this interaction in the extended Stroop task where dual-task interference

between color-naming and word mapping was modulated by the response-congruency of

colors and words. Thus, the neural network models presented in this article combine

assumptions of classic, symbolic multiple resource models regarding structural

interference with the assumption of functional dependence from cross-talk models.

4.2 A Mechanistic Account of Control-Dependent Versus Automatic

Processing Based on Shared Versus Separated Representations

Multitasking limitations are a defining feature of control-dependent processing

(Posner & Snyder, 1975; Shiffrin & Schneider, 1977). That is, cognitive control is

defined to be associated with capacity limitations, generally assumed to reflect a

dependence on serial processing, whereas automatic processes can operate in parallel

(Shiffrin & Schneider, 1977). This has been interpreted as evidence that: (1) execution

of control-dependent processes requires the engagement of a control mechanism (e.g a

particular set of activated nodes in a short-term store (Anderson & Lebiere, 2014;

Schneider & Shiffrin, 1977); a particular set of units in a neural network (J. D. Cohen et

al., 1990; Botvinick et al., 2001; O’Reilly & Frank, 2006; Verguts, 2017); or a set of

attentional weights (Logan & Gordon, 2001); and that (2) that mechanism is limited in

how many control-dependent processes it can support at the same time (e.g., a limited

number of nodes available in a short-term store, or competition among activated units

responsible for control in a neural network). The latter has been commonly been

interpreted, in turn, as evidence that the control mechanism itself is capacity-limited,

(Anderson & Lebiere, 2014; Posner & Snyder, 1975). This view is in line with the

single-channel hypothesis (Welford, 1952, 1967) reviewed above.

4.2.1 Constraints on Concurrent Multitasking. While the neural

network models presented here implement the first assumption – that control-dependent

processes require support of a mechanism responsible for control – it does not require

the second assumption, that that mechanism has an intrinsic capacity constraint.

Rather, control mechanisms are assumed to consist of a set of units that can encode the
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relevant task to be performed (corresponding to a task cue presented to the network),

and use this to provide additional activity to units relevant to performing the task

itself. While there is no structural constraint on the number of task units that can be

activated at the same time, the capacity for control-dependent processing is functionally

limited by the cross-talk that can arise when the tasks to be performed share processing

units. That is, on this view, the purpose of control is to avoid such cross-talk, by

limiting processing to only one of a set of tasks that share representations. From this

perspective, constraints on control-dependent processing are a rational response to the

presence of shared representations, and do not necessarily imply that such constraints

reflect a limitation of the control mechanism itself. At the same time, this does not

preclude the possibility of such limitations. One such possibility is that, given the

prevalence of shared representations within certain domains of processing (e.g., ones

that rely on abstract, highly general representations, such as language), and therefore

the likelihood that engaging more than one task in such domains will lead to conflict,

control mechanisms that serve such domains may have “hard coded” constraints on the

number of processes that can be executed at once (e.g., as inhibitory weights among

tasks units). From an implementational perspective, this could be viewed as a

processing constraint within the control mechanism itself (that is, only one task

representation could be active at a time). This might even be expressed in the brain by

limitations in connectivity between areas responsible for control

4.2.2 Constraints on Task Switching and Serial Processing. The neural

network models we have presented also account for constraints on the ability to execute

multiple control-dependent tasks in rapid succession, in terms of the same mechanisms

underlying constraints on concurrent multitasking, thus providing a unifying account of

these phenomena. The former manifest as a cost in performance when switching from

one task to another, as compared to repeating the same task (“switch costs”; Allport et

al., 1994; Jersild, 1927; R. D. Rogers & Monsell, 1995). Theorists have proposed a

variety of mechanisms to explain such switch costs, including, the demands of retrieving

the relevant task goal for a given task cue (Logan & Bundesen, 2003; Logan &
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Schneider, 2006), interference from competing stimulus-task associations (Waszak et al.,

2004; Wylie & Allport, 2000), inhibition from the persistent activity of a previous task

set in working memory (“task-set inertia hypothesis”, Mayr & Keele, 2000; Allport et

al., 1994). While these have all largely been treated as distinct from the mechanisms

responsible for constraints on concurrent multitasking (for a review, see Koch et al.,

2018), the models presented here provide a common mechanism for both phenomena:

persisting interference between tasks due to shared representation. This view reflects a

combination of the multiple resource theory which assumes that shared representations

between tasks pose a limit on the number of tasks that can be executed concurrently

(Allport et al., 1972; Navon & Gopher, 1979; Wickens, 1991), on the one hand, and the

task-set inertia hypothesis (Allport et al., 1994) which poses that such interference can

persist when switching from one task to another. It is important to note, however, that

this view is by no means a complete account of task switch costs. A large body of

evidence suggests other mechanisms to contribute to performance costs involved in task

switching, such as costs associated with active task reconfiguration (Mayr & Kliegl,

2000; Meiran, 1996; R. D. Rogers & Monsell, 1995; Rubinstein et al., 2001).

4.2.3 Cognitive Control and Flexibility of Processing. The present work

suggests a functional connection between seriality constraints described above, and

another defining feature of cognitive control: The ability to flexibly acquire and

implement arbitrary mappings between stimuli and responses. Cognitive control is often

defined as the latter (J. D. Cohen, 2017; Goschke, 2000; Verguts, 2017); that is, as a

collection of mechanisms that support the learning and execution of novel task rules.

Recent modeling work suggests that this flexibility in task acquisition can be achieved

through oscillatory dynamics between existing task modules (Verbeke & Verguts, 2019;

Verguts, 2017). For instance, Verguts (2017) shows that novel stimulus-response

mappings (e.g. for pressing a button according to a word) can be acquired by

synchronizing the neural population encoding the relevant stimulus feature (e.g. the

word “red”) with the neural population encoding the desired response (e.g. “press right

button”). Verguts argues that such flexible bindings would enable a cognitive system to
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acquire novel tasks in a rapid fashion, such as mapping words to button presses (see the

extended Stroop experiment in Part II). Yet, flexible task acquisition can only be

achieved in this way if existing neural populations for stimuli and responses are

repurposed; that is, if they are shared between different tasks (Badre, Bhandari,

Keglovits, & Kikumoto, 2020). The computational and behavioral studies in Part II of

this article suggest that such repurposing of task representations across tasks enables a

cognitive system to rapidly implement arbitrary task rules (i.e. cognitive flexibility) but

that this comes at the cost of the seriality constraints imposed by overlapping task

pathways. Thus, two defining features of cognitive control, constraints on multitasking

and cognitive flexibility, may be two reflections of the same underlying factor: the use of

shared representations for different tasks.

This characterization of control-dependent processing may also help explain why

processes underlying language and mathematical reasoning, are subject to such striking

limitations in multitasking, and considered prime examples of control-dependent

processes. Both language and mathematical reasoning rely on the use of symbolic

representations. Such representations, by their very definition, are general purpose; that

is, they can be used for a wide — and in the limit, arbitrary and unlimited — number

of tasks. By our reasoning, the more tasks that can make use of a symbolic

representation, the more it should rely on control to determine how it is used in a given

context. From this perspective, the very feature that makes the use of language and

mathematical reasoning so powerfully flexible also explains why they are so canonically

representative of control-dependent, serial processing.

Conversely, automatic processes are defined to be free of interference in that they

can be executed concurrently with other tasks. The work we have presented here

suggests that, when a task is deemed to be automatic, it is because it is being executed

in a setting in which it is independent of any of the other tasks called upon for

execution in that setting; that is, the representations on which it relies are not shared

with any of those other tasks. This is consistent with previous arguments that

automaticity is best thought of as a relative attribute, that is based on the strength of
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the processing pathways required to perform the task, relative to that of other that may

be competing with it (e.g., word reading vs. color naming in the Stroop task (e.g.,

J. D. Cohen et al., 1990). Here, in addition to the relative strength of processing

pathways, we add the degree to which it shares representations with those other tasks

(that is, the extent to which the pathways overlap) as a factor that determines the

automaticity of a task in a given setting. This suggests that tasks that share

representations with many other tasks are less likely to be automatic (i.e., they are

more likely to rely on control – a factor that, as discussed just above, may help explain

the profile of tasks such as language processing and mathematics that are prototypically

control-dependent tasks. It also provides an account of the common trajectory in skill

acquisition from control-dependent to automatic processing.

It is a longstanding observation that when many tasks are first acquired they

appear to rely on control, as evidenced by their susceptibility to multitasking

interference, but can become free of interference from other tasks with sufficient

practice (Logan, 1978, 1985; Schneider et al., 1987; Schneider & Chein, 2003). Modeling

efforts relying on symbolic architectures such as ACT-R suggest that continued practice

on a task leads to improved scheduling of task processes through a central executive

(Kieras et al., 2000), the compilation of sub processes into smaller chunks (Newell &

Rosenbloom, 1981; Rosenbloom et al., 1993; Taatgen & Anderson, 2002), or improved

memory retrieval of task-relevant information (Logan & Bundesen, 2003). These models

suggest that interference-free task execution is primarily achieved by gradually reducing

temporal overlap between task processes in a given resource. Simulation studies in Part

II suggest another mechanism by which practice on a task may lead to automaticity: by

separating representations between interfering tasks. As discussed in Simulation Study

5, evidence consistent with this has been observed in a functional neuroimaging study

(Garner & Dux, 2015). Future models of skill acquisition may therefore benefit from

combining mechanisms that underlie reductions in temporal overlap, as proposed by

production system architectures, as well as mechanisms of reducing overlap in task

representations as suggested here. Furthermore, as discussed above, reliance on shared
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representations may provide a normative account of why tasks are so often acquired in a

form that depends on control: exploiting the use of pre-existing representations permits

more rapid acquisition (i.e., cognitive flexibility), albeit at the expense of greater

dependence on control and serial processing that comes with the use of shared

representations.

4.3 The Relationship of Cognitive Control to Working Memory

One approach to explaining the constraints on multitasking of control-dependent

processes has been to attribute these to the reliance for control on a central

limited-capacity working memory mechanism. While this is not explicitly specified by

most central bottleneck theories (Welford, 1967; Pashler, 1994), it would provide a

mechanistic account of the capacity constraint associated with control. It assumes that

task representations required to exert control over processing (i.e., goals, instructions,

and/or other forms of context information needed to specify the task) must be actively

maintained, and that doing so relies on a centralized working memory mechanism that

subserves the control system, and that is assumed to be subject to a strict capacity

constraint (Cowan et al., 2012; Kriete et al., 2013; Luck & Vogel, 1997; G. A. Miller,

1956; Schneider & Detweiler, 1988). Interestingly, however, while all computational

accounts of control-dependent processing incorporate some mechanism(s) of working

memory, they do not generally assume that is a single, centralized mechanism.

For instance, symbolic processing systems, such as ACT-R (Anderson, Reder, &

Lebiere, 1996; Anderson & Lebiere, 2014) and EPIC (Meyer & Kieras, 1997b) define

working memory as the set of propositional representations currently active in

declarative memory. In those frameworks, while it is assumed that there is a limit on

the amount of activity available to representations in declarative memory, it is also

assumed that declarative memory itself may be subdivided into domain-specific

modules e.g., Anderson et al. (1996). Thus, while there may be limitations in the

amount of activity available for WM within each domain, this does not place a

constraint on the number of control-dependent processes that can be executed across
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domains, other than the number of domain-specific modules, to the extent that each

makes use of WM in a different domain.

Nevertheless, although most computational frameworks do not tie the seriality of

control-dependent processing to a centralized working memory mechanism, limitations

in the capacity of working memory are relevant to control in at least two important

ways. One is simply a re-expression of the point that has been the focus of this article:

To the extent that working memory refers to the set of representations activated within

a given resource, and this is limited – whether by assumption as in production system

models, or due to interference as in neural network models (see Footnote 1) – then any

processes that require different representations to be activated within that resource must

be executed serially and therefore rely control. The role of representation sharing for

limitations in working memory capacity is illustrated in a recent neural network model

by Bouchacourt and Buschman (2019). The model consists of two layers: a sensory

network that is composed of independent sub-networks, each dedicated to represent a

visual object in a different location in space; and a separate network that is randomly

and reciprocally connected to the sensory network. Representations for stimuli in the

sensory network lead to corresponding activations in the random network that feed back

to the same representations in the sensory network. This reciprocal connectivity ensures

that representations for stimuli are maintained, despite removal of external input (the

stimulus) to the sensory network. The random connections ensure that the network is

flexible enough to represent arbitrary sets of stimuli. However, as a consequence, stimuli

from different sensory sub-networks can share representations in the random network.

The authors demonstrate that such representation sharing can lead to interference

between items, limiting the number of objects that the whole network can maintain.

As we have emphasized throughout this article, in cases such as those described

above, the seriality constraint should really be thought of as a reflection of the purpose

of control, rather than a limitation intrinsic to the mechanism(s) responsible for its

execution. However, there are cases in which seriality might be construed as reflecting a

constraint that is in fact intrinsic to the mechanism(s) responsible for control. This is
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when information required to control two or more tasks (e.g., task goals, instructions,

and/or other context information necessary to specify the tasks) must itself be

represented within the same resource. In this case, the activation of such information is

presumably subject to the same working memory limitations that constrain any other

resource, as illustrated in the network model of Bouchacourt and Buschman (2019). A

similar situation can apply to the models presented in this work. For example, in the

models presented in Parts I and II, units in the task layer (e.g., representations

designating the dimension of the stimulus to which to respond in the Stroop paradigm)

may compete with one another (as a result of feedforward cross-inhibition and/or

recurrent inhibitory weights within the task layer) , thus constraining only one to be

active. While there is no reason a priori that this must be so, the system may learn over

experience that for tasks that share representations it is best not to perform both at

once, and thus develop inhibitory connections among the relevant task representations.

This is particularly likely for tasks that rely on representations that are shared among

many processes (as are those for colors and orthography in the Stroop task; we consider

this issue more generally with respect to the binding problem in perception, in the

section titled “The Binding Problem, Attention, and Shared Representations” below).

In such cases, the sets of such mutually exclusive task representations can be thought of

a resource (see Footnote 1), used to execute control, and the limitation on the number

of representations that can be active within that resource could be described as a WM

limitation and considered to be a constraint that is intrinsic to the mechanism

responsible for control itself. However, note that this constraint reflects an adaptation

that arose from the sharing of representations among the tasks over which those

representations preside. Thus, while in a structural sense the constraint is intrinsic to

the mechanism responsible for control, it can still be traced functionally to the sharing

of representations among the tasks over which it presides. Furthermore, because the

resource shared by one set of task representations need not be the same as the ones

shared by others (e.g., along lines similar to domain-specific modules in production

system architectures), it seems reasonable to consider such constraints as also falling
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within the explanatory purview of the multiple resources theory, rather than as

reflecting a single, centralized, capacity-constrained bottleneck in processing.

4.4 The Binding Problem, Attention, and Shared Representations

The relationship of between cognitive control and shared representations may also

help provide a mechanistic account of the long recognized relationship between visual

attention and the feature binding problem in perception (Treisman, 1996, 1999). The

feature binding problem concerns the identification of stimulus features with the objects

to which they belong. This arises when multiples objects (e.g., a blue square and a

yellow circle) are present in the stimulus at the same time: How are the features (i.e.,

the colors and shapes of each) represented in such a way that each is assigned to the

correct object (e.g., without misperceiving a blue circle and yellow square)?

One solution to the binding problem is the conjunctive coding of features; that is,

representing each object as an explicit conjunction of its features. While this solution

prevents any misattributions, it requires an encoding of all possible combinations of

features to accommodate the range of possible objects, which grows combinatorially

with the number of dimensions and features along them. In the limit, this leads to the

classic “grandmother” cell problem: The requirement for a unit dedicated to every

possible object (e.g., a different unit for a blue square, yellow circle, as well as blue

circle, yellow square, orange triangle, etc. Barlow, 1972; Riesenhuber & Poggio, 1999).

It is questionable whether a system, even as large as the human brain, can

accommodate the number of combinations needed. However, to the extent that

conjunctive encoding is used, it should be possible to recognize multiple objects in

parallel, without crosstalk among their features. This is sometimes the case (Cave &

Wolfe, 1990; McLeod, Driver, & Crisp, 1988). However, often it is not the case, as has

been well established in a landmark series of studies showing that, under many

conditions, object recognition seems to require serial search (Shiffrin & Schneider, 1977;

Treisman & Gelade, 1980; Woodman & Luck, 2003) and, furthermore, can be subject to

the kinds of misattributions indicative of the binding problem. This has been
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interpreted as evidence that the visual system can also use a different solution to the

binding problem, as proposed by Feature Integration Theory (FIT, Treisman & Gelade,

1980). FIT suggests that object recognition can rely on representations of features that

are general to all objects – sometimes referred to as “compositional coding,” to reflect

their using in various combinations to represent different objects – by attending to only

one object at a time. This ensures that only the features within the limited focus of

attention are integrated into that object, avoiding misattributions of the features

belonging to other objects. However, this comes at the expense of serial search over

objects to identify each.

This summary above should make clear the parallels between the binding problem

in object recognition and the “multitasking problem” in task performance (for a similar

argument, see Logan & Gordon, 2001). Conjunctive feature coding for individual

objects corresponds directly to what we have referred to as separated (tensor product)

representations dedicated to particular tasks, with its attendant representational

demands but efficiency of parallel processing; while “compositional coding” corresponds

to the use of shared, general purpose (minimal basis set) representations that are both

more flexible and representationally more efficient, but come at the cost of a requirement

for serial processing to avoid feature misattribution or interference. In object

recognition, serial processing (e.g., visual search) is assumed to rely on the allocation of

attention, that in turn is assumed to rely mechanisms of control (Shiffrin & Schneider,

1977; Treisman & Gelade, 1980). Similarly, as discussed extensively in this article, the

serial execution of multiple tasks is assumed to rely on the execution of control. It

seems reasonable to suggest, therefore, that the value of shared representations and

their relationship to control-dependent processing reflect general principles of processing

in neural network architectures, that apply equally across domains, including perception

and action. That is, the problem of simultaneously detecting multiple objects can be

thought of as comparable to, and governed by the same principles as, the problem of

executing multiple tasks at the same time (Logan & Gordon, 2001). However, there

have been differences of emphasis and interpretation across these domains.



RATIONAL BOUNDEDNESS OF COGNITIVE CONTROL 162

In the context of object perception, the role of attention has been proposed to be

the integration of features with the representations of objects (Treisman & Gelade,

1980). Something similar might be said of the role of control in task performance, in

mapping features onto desired responses. However, where attention has been implicated

in object recognition, seriality of processing has been interpreted as reflecting

constraints associated with control mechanisms responsible for directing attention (e.g.,

to guide visual search), resting on the traditional assumption that control mechanisms

are associated within an intrinsic processing capacity limits (Shiffrin & Schneider,

1977). The work we present here provides an alternative view: Seriality of processing is

a solution to the binding problem imposed by attention, rather than a reflection of its

limitations, just as control is a solution to the problem of interference in task

performance. In both cases, the solution is required to avert problems that arise from

the use of shared representations.

This perspective may also help explain why and when compositional

representations may be favored over conjunctive ones, despite binding problem and the

requirements it carries for serial processing and attention: By relying on shared

representations, compositional encoding facilitates learning and transfer. In the case of

object detection, conjunctive codes of features (e.g. modular encoding of colors and

locations) support spatial invariance (e.g. the ability to detect the color of an object

irrespective of its location), and are commonly observed across stages in the visual

system (Desimone, 1991; Tanaka, 1996; Rolls & Tovee, 1995). Neurally inspired

mechanisms for spatial invariance have also enabled recent advances of artificial object

recognition (LeCun et al., 1989; LeCun, Bengio, & Hinton, 2015; Schmidhuber, 2015).

That is, object recognition may face the same tradeoff between learning efficiency

promoted by the sharing of compositional representations of features across multiple

objects, versus more efficient, simultaneous detection of multiple objects afforded by

conjunctive representations. This may also provide insight into how object

representations develop in the brain. For example, learning about a new object (i.e.,

involving a new combination of features) may exploit compositional rather than
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conjunctive representations, committing dedicated representations to individual objects

only after considerable experience, or when parallel recognition of multiple objects is

important.

4.5 Interference Versus Facilitation

In this article we have focused primarily on the deleterious effects of shared

representations with respect to processing efficiency; that is, the potential for

interference. This assumes that when two or more tasks make use of shared

representations, the specific representations they require differ, and thus interfere with

one another (e.g., an incongruent Stroop stimulus). However, it is also possible that

different tasks may require the same representation (e.g., a congruent stimulus), in

which case shared representations should produce facilitation that would improve rather

than degrade performance. Here, we first motivate this focus, but then consider

conditions under which facilitation arising from shared representations may be a

relevant factor.

Our focus on interference was guided by the observation that, in general, the

conditions that favor facilitation due to shared representations are far less likely than

those favoring interference, under the assumption that, in general, the features along

different dimensions of a stimulus are statistically independent of one another. For

example, consider a Stroop stimulus in which the two relevant dimensions (colors and

words) may each take on one of three features (e.g., red, green or blue). Assuming

uniform, independent sampling along each dimension, stimuli are twice as likely to be

incongruent as congruent (2/3 vs. 1/3). This asymmetry grows exponentially as both

the number of dimensions and features within each dimension grows. Thus, it seems

reasonable to assume that, in realistically rich environments, the likelihood of

congruence among tasks that share representations is low. Furthermore, it has often

been observed that facilitation effects due to congruence are substantially smaller in

magnitude than those of interference (D. S. Lindsay & Jacoby, 1994; Macleod, 1998).

Although the reasons for this are beyond the scope of this article (for potential
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accounts, see J. D. Cohen et al., 1990; Herd, Banich, & O’Reilly, 2006; Logan, 1980),

this too suggests that it is reasonable to consider the potential costs of interference due

to shared representations as outweighing, on average, the potential for facilitation.

Nevertheless, there are some conditions under which shared representations can

lead to facilitation that are relevant not only to single task, but also multitasking

performance. For example, Townsend and Nozawa (1995); Townsend and Wenger

(2004) have shown that, under certain conditions, a task process can execute faster if it

is performed in conjunction with other task processes compared to when it is performed

alone, and referred to this as “super capacity”. Formally, a parallel processing system is

assumed to reach super-capacity if the probability PAB(TA ≤ t AND TB ≤ t) of reaching

a response for two processes TA and TB before time point t exceeds the probability

min[PA(TA ≤ t), PB(TB ≤ t)] of responding to the slower of the two processes before

time point t.55. The work presented in this article suggest that this can arise from

shared of representations in the same way that stimulus congruence can produce

facilitation in single task performance. In the latter, the features of the stimulus

relevant to the task to be performed and another one are both associated with the same

representation within the set that is shared, so that any partial activation provided by

the irrelevant task reinforces the representation needed to perform the relevant task

(e.g., J. D. Cohen et al., 1990). In the context of dual task performance, such

facilitation will produce performance that is better than when each task is performed in

isolation of the other; that is, when no information is available along the other

dimension (e.g., naming the color of patch or the letters XXX).

Our graph-theoretic analysis of shared representations, and in particular the

construct of functional dependence, may also have relevance to associative processes

and their relationship to measurements of creativity. The latter have been

operationalized in the form of the Remote Association Test (RAT, Mednick, 1962), in

which participants are presented with three cue words (e.g. “home”, “sea”, “bed”) and

55 This condition represents a violation of an inequality formulated by Colonius and Vorberg (1994).

The violation of this inequality is sufficient but not necessary for super-capacity.
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are asked to identify a solution word that relates to all of the three cue words (e.g.

“sick”). Performance on this task has been interpreted in terms of a semantic graph, in

which nodes represent individual words and the edges between nodes represent the

semantic association between them (Kajić et al., 2017; Schatz et al., 2018). The ability

to retrieve the solution word is assumed to depend on how effectively activity spreads

from nodes representing the cue words to the node representing the solution word and,

in particular, to ones that are not directly connected. This might be viewed as a form of

associative facilitation that arises from chains of shared representations. If so, the graph

theoretic methods we described for evaluating functional dependence may provide a

formal approach to quantifying such effects in neural networks. In such networks,

concepts are generally represented as distributed patterns of activity rather than

discretely as individual nodes. However, the methods we described for constructing a

bipartite graph from a neural network (see Section “Graph-Theoretic Analyses”) could,

in principle, be used to construct a semantic graph from semantic neural networks (e.g.,

Hinton et al., 1986; Kajić et al., 2017; Schatz et al., 2018; T. T. Rogers & McClelland,

2004); and, from that, to construct an interference graph that could be used to

determine functional dependence – that is, the prevalence of indirect sharing that could

be used for inference. That, in turn, could used to predict scores in the RAT, providing

a bridge from detailed, process models of semantic cognition to measures of associative

abilities and creativity.

4.6 Learning, Memory and Semantic Cognition

The computational tradeoff between shared and separated representations is

closely related to another, well characterized computational dilemma in neural

architectures: the tension between the ability to rapidly acquire new information

without interfering with or over-writing existing knowledge (McCloskey & Cohen,

1989). This problem, known as “catastrophic interference” can be avoided by biasing a

neural network towards non-overlapping (sparse) representations (French, 1999). Biases

towards interference-free learning through the use of sparse representation, however,
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forgo inference and transfer to novel tasks that is achieved through interactions between

learned representations. This dilemma motivated the Complementary Learning Systems

(CLS) hypothesis, according to which two separate learning systems interact in the

human brain, one that relies on shared representations to support inference (semantic

memory, subserved by neocortical structures), and another that uses separated

representations to support independent encoding and retrieval of information (episodic

memory, subserved by medial temporal structures, possibly among others)(McClelland

et al., 1995). This suggests that the limitations associated with interference-free

processing in the domain of cognitive control may reflect the same underlying dilemma

posed by the problem of catastrophic interference in the domain of learning and

memory. How these solutions relate to each other is a potentially important future

direction of research. For example, how might separated representations that can be

rapidly formed in the medial temporal cortex structures (i.e., episodic memory) interact

with both shared (minimal basis set) and separated (tensor product) representations

that can be formed in neocortex (i.e. semantic memory). Better understanding how

such interactions might help explain the remarkable flexibility characteristics of human

behavior. Interesting, this is a direction that has begun to attract the attention of work

in machine learning (Graves, Wayne, & Danihelka, 2014; Lake, 2019; Ritter et al., 2018;

Webb et al., 2020).

A related issue concerning representational learning is the transfer (inductive

generalization) of concepts in semantic cognition (e.g. reasoning from multiple instances

of birds that all birds lay eggs; Abel et al., 2015; Jackson, Rogers, & Ralph, 2019;

Ralph, Jefferies, Patterson, & Rogers, 2017). Here, we have argued that shared

representation across tasks facilitates inference and transfer in control-dependent

processing. Similarly, in semantic cognition shared representation across stimulus

modalities and contexts can achieve transfer of concepts (Jackson et al., 2019;

T. T. Rogers & McClelland, 2004; Rumelhart et al., 1993). In their recent work,

Jackson et al. (2019) showed that the latter is facilitated in networks that allow

information from different modalities to converge in the same “hub” for shared
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representation. Interestingly, the acquisition of semantic concepts follows a

developmental trajectory which, at the level of representation learning, resembles the

trajectory from controlled to automatic processing described above. That is, children

were observed to learn broad semantic distinctions (e.g. between living and non-living

things) earlier than more fine grained distinctions (e.g. between a sheep and a goat;

Mandler, Bauer, & McDonough, 1991; Pauen, 2002). Neural network models, similar in

architecture to the one described here (Rumelhart et al., 1993), suggest that this

behavioral trajectory underlies a transition from representation sharing across

categories to the separation of category-dedicated representations (T. T. Rogers &

McClelland, 2004), a transition that reflects the progressive extraction of common

statistical structure across objects (A. M. Saxe et al., 2019).

If the principles and methods – discussed in this article with respect to

sensorimotor tasks – also apply to semantic inference, then it should be possible to use

dual-task interference as a novel, and potentially sensitive probe of semantic

representations (as discussed in Section “Shared Representations, Semantics, and

Multitasking”, see Chen & Rogers, 2010). For example, one might ask whether size

judgements of different semantic categories (such as animals and furniture) rely on a

shared, canonical representation for “size”? This could be addressed using a semantic

version of the extended Stroop task described in Section “Empirical Study: Learning,

Shared Representations and Functional Dependence”, in which participants are

presented with a picture of an animal (e.g. a hamster) and a word overlaying the

picture designating a furniture (e.g. “CHAIR”). Participants could then be asked to

name the color of the animal in the picture while indicating the size of the furniture

with a button press. If animals and furniture share the same representation for size

judgements, then one may expect dual-task interference in conditions where the

presented animal and furniture don’t match in size. Such a dual-task experiment may

permit inferences about the amount of representation sharing between different semantic

categories (e.g. animals and furniture) with respect a particular feature dimension (e.g.

size), and thus, may provide a novel avenue for the study of semantic cognition.
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4.7 Bounded Rationality, Normative Models of Control Allocation and the

Cost of Control

Bounded rationality refers to the proposition that aspects of human cognition and

behavior, which appear irrational when viewed through the lens of simple formal

analysis (Kahneman & Tversky, 1972; Tversky & Kahneman, 1974), may in fact reflect

rational adaptations to constraints under which the system operates, and be found to

be optimal or near optimal when these are taken into consideration (Gershman,

Horvitz, & Tenenbaum, 2015; Gigerenzer, 2008; Griffiths, Lieder, & Goodman, 2015;

Griffiths & Tenenbaum, 2006; Lewis, Howes, & Singh, 2014; Simon, 1957; Todd &

Gigerenzer, 2012).56 Here, we consider how the work presented in this article situates

our understanding of cognitive control within this framework.

Recently, there has been renewed effort to frame cognitive control as an

optimization problem, inspired by early work on control theory in engineering (Wiener,

2019), its application to psychology (Atkinson & Shiffrin, 1968; G. A. Miller, Galanter,

& Pribram, 1960), as well as work in computer science on bounded optimality (Russell

& Subramanian, 1994). The latter proposes that an agent maximizes reward per unit

time given the limitations of its computational architecture (Russell & Subramanian,

1994). With respect to cognitive control, the primary limitation has been assumed to be

constraints on its allocation. Kurzban et al. (2013) proposed that these constraints

impose an opportunity cost on the allocation of control, that may help explain

subjective phenomena with which it is associated, such as mental effort and fatigue:

These may reflect internal signals that signify the cost of allocating control to one

process in terms of the opportunities that are forgone for doing so to others (see also

(Agrawal, Mattar, Cohen, & Daw, 2020; Shenhav et al., 2017) for formal treatments of

56 This general idea has been expressed using other terms, such as “satisficing,” “resource rationality,”

and “bounded optimality.” While these terms reflect some differences in approach and/or emphasis,

those differences are beyond the scope of the present article. Here, we focus on the fundamental idea

they have in common: that a consideration of the constraints under which the system operates can lead

to a deeper understanding of the determinants of its function.
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this idea). This, in turn, has led to the development of theories that formulate the

allocation of control allocation in terms of a cost-benefit analysis, that selects among

candidate tasks the one(s) that promise the greatest returns, by weighing the expected

value of investing in each against the costs of doing so (i.e., forestalling or foregoing

others). This idea has been expressed in general form as the Expected Value of Control

theory (EVC, Shenhav et al., 2013), and formalized in a number of settings, including

the selection between cognitive heuristics (Lieder & Griffiths, 2015), model-based

planning (Kool et al., 2017), and the learning of the value of control (Musslick,

Shenhav, Botvinick, & Cohen, 2015).

This EVC Theory, and related approaches provide a rational account of control

allocation under the assumption that capacity is bounded; that is, the allocation of

control carries opportunity costs. However, it does not provide an account of the bound

itself ; that is, why is the allocation of control is limited? Here, we provide an answer to

that question, that suggests a more nuanced formulation of the problem faced by the

control system, and its relationship to mechanisms of learning. Constraints on the

allocation of control, and attendant opportunity costs, arise from a rational adaptation

to another form of cost: the risk of interference associated with shared representations.

We have argued that this, in turn, reflects another form of adaptation, favoring the

efficacy of learning over the efficiency of processing. This account not only provides a

mechanistic understanding of the conditions under which control is required (when the

tasks under consideration share representations) and a normative account of its

engagement (to optimize performance by minimizing the risk of conflict), but also ties

this to a normative account of why such conditions may arise (a bias toward the efficacy

of learning over the efficiency of processing). From this perspective, capacity constraints

associated with control-dependent processing are a bound rationally by control,

necessitated by the use of shared representations in the service of more effective learning

and generalization. To impose a rational bound on control, the brain may rely on

meta-control mechanisms for estimating its constraints on multitasking capability, the

study of which remains an important objective for future research. In addition, the
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brain may balance learning efficacy against processing efficiency, possibly through

meta-optimization. We reviewed possible mechanisms for the latter in Section

“Summary and Discussion of Part II”. These suggest that it can be optimal, under

finite time horizons, for neural agents to harvest immediate rewards from tasks that are

learned quickly, at the cost of having to execute them in serial (Sagiv et al., 2018; Ravi

et al., 2020).

While the work presented in this article provides a rational basis for the

opportunity costs associated with the allocation of control that arises from a constraint

in the number of tasks to which control can be safely allocated, there also appear to be

costs associated with the intensity of control allocated to a task. This is evidenced by

the observation that people can exhibit aversion to the allocation of control even to a

single task (Kool, McGuire, Rosen, & Botvinick, 2010; Westbrook & Braver, 2015). This

is puzzling from a normative perspective: Why would a system refrain from allocating

maximal control to a task to which it is already committed, assuming that performance

scales with the intensity of control allocated? One answer to this question that has been

proposed is that this reflects another tradeoff faced by control mechanisms, referred to

as the stability-flexibility dilemma, that has been been formalized in terms of the

dynamics of processing in neural networks (Durstewitz & Seamans, 2008; Musslick et

al., 2017; Ueltzhöffer, Armbruster-Genç, & Fiebach, 2015): Increasing the activity of

the representation(s) responsible for control of a task may improve performance of that

task and make it more robust to interference. However, this will also induce greater

persistence of activity of those representation(s), and the ones in the pathways

responsible for task execution. As discussed in Section “Performance Costs Associated

with Task Switching” in the Summary, Discussion and Conclusions for Part I, this can

incur greater switch costs, that will impair performance in settings requiring the

flexibility to rapidly switch between tasks. Note, however, that as shown in Simulation

Study 3, such costs scale with the extent to which representations are shared among the

tasks involved – that is, the extent to which they are control-dependent.

Musslick, Bizyaeva, Agaron, Naomi, and Cohen (2019); Musslick et al. (2018)
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have illustrated these effects, and their ability to reproduce effects observed in human

performance, using a model that implemented control representations as attractors in

the recurrent layer of a neural network. Furthermore, they showed that constraining the

activity of control representations was optimal (i.e., yielded higher overall rates of

reward) in environments with a higher demand for switches between tasks. These

observations suggest that constraints on the intensity of control can be a rational

response in environments that require flexibility, and that this may be signalled by the

costs associated with intensity of control allocation. More generally, the framework

presented in this article provides a unified understanding of the costs associated with

control – both in the number of tasks to which it is allocated and the intensity allocated

to each – showing how these relate to (and scale with) the use of shared representations,

and reflect the value placed on flexibility by the cognitive system in the ability to

acquire new tasks and switch between them.

4.8 Machine Learning and Artificial Intelligence

As noted at several points in this article, the observation that shared

representations promote more rapid learning and generalization has become an

important foundation of machine learning methods that make use of neural network

architectures. Such methods are largely concerned with building artificial agents that

can generalize what they learn from observed (training) data to unseen (test) data. One

challenge to doing so has been characterized as the bias-variance tradeoff, which is

closely related to the tradeoff between shared and separated representations. The

bias-variance tradeoff refers to the problem that can arise from overfitting, in which

generalization and transfer performance are impaired if a learner has more parameters

than data points, as is often the case for neural network architectures. If a network is

equipped with too many parameters (i.e., processing units and/or connections), it can

accommodate the variance in the data by simply memorizing all of the data points with

a dedicated parameter for each, without encoding any relationships that might exist

among them. This corresponds to the formation of separated, tensor product
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representations as described in this article. This can occur even when the space of

parameters is smaller than the number of data points, if the learner has trouble

segregating meaningful structure from noise in the data. Absent any biases, if neural

networks are given too many parameters, they are known to overfit; that is, to tune

their parameters to fit all of the variance in data, including any due to noise. This can

also happen if they are trained for too many epochs on the same data set. To prevent

this, machine learning researchers introduce biases, constraining the space of

parameters using various regularization techniques, which reduce the degree to which

the network adjusts its parameters to variance in the data. While these biases can

reduce the learner’s susceptibility to variance caused by noise by the data, and help it

discover lower-dimensional structure more quickly (for example, shared, or minimal

basis set representations) it can also cause it to miss discovering meaningful

higher-dimensional structure. This is known as the bias-variance tradeoff.

The bias-variance tradeoff can help provide insight into the factors that influence

the development of shared representations. For example, training on multiple tasks

(“multi-task training”, such as we used in Simulation Study 7) can be interpreted as an

inductive bias that reduces noise which might otherwise obscure the shared structure

across tasks if they are learned in isolation of one another, by allowing this to be

averaged over over training, and thereby learn a shared representation that corresponds

to the average (Caruana, 1997; Ruder, 2017). This use of low-dimensional

representations can be formalized as a bias of the learner’s hypothesis space (Baxter,

1995), that is, the set of all hypotheses a learner may use to acquire new tasks. In the

analyses in Simulation 7, we formalized the hypothesis space in terms of the number of

distinct task representations encoded in the hidden layer of a network, and showed that

a small number of shared representations (i.e. the minimal basis set representation)

facilitated transfer to novel tasks. However, we also showed that biases toward

representation sharing introduce a systematic error when multiple tasks are executed

concurrently. Separated representations, on the other hand, increase the

representational complexity of the network, thereby making the network more
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susceptible to noise in the training data. Yet, separated representations avoid

systematic errors (i.e. cross-talk) when the network is tasked to execute multiple tasks

concurrently.

More generally, understanding how the bias-variance tradeoff relates to the use of

shared versus separated representations, and the impact this has on human cognitive

function, may facilitate productive cross-influences of research on humans and

machines. Understanding factors that influence the bias-variance tradeoff in machine

learning (e.g., initialization, subtle forms of regularization) may help guide the

formation of hypotheses about whether and how such factors are exploited in the brain

and impact cognitive function, including its development. For example, in machine

learning it has been recognized that initializing the weights of a network with small

random values produces a bias toward the development of shared representations – one

that seems neurobiologically plausible and a factor that we exploited in our simulations

(e.g. Simulation Studies 6 and 7). These can be thought of starting with a single (albeit

uninformative) representation that is segregated into a greater number only under the

pressure of the evidence (i.e., learning); that is, it favors the use of the fewer

representations shared over more inputs unless “forced” to do otherwise. Conversely, an

understanding how the brain manages the bias-variance tradeoff may provide insights

into the uniquely adaptive character of human cognition function, that may prove useful

in the design of more powerful artificial agents. For example, efforts to understand how

the decision is made when to favor the use of shared representations and rely on

control-dependent processing for the acquisition of a new concept or skill, versus the

investment in automatization to improve the efficiency of performance through the

development of separated, task dedicated representations (e.g., Sagiv et al., 2018; Ravi

et al., 2020) may inform the effort to design artificial systems that are capable of more

sophisticated forms of adaptation, that are both more robust to but can also function

more efficiently in a broader range of environments. For example, wouldn’t it be nice if

a computer had the ability to use flexible, general purpose (e.g., “interpreted”) methods

to recognize and interact with novel devices, but also develop more efficient,
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device-dedicated routines (“drivers”) for devices with which it continued to interact

regularly, and be able to recognize when it was worth it to do so, and to do so on its

own?

4.9 Shared Communication Channels

Multitasking capability, as we have considered it here, bears a close relationship to

issues that arise in the design of electronic communication systems, that seek to

optimize the efficiency of transmission through distributed, parallel communications

while avoiding the risks of cross talk introduced by shared communication channels

(Alon, Moitra, & Sudakov, 2012; Birk, Linial, & Meshulam, 1993; Chlamtac & Kutten,

1985). Communication channels require balancing channel capacity, i.e. the number of

messages that can be simultaneously transmitted between source stations (senders) and

destinations stations (receivers), and structural efficiency, i.e. sharing connections

between senders and receivers. Shared communication channels are deployed when it is

too expensive, or otherwise prohibitive, to build point-to-point communication channels

between senders and receivers; as it is the case for the standard computer bus, cellular

systems or local area networks (Birk et al., 1993). Thus, analogous to the way in which

neural architectures exploit shared representation for the purpose of learning efficiency,

shared communication channels rely on shared connectivity in the service of structural

efficiency.

Analyses of communication systems may be useful for analyzing and

understanding multitasking capability in neural networks, and vice versa. For example,

one implementation of shared communication channels is the shared directional

multichannel (SDM), which obeys the following protocol: (1) a message transmitted to

a sender is broadcast to all receivers connected to the sender, and (2) a message is

considered correctly retrieved by a receiver if no other messages are transmitted to the

receiver (Birk, 1987). The SDM can be viewed a special case of the bipartite task graph

introduced in Part 1 of this article, in which a sender corresponds to a stimulus

dimension (input node), a receiver corresponds to a response dimension (output node)



RATIONAL BOUNDEDNESS OF COGNITIVE CONTROL 175

and the transmission of a message from a sender to an receiver corresponds to the

execution of a task (directed edge). However, unlike in the SDM, stimulus dimensions

do not automatically broadcast information to all response dimensions connected to

them. Rather, we assume that executing a task requires cognitive control to engage

(activate) the stimulus and response dimensions relevant to that task. Thus, the SDM

corresponds to the special case of a multitasking agent whose control policy is to engage

all stimulus dimensions and all response dimensions simultaneously. Not surprisingly,

the capacity of an SDM can be studied by formulating it as a bipartite graph, and it is

determined by the largest subset of edges in the graph for in which none of the edges

share a node (i.e. no structural dependence), and for which there exists no other edge in

the entire graph that connects an input node of an edge in the subset to an output node

of a different edge in the subset (i.e. no functional dependence). As for the network

architectures considered in our formal analysis, the capacity of an SDM corresponds to

the maximum independent set of its dependency graph (Birk et al., 1993). Thus, the

tools developed for the study of multitasking capability in neural architectures may

inform the design of communication channels, when balancing structural efficiency

against channel capacity. Conversely, this work suggests that the analytic tools

developed for the study of communication channels continue to provide a promising

avenue for the study of human multitasking capacity (for pioneering applications

thereof, see Craik, 1948; Welford, 1967; Townsend et al., 1983). For instance, theoretic

analyses of parallel processing capability in complex, multi-layered communication

channels may be useful for characterizing the multitasking capability of deep (i.e.

multi-layered) neural networks.

4.10 Limitations and Future Directions

While we hope that the work presented in this article advances the effort to lend

formal rigor and quantitative precision to multiple resource theory, it relied on a

number of simplifying assumptions. First, for the graph-theoretic analyses we assumed

that representational sharing is a binary factor: either tasks share or don’t share
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representations. In reality, of course, degree of sharing is likely to be a graded factor.

We were not able to do address this in the graph theoretic analyses we reported, as it

requires the analysis of weighted graphs which is considerably more complex (Alon et

al., 2018). Accordingly, the graph-theoretic analyses we presented converted graded

degrees of representational overlap in source networks into a discrete graph structure.

However, such overlap is an important factor in determining the multitasking capability

of a neural system. For example, the simulations in Part I showed that multitasking

interference degrades in a graded fashion with the amount of representational overlap

between tasks. They also showed that multitasking performance is dependent on other

factors, such as the amount of conflict induced by shared representation or persistence

of neural activity, both of which are graded effects that scale with the extent of sharing.

Therefore, by treating sharing as all or nothing, these effects are not captured by the

current form of graph-theoretic analysis methods. For all of these reasons, the further

development of those methods to incorporate weighted graphs, that can express graded

effects of degree of overlap and temporal dynamics of neural activity, is an important

direction for future research.

A simplification in most of the theoretical work presented here, as well as the

empirical study, is its focus on tasks that involve simple direct mappings between inputs

and outputs. In more realistic scenarios, tasks (such as driving a car) may involve

multiple internal (re-)mappings and/or temporally extended sequences of actions. Such

tasks are well accommodated by symbol-oriented cognitive architectures that decompose

tasks into subtasks, or “chunks” (Meyer & Kieras, 1997a; Salvucci & Taatgen, 2008).

Neural network architectures can also accommodate such tasks as a sequence of

computations that is carried out over multiple layers, as is the case in recurrent or deep

neural networks. This would allow a task to be implemented through multiple paths

through the network. However, at the same time the likelihood of interference between

pathways implementing different tasks increases with the number of intermediate layers

(i.e., opportunities for intersection), as illustrated in Section “Analysis of Multitasking

Capability” of this article and in related work (Alon et al., 2017). Further work in this
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direction, that more fully extends the framework presented here to multi-layer networks

may help advance our understanding of multitasking limitations in more complex tasks,

beyond the simple stimulus-response mappings of the sort on which we focused here.

The models presented here are, to our knowledge, the first to use a neural network

architecture to provide an integrated account of phenomena associated with

control-dependent processing and multitasking, that includes the Stroop, PRP, and task

switching paradigms, as well as behavioral measures of parallel vs. serial processing

channels. However, these represent only a small subset of the wide array of relevant

empirical findings that remain to be addressed. We hope that the present work offers

insights and approaches that, together with other developments in computational and

cognitive neuroscience and machine learning (e.g. Badre et al., 2020; Flesch, Balaguer,

Dekker, Nili, & Summerfield, 2018; Graves et al., 2014; A. M. Saxe et al., 2019; A. Saxe,

Nelli, & Summerfield, 2020; Townsend & Wenger, 2004), can contribute to the

construction of unified models of cognition using neural network architectures, that can

approach the scope of those that have been developed using symbol-processing

frameworks such as ACT-R and SOAR.

We also hope that the work presented here motivates new, theoretically-guided

empirical studies of the neural mechanisms underlying multitasking and skill

acquisition. For example, one prediction that derives from this work is that

improvements in multitasking should be accompanied by a separation of representations

that are responsible for cross-task interference. It should be possible to use the graph

theoretic methods presented in Section “Analysis of Multitasking Capability” to analyze

brain imaging data in participants trained to multitask color naming and word mapping

in the extended Stroop task described in Section “Empirical Study: Learning, Shared

Representations and Functional Dependence”, to evaluate dependence among the tasks,

and how this evolves with multitasking training. The models presented in Simulation

Studies 4-5 predict that, initially, representations (measured as patterns of neural

activity) should be shared between word mapping and word reading, and that this be

associated with functional interference (by way of the effects of word reading on color
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naming) and poor multitasking performance. However, with training, it is predicted

that word mapping representations should diverge from those observed during reading,

and that this should be correlated with improvements in multitasking performance.

Moreover, improvements in multitasking performance should be influenced by the

extent to which training involved incongruent versus congruent trials, with prevalence of

the former leading both to greater improvements in performance and separation of word

mapping representations. If successful, real-time imaging methods using closed-loop

feedback (in which online decoding of neural activity can be used to adapt the training

regime) could be used, as they have in other domains (e.g. Iordan, Ritvo, Norman,

Turk-Browne, & Cohen, 2020; Stoeckel et al., 2014), to more directly determine the

causality of changes in neural representations and performance, as well as

feedback-guided training methods that may help augment the acquisition of

multitasking capabilities.

4.11 Conclusion

In this work, we presented a formal framework for understanding the constraints

associated with control-dependent processing in neural architectures, that suggests

these reflect a rational response to the bounds on processing imposed by the use of

shared representations, rather than a bound that is intrinsic to the mechanisms

responsible for executing control. Analyses carried out within this framework indicate

that neural learning systems, whether natural or artificial, are subject to a tension

between the use of shared representations that exploit similarity structure between

tasks in the service of more effective learning and generalization, but are constrained to

serial execution to avoid cross-task interference, versus the use of separated,

task-dedicated representations that support concurrent parallelism of execution and

thereby efficient processing, but take longer to learn. This computational tradeoff

between shared and separated representations can help explain a number of

fundamental principles of cognitive function and associated phenomena, and also has

applications in machine learning research. Here, we focused on the implications of this
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tradeoff for control-dependent processing, and argued that limitations thereof reflect a

rational choice of the control system to avoid cross-talk between overlapping task

pathways. This work helps explain the commonly-observed trajectory from controlled to

automatic processing as a rational optimization of the tradeoff between shared and

separated representation: a bias toward shared representations affords the flexibility of

being able to more rapidly acquire new tasks associated with control-dependent

processing, whereas the capacity for automatization through the development of

separated representations can be used to configure processing to be more efficient and

robust to interference for tasks that require this. This provides a formally rigorous

framework for furthering our understanding of how and why people choose to rely on

control-dependent processing versus investing in automatization, that may also inform

the design of more intelligent artificial agents, that are capable of more sophisticated

forms of adaptation and can function over a wider range of task and environments.
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Appendix A: Graph Theory Preliminaries

Throughout the main text and the appendix, we make extensive use of some basic

definitions and notation from graph theory. In this section, we review these. Additional

background and information concerning graph theory can be found in Diestel (2005)

and D. B. West et al. (2001).

An directed graph G is composed of a finite set of vertices, V and a set of edges,

E which is a subset of the family of all 2-tuples of V . Namely each edge is an ordered

pair (u, v) where both u, v ∈ V . We write G = (V,E) to signify a graph G that consists

of a vertex set V and edge set E. We say that a vertex y is an neighbor of x if

(x, y) ∈ E. Alternatively, we say that y is adjacent to x.

The degree of x is defined as the number of neighbors of x. Given a list of vertices,

v1, v2, ..., vr the degree sequence of these vertices is simply the list of the degrees of

v1, v2, ..., vr. The average degree of a graph is simply the sum of the degrees normalized

by the number of vertices.

A simple path is a set of distinct vertices v1, v2, ..., vk such that for every 1 ≤ i < k

, vi is a neighbor to vi+1. The length of the path is the number of vertices in the path

minus one (that is, k − 1).

An independent set is a subset I of vertices that contains no edges. We refer to an

independent set of maximal cardinality as an MIS (standing for maximal independent

set). G = (V,E) is bipartite if the vertex set of V is the union of two disjoint

independent sets.

A matching is a set of edges M that are pairwise disjoint. Namely, no two edges in

M share a vertex as an endpoint. A matching M ′ is induced if no two edges in M ′ are

connected by a third edge.

The line graph L(G) of a graph G = (V,E) is a graph whose vertex set is the

edges of G and two vertices in L(G) are connected by an edge in L(G) if the edges

corresponding to them in G share a vertex (observe that the line graph may have

parallel edges, namely if v(e) and v(f) are two edges corresponding to the edges e and f

in G then the line graph may contain both the (v(e), v(f)) edge as well as the
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(v(f), v(e)) edge. The square of a graph G = (V,E) denote by G2 has the same vertex

set V as G. Two vertices in G2 are connected if and only if there is a path of length at

most 2 connecting them in G. It can be verified a set of vertices in the square of the line

graph L(G) is an independent set if and only if the edges in G, that correspond to these

vertices in L(G), form an induced matching.

Appendix B: Multitasking Capability in Deep Networks

Here, we derive an upper bound for the multitasking capability in deep networks.

Recall from the section on “Analysis of Multitasking Capability” in the main text that

we assume that we are given a network G that has r ≥ 2 layers L1, ..., Lr where each

layer is of size n. Every layer is an independent set and for every i < r , every vertex in

Li is connected to every vertex in Li+1 independently with probability p . In other

words, for every i < r, the graph connecting Li and Li+1 is a random bipartite graph

where every u ∈ Li is connected to Li+1 with probability p independently of all other

edges. Observe that we assume there are no “skip connections": there are no edges

connecting Li and Lj if |i− j| > 1.

Recall that a family of induced paths of size k is a set of k paths from L1 to Lr

that are vertex disjoint and furthermore, for any two vertices u, v belonging to two

different paths, there is no edge in G connecting u to v. We use the first moment

method commonplace in random graph theory to upper bound the likely size of k. We

first upper bound the expected number of families of k induced paths going from the

first layer to the rth layer. The expected number of such paths is

(
n

k

)r
pk(r−1)((1− p)2(r−1))k(k−1)/2 (10)

.

Indeed, there are
(
n
k

)r
ways to choose the vertices in the k induced paths (observe

that the k induced paths intersect Li at exactly k vertices for every 1 ≤ i ≤ r), the

probability all these paths appear is pk(r−1) and the probability no two paths are

connected by an edge is ((1− p)2(r−1))k(k−1)/2. Here, we use the assumption that there
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are no “skip connections”: Every layer i has connection only to the i+ 1 or i− 1 layers.

Using the inequalities
(
n
k

)
≤
(
en
k

)k
and 1− p ≤ e−p, we get that the expected number of

families containing k induced paths is at most

enp r−1
r

k

rk e(−p(r−1)k+p(r−1))k =
enp r−1

r

k

r e−p(r−1)k+p(r−1)

k . (11)

.

To prove the expectation is negligible (tending to zero with n), it suffices to find k

such that the term inside the bracket is at most 1
e
. Taking logarithms (all logarithms

are to the base of e) we get,

k =
(

1 + 1
r − 1

)( log en− log k
p

)
− log(1/p)

p
+ 1

(r − 1)p + 1. (12)

By Markov’s inequality, we get that with high probability (probability tending to

1 as n tends to infinity) the a family of t induced paths in G satisfies

t ≤ f(r, p, n) =
(

1 + 1
r − 1

)( log en
p

)
− log(1/p)

p
(13)

plus some low-order terms (e.g., terms whose asymptotic growth is much lower

than log en
p

). Looking at this calculation, we see that for p ≥ w(n) lgn
n

where

limn→∞w(n) = 0, the largest number of tasks that can be multitasked is sublinear in n

confirming our simulations and predictions in the main text (for r = 2). Assuming that

p ≥ 1/n, we can also see that f(r, p, n) decays in r, and rate of the decay is lower

bounded (when compared to the r = 2 case) by 1/2(r − 1). Namely, we have that

f(r, p, n)
f(2, p, n) ≥

((
1 + 1

r − 1

)( log en
p

)
− log(1/p)

p

)
/(2 log(en)/p) ≥ 1

2(r − 1) . (14)

Our bound on the expectation implies that with high probability there is no

family of induced paths in G containing significantly more than f(r, p, n) paths. One

may ask whether our result is tight: is it true that there exist a family of induced paths
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with (1− δ)f(r, p, n) paths (where δ is an arbitrary positive constant smaller than 1)

with high probability. While we believe that this is indeed the case, a formal proof or

disproof is left for future work.

Appendix C: Tradeoff Between Learning Efficiency and Multitasking

Capability in Gated Deep Linear Networks

Consider the setting with M stimulus dimensions xi ∈ RN , i = 1, · · · ,M and M

response dimensions yi ∈ RN , i = 1, · · · ,M where each dimension consists of N neurons

(processing units in a neural network). There are M2 single tasks to perform,

corresponding to all combinations of linking a stimulus dimension to a response

dimension. Given a stimulus dimension m and response dimension n, the task to be

performed is a function f linking only the specified stimulus dimension to the specified

response dimension, yn = f(xm), and all other response dimensions should be zero,

yk = 0, k 6= n. That is, the transformation applied from stimulus dimension to response

dimension is identical for different tasks, which differ only in which dimensions are

relevant. The transformation is learned based on a dataset of P inputs X ∈ RN×P and

associated desired outputs Y ∈ RN×P where examples are placed in columns. Learning

speed will depend on the second order statistics Σyx = Y XT and Σxx = XXT , and for

simplicity, we assume that the inputs are whitened, Σxx = I.

To implement the mapping from input to output, we use a gated deep linear

network containing a single hidden layer of neurons (Fig. 26). In this network, signal

propagation is linear, except that individual neurons in the hidden and output layers

are gated on or off on each example. The gating scheme is hand-specified, and different

gating schemes will cause different learning dynamics and multitasking behavior. To

describe the gating schemes we consider, it is useful to subdivide the hidden layer of

neurons as follows. We divide the hidden layer into Q groups of neurons that will

project to different response dimensions, described below; and each group is further

subdivided into M sets of N neurons, one for each of the M stimulus dimensions. The

overall hidden layer is thus of size QMN , and to foreshadow, the number of groups Q
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will interpolate between the minimal basis set representation (Q = 1) and the tensor

product representation (Q = M). We denote the hidden units devoted to stimulus

dimension i, group j as the vector hj,i ∈ RN . We denote the weights from stimulus

dimension i to its bank of hidden units in group j as W j,i
hs , i = 1, · · · ,M, j = 1, · · · ,M .

Similarly, we denote the output weights from the ith stimulus dimension’s set of hidden

units in group j to the kth response dimension as W k,j,i
oh .

With these definitions, we now describe how the output of the gated deep linear

network is computed for a given input. The network’s hidden activity in response to an

input is given by

hj,i = gh(i, j, c)W j,i
hsxi, i = 1, · · · ,M, j = 1, · · · , Q (15)

where the scalar hidden gating function gh(i, j, c) is either one or zero (turning on or off

this bank of hidden units) and is allowed to depend on the current task c, i.e., the

relevant stimulus dimension and response dimensions. This gating function will be

hand-chosen as described subsequently. The network’s output is then

yk =
Q∑
j=1

M∑
i=1

go(k, c)W k,j,i
oh hj,i, k = 1, · · · ,M (16)

where similarly the output gating function go(k, c) is either one or zero (turning on or

off this bank of output units) and may depend on the task c. In this network, the

impact of nonlinearity is to gate on or off certain sets of hidden and output neurons,

depending on task context, via the gating functions gh and go.

To train the network, all weight parameters are adjusted using gradient descent to

minimize a loss function, which we choose to be the sum of squared error. The error for

a task c is

SSE(c) = 1
2

P∑
µ=1

M∑
k=1
‖ȳk(µ, c)− yk(µ, c)‖2

2 (17)

(18)

where ȳk(µ, c) ∈ RN is the correct output for example µ on task c, and we have made

the dependence of the network’s output on µ and c explicit.
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When the network is trained on the set S of all M2 single-tasking tasks, we have

the total loss

L =
∑
c∈S

SSE(c). (19)

Every weight parameter w in the network is updated via continuous time gradient

descent,

τ
d

dt
w = −∂L

∂w
. (20)

Taking the derivative for a single task c with respect to the hidden-to-output

weights, we have

∂SSE(c)
∂W q,r,s

oh

= ∂

∂W q,r,s
oh

1
2

P∑
µ=1

M∑
k=1
‖ȳk(µ, c)− yk(µ, c)‖2

2 (21)

= ∂

∂W q,r,s
oh

1
2

P∑
µ=1

M∑
k=1

∥∥∥∥∥∥ȳk(µ, c)−
Q∑
j=1

M∑
i=1

go(k, c)W k,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
∥∥∥∥∥∥

2

2

(22)

= 1
2

P∑
µ=1

∂

∂W q,r,s
oh

∥∥∥∥∥∥ȳq(µ, c)−
Q∑
j=1

M∑
i=1

go(q, c)W q,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
∥∥∥∥∥∥

2

2

(23)

=
P∑
µ=1

eq(µ, c)go(q, c)gh(s, r, c) [W r,s
hs xs(µ)]T (24)

=
P∑
µ=1

ȳq(µ, c)− Q∑
j=1

M∑
i=1

go(q, c)W q,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
× (25)

go(q, c)gh(s, r, c) [W r,s
hs xs(µ)]T (26)

(27)

Hence the derivative will be zero if the response dimension to which these weights

project is gated off (go(q, c) = 0), or if the hidden group for this output and stimulus

dimension is gated off (gh(s, r, c) = 0). When the task c is a single-tasking scenario in

which stimulus dimension γ and response dimension ν are relevant,

Now we use the fact that ȳq(µ, c) and go(q, c) are both zero unless response

dimension q is on in task c. Let ν be the response dimension for task c. Then we have

∂SSE(c)
∂W q,r,s

oh

= 0 if q 6= ν (28)
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and if q = ν,

∂SSE(c)
∂W q,r,s

oh

=
P∑
µ=1

ȳν(µ)−
Q∑
j=1

M∑
i=1

W ν,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
 gh(s, r, c) [W r,s

hs xs(µ)]T . (29)

In single task training, the hidden gating function gh(i, j, c) is zero unless i corresponds

to the desired stimulus dimension γ. Hence ∂SSE(c)
∂W q,r,s

oh
= 0 if s 6= γ, and otherwise,

∂SSE(c)
∂W q,r,s

oh

=
P∑
µ=1

ȳν(µ)−
Q∑
j=1

W ν,j,γ
oh gh(γ, j, c)W j,γ

hs xγ(µ)
 gh(γ, r, c) [W r,γ

hs xγ(µ)]T . (30)

Finally, gh(γ, j, c) is zero unless group j projects to response dimension ν. Let ξ be the

group index for response dimension q. Then we have

∂SSE(c)
∂W q,r,s

oh

=


∑P
µ=1

[
ȳν(µ)−W ν,ξ,γ

oh W ξ,γ
hs xγ(µ)

] [
W ξ,γ
hs xγ(µ)

]T
if q = ν, r = ξ, s = γ

0 otherwise
(31)

Using the fact that all tasks require the same input-output mapping, this can be

rearranged to

∂SSE(c)
∂W q,r,s

oh

=


(
Σyx −W ν,ξ,γ

oh W ξ,γ
hs Σxx

) (
W ξ,γ
hs

)T
if q = ν, r = ξ, s = γ

0 otherwise
(32)

Hence, when training in single-tasking context, only the hidden-to-output weights which

project from the relevant hidden input group to the relevant response dimension, and

are part of a group which are active for this response dimension will change. The form

of this change is exactly the same as in a deep linear network, a fact that we will exploit

below.

Summing the contributions from all single tasks yields the learning dynamics for

the overall loss L for single task training,

∂L
∂W q,r,s

oh

=


(Σyx −W q,r,s

oh W r,s
hs Σxx) (W r,s

hs )T if r = v(q)

0 otherwise
(33)

where v(q) is a function mapping an response dimension to its associated hidden unit

group. Hence, under single task training, the hidden-to-output weights between a

hidden unit group and its associated output dimension change according to standard
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dynamics in a deep linear network, and connections from other groups to the relevant

output remain unchanged.

We now calculate the derivative for a single task c with respect to the input

weights,

∂SSE(c)
∂W r,s

hs

= ∂

∂W r,s
hs

1
2

P∑
µ=1

M∑
k=1
‖ȳk(µ, c)− yk(µ, c)‖2

2 (34)

= ∂

∂W r,s
hs

1
2

P∑
µ=1

M∑
k=1

∥∥∥∥∥∥ȳk(µ, c)−
Q∑
j=1

M∑
i=1

go(k, c)W k,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
∥∥∥∥∥∥

2

2

(35)

=
P∑
µ=1

M∑
k=1

go(k, c)
(
W k,r,s
oh

)T
[ȳk(µ, c) (36)

−
Q∑
j=1

M∑
i=1

go(k, c)W k,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
 gh(s, r, c)xs(µ)T (37)

(38)

Under the single tasking gating scheme where task c links input dimension m to

output dimension n, this simplifies to

∂SSE(c)
∂W r,s

hs

=
P∑
µ=1

(W n,r,s
oh )T

[
ȳn(µ, c)−W n,v(n),m

oh W
v(n),m
hs xm(µ)

]
gh(s, r, c)xs(µ)T (39)

= (40)

where in the first step we have used the fact that go(k, c) is zero unless k = n and

gh(i, j, c) is zero unless i = m, j = v(n) (v(n) is the hidden group associated with output

group n). Hence the update will be zero, unless s = m and r = v(n). Notably, this

means the update can be nonzero for tasks with different output dimensions n.

Summing over all single tasks, we have the update

∂L
∂W r,s

hs

=
P∑
µ=1

(W n,r,s
oh )T

[
ȳn(µ, c)−W n,v(n),m

oh W
v(n),m
hs xm(µ)

]
gh(s, r, c)xs(µ)T (41)

(42)

∂L
∂W r,s

hs

=


(Σyx −W q,r,s

oh W r,s
hs Σxx) (W r,s

hs )T if r = v(q)

0 otherwise
(43)
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We thus have the SSE

SSE = 1
2

M∑
µ=1

M∑
ν=1

∥∥∥Y µ,ν − Ŷ µ,ν
∥∥∥2

F
(44)

= 1
2

M∑
µ=1

M∑
ν=1
‖Y µ,ν −W µ

2 W
ν
1 X

µ,ν‖2
F (45)

The gradient is thus

∂SSE

∂W µ
2

= 1
2

M∑
ν=1

∂

∂W µ
2
‖Y µ,ν −W µ

2 W
ν
1 X

µ,ν‖2
F (46)

=
M∑
ν=1

(
Y µ,ν(Xµ,ν)T −W µ

2 W
ν
1 X

µ,ν(Xµ,ν)T
)
W νT

1 (47)

∂SSE

∂W ν
1

= 1
2

M∑
µ=1

∂

∂W ν
1
‖Y µ,ν −W µ

2 W
ν
1 X

µ,ν‖2
F (48)

=
M∑
µ=1

W µT

2

(
Y µ,ν(Xµ,ν)T −W µ

2 W
ν
1 X

µ,ν(Xµ,ν)T
)

(49)

Finally, assuming identical tasks and similar initializations W1 = W ν
1 , W2 = W µ

2

for all µ, ν, we have

∂SSE

∂W2
= M (Σyx −W2W1Σxx)W T

1 (50)

∂SSE

∂W1
= MW T

2 (Σyx −W2W1Σxx) (51)

Hence the impact of multitasking is simply to pick up a factor of M in the

learning rate, relative to learning each task independently. Using the usual SVD results

for linear networks, this means that each mode of the SVD will be learned in time

t = τ

Ms
ln(s/ε) (52)

where s is the singular value of the input-output mode, τ is the inverse learning rate,

and ε is a small cutoff (assuming whitened inputs; this can be relaxed).

Hence this input-output gating scheme learns in time roughly O(1/M), and sits as

a midpoint along a continuum: if we knew that all tasks were identical and parameter

updates could be fully shared, we could learn the task in time O(1/M2). If we used a

tensor product representation, we would learn each task as though it were completely

independent, yielding an O(1) learning time.
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Letting N = M2 be the total number of tasks, we can rewrite this as an O(1/
√
N)

advantage in learning speed over the tensor product representation.

There is also an advantage in terms of representational resources required. The

gating strategy requires O(MP ) neurons in its hidden layers to implement the

transformation where P is the number of input/output units per dimension. In contrast

the tensor product strategy requires O(M2P ); or rephrased in terms of the total

number of tasks, O(P
√
N) and O(PN) respectively. This can yield substantial savings.

Performing Multiple Tasks Simultaneously

Can multiple tasks be performed at the same time? One might hope that simply

setting the gating variables to allow two tasks to pass through would enable good

performance. However this idea fails completely because each task will linearly interfere

with the other in the minimal basis set representation. In particular, if tasks (µ1, ν1)

and (µ2, ν2) are attempted simultaneously, the output will be ŷ = W2W1(xµ1,ν1 + xµ2,ν2)

at both output locations.

In the tensor product representation, however, two tasks can errorlessly be

performed at the same time simply by activating the appropriate elements in the tensor

product. In fact, M tasks can be performed simultaneously (the maximum number

which can be accommodated given the M response dimensions).

Are there intermediate options between the O(1/M) learning but O(1)

multitasking of the input-output gating scheme and the O(1) learning but O(M)

multitasking of the tensor product? Suppose we wish to be able to perform just Q tasks

simultaneously. We may divide the M output task dimensions into Q groups, and apply

the input gating scheme to each group independently. Each group has M/Q response

dimensions which constitute it, and hence is learned in time O(Q/M). We thus have

the following tradeoff:

t = τQ

Ms
ln(s/ε) (53)

or t ∝ Q/M . In words, this is learning speed = # of input/response dimensions

divided by # of concurrently executable tasks.


