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Abstract 

 

 

Human understanding of the world can change rapidly when new information comes to light, 

such as when a plot twist occurs in a work of fiction. This flexible “knowledge assembly” 

requires few-shot reorganisation of neural codes for relations among objects and events. 

However, existing computational theories are largely silent about how this could occur. Here, 

participants learned a transitive ordering among novel objects within two distinct contexts, 

before exposure to new knowledge that revealed how they were linked. BOLD signals in dorsal 

frontoparietal cortical areas revealed that objects were rapidly and dramatically rearranged on 

the neural manifold after minimal exposure to linking information. We then adapt stochastic 

online gradient descent to permit similar rapid knowledge assembly in a neural network model. 
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Introduction 

 

To make sense of the world, we need to know how objects, people and places relate to one 

another. Understanding how relational knowledge is acquired, organised and used for 

inference has become a frontier topic in both neuroscience and machine learning research [1–

7]. Since Tolman, neuroscientists have proposed that when ensembles of states are repeatedly 

co-experienced, they are mentally organised into cognitive maps whose geometry mirrors the 

external environment [8–12]. On a  neural level, the associative distance between objects or 

locations (i.e. how related they are in space or time), has been found to covary with similarity 

(or dissimilarity) among neural coding patterns. Some neural signals, especially in medial 

temporal lobe structures, may even explicitly encode relational information about how space 

is structured or how knowledge hierarchies are organised [13–15].   

 

A striking aspect of cognition is that these knowledge structures can be rapidly reconfigured 

when new information becomes available. For example, a plot twist in a film might require the 

viewer to rapidly and dramatically reconsider a protagonist’s motives, or an etymylogical 

insight might allow a reader to suddenly understand the connection between two words. Here, 

we dub this process “knowledge assembly” because it requires existing knowledge to be 

rapidly (re-)assembled on the basis of minimal new information. How do brains update 

knowledge structures, selectively updating certain relations while keeping others in tact? In 

machine learning research [16,17], solutions to the general problem of building rich conceptual 

knowledge structures include graph-based architectures [18], modular networks [19], 

probabilistic programs [20], and deep generative models [21]. However, whilst these artificial 

tools can allow for expressive mental representation or powerful inference, they tend to learn 

slowly and require dense supervision, making them implausibile models of knowledge 

assembly and limiting their scope as theories of biological learning. 

 

How, then, does knowledge assembly occur in humans? We designed a task in which human 

participants learned the rank of adjacent items within two ordered sets of novel objects 

occurring in distinct temporal contexts. Participants acquired and generalised the transitive 

relations both within and between contexts, and did so in a fashion qualitatively identical to a 
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feedforward neural network. The geometry of multivoxel BOLD signals recorded from dorsal 

stream structures suggested that humans solved the task by representing objects on two 

parallel mental lines, one for each context, building on previous findings [22–25]. This coding 

strategy mirrored that observed in the hidden layer of the neural network. We then provided 

a very small number of ‘list linking’ training examples meant to imply that the two ordered sets 

in fact lay on a single continuum. Our participants rapidly infered the full set of resulting 

transitive relations given this minimal (and potentially ambiguous) information, as found 

previously in humans [26] and macaques [27]. As we recorded human BOLD signals both before 

and after this brief training period, we observed remarkable few-shot adjustments in neural 

geometries consequent from the new information. We then describe a theory of how 

knowledge can be rapidly assembled using  a version of the artificial neural network model, 

providing a computational account of the behavioural and neural results observed in humans. 

 

Results 

 

Human participants (n = 34) performed a computerised task that involved making decisions 

about novel visual objects. Each object 𝑖 was randomly assigned a ground truth rank (𝑖1 − 𝑖12) 

on the nonsense dimension of “brispiness” (Fig. 1A; see Methods; where 𝑖1 is the most brispy 

and 𝑖12 is the least). During initial training (train_short), the 12 objects were split into two 

distinct sets (items 𝑖1 − 𝑖6 and 𝑖7 − 𝑖12) and presented in alternating blocks (contexts; see 

Methods). Within each context, participants were asked to indicate with a button press which 

of two objects with adjacent rank (e.g. 𝑖3 and 𝑖4) as more (or less) “brispy”, receiving fully 

informative feedback (Fig. 1B, upper panel). Note that this training regime allowed participants 

to infer ranks within a set (i.e. within 𝑖1 − 𝑖6 and 𝑖7 − 𝑖12) but betrayed no information about 

the ground truth relation between the two sets (e.g. 𝑖2 < 𝑖9). Participants were trained on 

adjacent relations to a predetermined criterion, with final training accuracy reaching 95.6 ± 2.9 

% (mean ± SD; Fig. 1C; see Methods). The use of novel objects [28] and a nonword label was 

designed to minimise participants’ tendency to use prior information when solving the task. 
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After training, participants entered the scanner and performed a first test phase [test_short] 

in which they viewed objects one by one that were sampled randomly from across the full 

range (𝑖1 − 𝑖12). The task required them to report the “brispiness” of each object relative to its 

predecessor (i.e. a 1-back task) with a button press (Fig. 1B, lower panel). Therefore, the test 

phase involved comparisons of trained (adjacent) pairs within context (e.g. 𝑖3 and 𝑖4), 

untrained (non-adjacent) pairs within context (e.g. 𝑖3 and 𝑖6) and untrained pairs across 

Figure 1. Task and design. A. Left: matrix illustrating training and testing conditions for an example set of 
objects ordered by rank (on x and y axes). Each entry indicates a pair of stimuli defined by their row and 
column. Colours signal when the pair was trained or tested. For example, dark blue and red squares are within-
context pairs, shown during train_short. In  addition to these, lighter blue and red squares (trained non-
adjacent) and grey (untrained) are pairs tested during test_short. The black squares are the pairs shown  
during boundary training (train_long). Right: schematic of experimental sequence and legend. Although we 
use the same set of objects for display purposes, note that each participant viewed a randomly sampled set 
of novel objects B. Example trial sequence during training (upper) and test (lower). Numbers below each 
example screen show the frame duration in ms.  Timings for test were chosen to assist with BOLD modelling. 
C. Percentage accuracy over blocks during training for each individual. Stopping criterion is shown as a green 
line. The excluded participant is shown as a red trace. A training “cycle” consists of two blocks (one for each 
set of items). More details are provided in the Online Methods. 
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contexts (e.g. 𝑖3 and 𝑖10). Importantly, participants did not receive trialwise feedback on their 

choices during the test phase. 

Our first question was whether humans generalised knowledge about object brispiness both 

within and between contexts during the test_short phase. We collapse across the two contexts 

as there was no difference in either reaction times (RT) or accuracy between them (both p-

values > 0.3). Participants performed above chance both on adjacent pairs on which they had 

been trained (e.g. 𝑖3 and 𝑖4 or 𝑖9 and 𝑖10) [mean accuracy = 86.0 ± 10.4, t-test against 50%, t33 

= 20.5, p < 0.001] but also on untrained, nonadjacent pairs for which transitive inference was 

required (e.g. 𝑖3 and 𝑖6 or 𝑖7 and 𝑖10) (Fig. 2A) [mean accuracy 96.7 ± 19.2, t33 = 83.7, p < 0.001]. 

In fact, they were faster and more accurate for comparisons between non-adjacent than 

adjacent items (Fig. 2B) [accuracy: t33 = 7.8, p < 0.001; RT: t33 = 11.7, p < 0.001]. This was driven 

by an increase in accuracy (and decrease in RT) with growing distance between comparanda 

(Fig. 2A-B, right panels) [accuracy: 𝛽 = 3.4% per rank; t33 = 7.7, p < 0.001. RT: = 72 ms faster 

per rank; t33 = -7.8, p < 0.001; 𝛽𝑠 obtained with a regression model],  known as the “symbolic 

distance” effect [26,29]. We note that this result is not readily explained by models of transitive 

inference based on spreading pairwise associations through recurrent dynamics [30]. 
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Moreover, behaviour also indicated how participants compared ranks between contexts 

before ground truth was revealed. For example, they tended to infer 𝑖7 > 𝑖2 and 𝑖4 > 𝑖11 (Fig 

2A). This implies a natural tendency to match rank orderings between contexts (e.g. that the 

3rd item in one set was ranked higher than the 4th in the other) in the absence of information 

about how objects were related across contexts. In line with this, we quantified between-

context accuracy relative to an agent that generalises perfectly between contexts  and found 

Fig 2. Behaviour in humans and neural networks. A. Left panel: human choice matrix. The colour of each entry 
indicates the probability of responding “greater than” during test_short for the pair of items defined by the row 
and column. Colour scale is shown below the plot. Object identities are shown for illustration only (and were in 
fact resampled for each participant). Right panel: accuracy as a function of symbolic distance shown separately 
for within-context (e.g. 𝑖3 and 𝑖5; grey dots) and between context (e.g. 𝑖3 and 𝑖9; black dots) judgements. For 
between, accuracy data are with respect to a ground truth in which ranks are perfectly generalised across 
contexts (e.g. they infer that g. 𝑖2 > 𝑖9;). Errors bars are S.E.M. B. Equivalent data for reaction times. Note that a 
symbolic distance of zero was possible across contexts (e.g. 𝑖2 vs. 𝑖8) for which there was no correct answer but 
an RT was measurable. C. Left  panel: neural network architecture and training scheme. Input nodes are colored 
red and blue to denote the relevant context. Black dots illustrate an example training train in which objects 𝑖2 
and 𝑖3 are shown. Right panel: example test  trials both within and across context, with the symbolic distance 
signalled below. D. Left Panel: Choice matrix for the neural network, in the same format as A. Right Panel: 
Learning curves (showing accuracy over training epochs) for the neural network, shown separately for trials with 
different levels of symbolic distance. Shading is 1  S.E.M over network replicants. Note that like humans, despite 
being trained exclusively on adjacent items, neural networks learned faster and performed better on non-
adjacent items. 
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that between-context accuracy was well above chance for adjacent [75.9 ± 20.9 mean ± SD; t33 

= 7.3, p < 0.001] and non-adjacent [91.5 ± 9.3 mean ± SD; t33 = 14.2, p < 0.001] trials. 

We also observed a between-context symbolic distance effect in reaction times (Fig 2B) 

[accuracy: 4.9% per rank, t33 = 7.5, p < 0.001. RT: beta = 75 ms faster per rank; t33 = -7.8, p < 

0.001]. Participants were slowest when comparing items with equivalent rank across contexts 

(e.g. comparing 𝑖2 and 𝑖8, which were both ranked 2nd within their respective contexts), 

responding more slowly than for adjacent items both within [t33 = 3.23, p < 0.004], and 

between [t33 = 3.66, p < 0.001] contexts. Overall, these results are consistent with previous 

findings in both humans and monkeys, and have been taken to imply that participants 

automatically infer and represent the ordinal position of each item in the set [31].  

Next, to understand the computational underpinnings of this behaviour and neural coding, we 

trained a neural network to solve an equivalent transitive inference problem. The network had  

a two-layer feedforward architecture with symmetric input weights, and was trained in a 

supervised fashion using stochastic online gradient descent [SGD] (Fig. 2C). For this modelling 

exercise, we replaced the unrelated object images seen by participants for orthogonal (one-

hot) vector inputs. On each trial the network received two inputs, denoting the images shown 

on the right and left of the screen, and (just like participants) was required to output whether 

one was “more” or “less” than the other (see Methods).  At the point at which we terminated 

training (960 total trials, or 8 blocks of 60 trials each per context; see Methods), the network 

reached an average test accuracy of 97.74% on unseen comparisons (between nonadjacent 

pairs) and 79.04% for adjacent (trained) pairs (Fig. 2D, right panel). It showed a qualitatively 

identical pattern of generalisation within and between contexts, such that accuracy grew with 

rank distance (Fig. 2D, left panel). Choice matrices for the humans and neural networks were 

highly correlated [𝑟 = 0.98, p < 0.001 for averaged choice matrices; single participants 𝑟 = 0.82 

± 0.13 mean ± SD, all p-values < 0.001].   
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After training, we examined neural geometry in the neural network by probing it with each 

(single) item 𝑖1 − 𝑖12 in turn and calculating a representational dissimilarity matrix (RDM) from 

Fig 3. Data from artificial networks and human BOLD signals. A. Upper panels: RDM for the neural network. 
Each entry shows the distance between hidden unit activations evoked by a pair of stimuli, for three example 
timepoints during training. Lower panels: MDS plot in 2D for the RDM above. Each circle is a stimulus, coloured 
by its context. Distances between circles conserve similarities in the RDM. Note the emergence of two parallel 
lines. B. Model RDMs for magnitude (assumes linear spacing between ranks) and context (assumes a fixed 
distance between contexts). C. Upper panels: neural data RDMs from patterns of BOLD in the PPC (left) and 
dmPFC (right) regions of interest (ROIs). Lower panels: 2D MDS on BOLD data. Red and blue lines denote the 
two contexts; numbers circles denote items, with their rank signalled by the inset number. D. Voxels correlating 
reliably with the terminal RDM from the neural network (RDMNN, see right panel) rendered onto saggital 
(upper) and coronal (lower) slices of a standardised brain, at a threshold of FWE p < 0.01. E. Left panel: Regions 
of interest (ROIs) in posterior parietal cortex (PPC, yellow), dorsomedial prefrontal cortex (PFC, green) and a 
control region in Visual Cortex (VC, purple). Right panel: Frequencies of accuracy bins over participants for 
support vector machines (SVMs) trained to distinguish item ranks in one context after training on the other. 
Three histograms are overlaid, one for each ROI; colours correspond to those for panel D. Dashed line shows 
chance (16.6%).  
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resultant hidden layer activations (Fig. 3A top row). We then used multidimensional scaling 

(MDS) to visualise the similarity structure in just two dimensions (Fig. 3A bottom row). As 

training progressed, the network learned to represent the items in order of brispiness along  

two adjacent parallel neural lines. We know from recent work that a low dimensional solution 

is only guaranteed when the hidden layer weights are initialised from very small values, 

sometimes known as the “rich” training regime [32]. After training in this regime, the Pearson’s 

correlation between the data RDM from the hidden layer of the neural network (RDMNN) and 

an idealised distance matrix for parallel lines (RDMmag; Fig. 3B top panel) was > 0.99 for all 

networks trained (p < 0.001 for each of 20 networks). However, we observed no correlation 

between RDMNN and an RDM coding for distance between contexts (RDMctx; Fig. 3B bottom 

panel) [Pearson 𝑟 ≤ 0.1, p > 0.4 for all cases], consistent with the observation that the 

magnitude lines were not just adjacent but fully overlapping by the end of training (Fig. 3A).  

 

Next, we compared the representational geometry observed in the neural network to that 

recorded in BOLD signals whilst human participants judged the “brispiness” of successive items 

in the test_short phase. We initially focus on regions of interest (ROIs) derived from an 

independent task in which participants judged the magnitude of Arabic digits, localised to the 

posterior parietal cortex (PPC) and dorsomedial prefrontal cortex (dmPFC; see Fig. S1), and 

later show the involvement of a larger fronto-parietal network using a whole-brain searchlight 

approach. In both ROIs, we saw strong correlation between the neural data RDM and RDMmag 

(Fig. 3C) [PPC: t33 = 4.2, p < 0.001; dmPFC: t33 = 5.7, p < 0.001] but no effect of RDMctx [t33 < 1, 

p > 0.65 for both regions]. This echoes the data from the hidden layer of the neural network 

(see Fig. 3A), and accordingly we observed significant correlation with RDMNN in both regions 

[PPC: t33 = 5.3; dmPFC: t33 = 7.2, both p < 0.001]. These effects all still held when we defined 

similarity across (rather than within) scanner runs using a crossvalidated RSA approach 

[RDMmag: PPC: t33 = 4.8, p < 0.001; dmPFC: t33 = 4.7, p < 0.001; RDMctx: PPC: t33 = 0.3, p = 0.78; 

dmPFC: t33 = 0.4, p = 0.69; RDMNN: PPC: t33 = 5.4, dmPFC: t33 = 6.0, p < 0.001; see Fig. S2].  

 

We visualised the neural geometry of the BOLD signals in both regions after reducing to two 

dimensions with MDS. In both ROIs, this yielded overlapping neural lines that reflected the 

rank-order of the novel objects (Fig. 3C, bottom row; see Fig. S3). Restricting our analysis to 

distances between consecutive objects, we found neural distances involving the end anchors 
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(e.g. 𝑖1 and 𝑖6) tended to be larger than those involving intermediate ranks [t33 = 4.8, p < 0.001; 

t33 = 4.4, p < 0.001 in PPC and dmPFC respectively]. However, unlike in the neural network, 

manifolds (number lines) obtained from BOLD data were curved. We note that the curvature 

of these representational manifolds around their midpoint yields approximately orthogonal 

axes for rank and uncertainty, and that this phenomenon has been previously observed in scalp 

EEG recordings [25] and in multi-unit activity from area LIP of the macaque [33]. 

 

This similarity between representations in the neural network and human BOLD was confirmed 

by a whole-brain searchlight approach, for which we report only effects that pass a familywise 

error (FWE) correction level of p < 0.01 with cluster size > 10 voxels (see Methods). This 

approach revealed a fronto-parietal network in which multivoxel patterns resembled those for 

the trained neural network (RDMNN; Fig. 3D), with peaks in dmPFC [-33 -3 33; t33= 9.3, puncorr < 

0.001] and inferior parietal lobe [right: 51 -45 45; t33 = 6.94, puncorr < 0.001; left: -39 -51 36; t33 

= 6.93, puncorr < 0.001]. As expected, this was driven by an explicit representation of magnitude 

distance, as correlations with RDMmag (Fig. 3B, top panel) peaked in the same regions [dmPFC: 

-33 -3 33; t33= 9.4, p<0.001; inferior parietal lobe right: 48 -45 42; t33 = 7.01, puncorr < 0.001; left: 

-39 -51 36; t33 = 7.15, puncorr < 0.001]. Notably, we did not observe an effect of RDMctx (Fig. 3B, 

bottom panel) [no clusters survived FWE correction, t33 < 2.65, uncorrected p > 0.012], 

indicating that neural representations for similarly-ranked items within each of the two 

contexts were effectively superimposed, as in the neural network.  

 

This representational format, whereby ranked items are represented on parallel manifolds, 

lends itself to generalisation across contexts, i.e. between items with distinct identity but 

equivalent brispiness [23,24]. To test this, we trained a support vector machine on binary 

classifications among ranks for context A and evaluated it on the (physically dissimilar) objects 

in context B. We found above-chance classification in PPC and dmPFC (Fig. 3E) [t33 = 4.39, p < 

0.001; t33 = 4.01, p < 0.001], but not in an extrastriate visual cortex ROI that also showed 

significant activation during the independent localiser [t33 = 1.75, p > 0.08]. These analyses not 

only cross-validated across runs, but also counterbalanced response contingencies, and so are 

unlikely to be indexing any spurious effect of motor control. Together, these results show that 

neural patterns indexed a concept of “brispiness” divorced from the physical properties of the 

objects themselves. 
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Next, we turned to our central question of how neural representations are reconfigured 

following a single piece of new information about the overall knowledge structure. After 

test_short, participants performed a brief “boundary training” session in the scanner in which 

they learned that object 𝑖7 (the most brispy object in context B) was less brispy then object 𝑖6 

(the least brispy object in context A). This information was acquired over just 20 trials in which 

Figure 4: Test_long Behavior. A. Right panel: choice matrices from human participants after boundary training. 
Format as for Fig. 2A. The white box indicates the two items viewed during boundary training. Note that now, 
on average choices respect the ground truth rank (𝑖1 − 𝑖12).  Left panel: same for RTs. B. Mean accuracy and 
response times as a function of  ground truth symbolic distance, now defined in the long axis space (𝑖1 − 𝑖12). 
Star indicates significance of the symbolic distance effect; lines show means within the “lower” and “higher” 
participant partitions.  C. Accuracy and RT for each participant (grey dots) in test_long and test_short. Diagonal 
dashed line is the identity line. Red cross is mean in each condition. D. Choice matrices (upper panels) and RTs 
(lower panels) separately for the two groups. The lower-performing group exhibit choice matrices which 
resemble those observed after short axis training, as if they failed to update relational knowledge after 
boundary training. E. Regression coefficients (𝛽s) from fits of idealised test_short and test_long choice 
matrices (panel A) to human choices (left) and RTs (right). Each dot is a single participant, and is coloured by 
their accuracy during test_long. 
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participants repeatedly judged whether item 𝑖6 or 𝑖7 was “more” or “less” brispy. Following 

this boundary training, participants performed a new session test_long which was identical in 

every respect to test_short. 

 

Our main question was whether and how the boundary training reshaped both behaviour and 

neural coding for the full set of objects. The average choice and RT matrices observed during 

test_long are shown in Fig. 4A. As can be seen, on aggregate participants used knowledge of 

relations between items 𝑖6 and 𝑖7  to correctly infer that all objects lay on a single long axis of 

brispiness (ranked 1-12). We confirmed this in two ways. First, unlike in test_short, items in 

context A (𝑖1 − 𝑖6) were mostly ranked as more brispy than items in context B (𝑖7 − 𝑖12) and 

the symbolic distance effect now spanned the whole range of items 1-12 (with a “dip” near the 

boundary between contexts; Fig. 4B,  left) [accuracy:  2.1% per rank; t33 = 7.8, p < 0.001. RT: -

29 ms per rank; t33 = -10.4, p < 0.001]. Next, we directly quantified the full pattern of responses 

seen in Fig. 4A by constructing idealised ground truth choice and reaction time (RT) matrices 

(Fig. S4A). These matrices reflected the assumption that the items either lay on two parallel 

short axes (as most participants inferred in test_short) or a single long axis (as was correct in 

test_long). Fitting these to human behavioral matrices using competitive regressions, we found 

that while the long axis matrix fit the test_long behavioral data [Choice: t33 = 9.2, p < 0.0001; 

RTs: t33 = 7.9, p < 0.0001] there remained a strong residual fit to the short axis choice and RT 

patterns [Choice: t33 = 5.0, p < 0.0001; RTs: t33 = 3.5, p < 0.01]. 

 

There was substantial variability in performance among participants on test_long, and median 

accuracy dropped to 79.8%, compared with 88.3% in test_short (Fig. 4C left panel). As average 

RTs did not differ between test_short (1153 ± 41 ms) and test_long (1166 ± 43 ms) [t33 = 0.49, 

p = 0.63], this difference was probably not attributable to a decrement in attention between 

the two conditions (Fig. 4C right panel). Instead, we reasoned that some participants might 

have failed to fully restructure their knowledge of the transitive series, retaining the belief that 

the two sets were still independent and treating the relative brispiness of item 𝑖6 < 𝑖7 as an 

exception. Indeed, participants who performed more poorly (defined by a median split; Fig. 4D 

right panels) behaved as if they were still in test_short (Fig. 4E, left panel), where as those who 

performed better generalised the few-shot information about 𝑖6 and 𝑖7 to correctly infer the 

rank of all other items (Fig. 4D, left panels). Moreover, there was a correlation across the 
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cohort between test_long accuracy and the fit of model test_short behavioral matrices to data 

obtained from test_long (Fig. 4E, right panel) [choices: 𝑟 = -0.56, p < 0.001; RT: 𝑟 = -0.57, p < 

0.001].  We ruled out the possibility that these participants simply failed to learn from the 

boundary training session, as they still reported the newly trained on object relation - 86 ± 15% 

of the relevant choices indicated 𝑖6 < 𝑖7  in test_long, compared with 5.8 ± 19 % in test_short 

for the same cohort (mean ± SD; t33 = 18.0, p < 0.0001; see Fig. 4D. Thus, whilst average 

participant choices suggested knowledge of a long axis, there was a sizeable cohort that only 

partially integrated the new relation into their knowledge structure.   

 

Next, we turned to the geometry of neural representations in BOLD during the test_long phase. 

We considered two hypotheses for how neural representations might adjust following 

boundary training to permit successful performance on test_long (Fig. 5A). Firstly, under a 

hierarchical coding scheme, the parallel lines observed in test_short (RDMmag) might separate 

along a direction perpendicular to the within-context magnitude axis, so that one dimension 

codes for a “superordinate” rank given by context (i.e. [𝑖1 − 𝑖6] > [𝑖7 − 𝑖12]) and the other for 

rank within each context (e.g. 𝑖2 > 𝑖3 and 𝑖9 > 𝑖10) [24].  This effectively  implements a place-

value (or “dimension-value”) representational scheme (akin to numbers in base 6; Fig. 5A, 

central panel). Note that this hierarchical coding scheme would not require altering the learned 

neural representation of within-context magnitude, but instead just incorporate additional 

contextual information, thus predicting increased coefficients for RDMctx. Alternatively, under 

the elongation scheme, objects could be neurally rearranged on a single line stretching from 

𝑖1 to 𝑖12 to match our designated ground truth ranking on a single dimension (RDMmag_long; Fig. 

5A, right panel).  We thus constructed a new RDMmag_long that encoded the predictions of this 

elongation model (Fig. 5C, top panel). Both the hierarchical and the elongation schemes could 

potentially allow learning from the boundary training (for items 𝑖6 and 𝑖7) to be rapidly 

generalised to other items in each context. 
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Figure 5. Neural data from test_long. A. Schematic illustration of hypotheses about how the extant neural code (after 
test_short, right panel) might be  transformed after test_long. The hierarchical hypothesis (middle panel) proposes that 
magnitude and context are represented on factorised (orthogonal) neural axes. Under the elongation hypothesis (right 
panel), the items are rearranged on a one-dimensional neural manifold (or magnitude line). B. Upper panels: neural 
RDMs in the PPC and dMPFC after test_long (left panels), and MDS plots (right panels), with ROIs inset. Lower panels: 
MDS projection of each item in the two contexts (red and blue dots) in test_long for the PPC (right) and dmPFC (left) 
ROIs. C. Model RDM for magnitude after test_long, and regions correlating with this RDM in a searchlight analysis, 
rendered onto saggital and coronal slices of a template brain. D. Neural-behavioural integration correlations in PPC and 
dmPFC ROIs. The x and y axis show relative behavioral model fits (test_long - test_short RT matrices) vs neural fits 
(elgonation - hierarchical RDMs). The legend displays the relative RDMs (y-axis) and relative RT matrices (x-axis), each 
rotated into alignment with the axis, from which the neural and behavioural scores were calculated. Each dots is a 
participant, coloured by their accuracy during test_long E. Voxels showing a significant neural-behavioural correlation 
(as defined in panel D) identified with a searchlight analysis, within the fronto-parietall network identified during 
test_short (see Fig. 3D) rendered on a template brain with a FWE threshold of p < 0.05. Brackets on top two BOLD maps 
indicate the horizontal slice displayed on the bottom. the brain 
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We first compared these schemes empirically by fitting model RDMs to multivoxel pattern data 

in PPC and dmPFC (Fig. 5B, top row). We compared two regression models, one in which the 

model RDM was generated under the elongation scheme and one under the hierarchical 

scheme. Each regession additionally included a predictor coding for RDMmag to accommodate 

any residual variance due to continued use of a test_short strategy (Fig. S4B). We found that 

neural data was better fit by the elongation model in both PPC and dmPFC  [t33 = 4.2, p < 0.001; 

t33 = 5.2, p < 0.001; paired t-test on residual sum of squared error]. Indeed, in both PPC and 

dmPFC, we observed positive correlations with RDMmag_long [PPC: t33 = 4.3, p < 0.001; dmPFC: 

t33 = 6.0, p < 0.001] and when we plotted the neural geometry associated with the 12 items in 

these regions, it can be seen that they lay on a single (curved) line, consistent with the 

elongation scheme (Fig. 5B, bottom row; also see Fig. S2). We found no evidence for the 

hierarchical coding scheme, and in particular no effect of context in our ROIs [PPC: t33 = 0.2, 

dmPFC, t33 = 0.6, both p-values > 0.5]. We confirmed the fit of the elongation model in frontal 

regions using a searchlight approach (Fig. 5C) [peak in left frontal gyrus: -30 23 23, t33 = 6.60, 

p < 0.01 after FWE].  

 

Interestingly, while neural codes in the dmPFC no longer correlated with RDMmag at test_long 

[t33 = 1.9, p = 0.06; t-test on z-scored Pearson correlations with RDMmag], the PPC continued to 

residually code for two overlapping neural lines [t33 = 3.1, p = 0.004; regression with design 

matrix  [RDMmag, RDMmag_long], t-test on z-scored RDMmag beta weights]. We speculated that 

this residual coding for the test_short geometry (i.e. parallel lines) may predict the inability of 

some participants to integrate new knowledge (Fig. 4E). Indeed, we found that participants 

with a greater tendency to respond as if they were in test_short also displayed a neural 

geometry more reminiscent of test_short in PPC [𝑟 = 0.50, p = 0.002; pearson correlation 

between behavioral fits to test_short RT matrix and neural fit to RDMmag]. We summarized this 

relationship by relating the degree of neural elongation (difference in fit for 

RDMmag_long – RDMmag) to the degree of behavioural integration (difference in fit of idealised 

choice matrices, test_long – test_short) (Fig. 5D left panel) [𝑟 = 0.49, p < 0.01]. We also saw 

this relationship in dmPFC (Fig. 5D right panel) [𝑟 = 0.40, p < 0.05], but it did not reach 

threshold in visual cortex [𝑟 = 0.33, p = 0.06]. Using a searchlight approach within the fronto-

parietal network that coded for RDMmag during test_short (see Fig. 3D), we found that this 

neural-behavioral relationship was expressed most strongly in right Superior Frontal Gyrus (Fig. 
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5E right; thresholded at FWE p < 0.05, 𝑟 ≥ 0.55, puncorr < 0.001; also see Fig. S5)  [peak 

correlation: 17 34 54; 𝑟 = 0.71, puncorr < 0.001; significant at FWE p < 0.01] along with being 

evident in left parietal cortex (Fig. 5E left) [peak correlation: -48 45 42; 𝑟 = 0.65, puncorr < 0.001; 

significant at FWE p < 0.05].   

 

How might knowledge assembly occur on the computational level? Training the neural 

network with vanilla online stochastic gradient descent [SGD] (as in Fig. 2 and Fig. 3) does not 

naturally allow the rapid knowledge assembly that is characteristic of human behaviour. In fact, 

even after pronlonged “boundary” training on item 𝑖6 < 𝑖7, the network learns this comparison 

as an exception (Fig. 6A), thus failing to generalise the greater (lesser) brispiness to other items 

in context B (A). In asking how the connectionist modelling framework could be adapted to 

account for knowledge assembly, one assumption might be that human participants store and 

mentally replay pairwise associations learned during previous training, intermingling these 

with instances of boundary training to avoid catastrophic interference [34,35]. However, note 

that boundary training consisted of just 20 trials comparing 𝑖6 and 𝑖7  with no subsequent rest 

period that would  have allowed time for replay to occur (Fig. 1; also see Fig. S6). Thus, in the 

final part of our report, we describe an adaptation of SGD that can account for the behaviour 

and neural coding patterns exhibited by human participants, including the rapid reassembly of 

knowledge and its expression on a fast-changing neural manifold. 

 

We reasoned that a simple computational innovation within the neural network could account 

for the pattern of knowledge assembly observed at test_long. We can think of a neural network 

as learning to embed inputs on a manifold with maximum potential dimensionality of 𝑑, equal 

to the number of hidden units. As we have seen, during training, the network  learns to 

represent stimuli on a manifold with low intrinsic dimensionality (a single neural axis) that 

represents the transitive series from either context with overlapping embeddings (e.g. Fig. 3A). 

The assumption we make now is that the network retains a certainty estimate regarding each 

relation in the embedding space (we call this the certainty matrix A). For example, as the 

relation between items 𝑖3 and 𝑖4 is acquired by the network and the loss consequently 

decreases, the respective certainty value 𝐴3,4 = 𝐴4,3 increases. With this assumption, new 

updates can propagate to conserve more certain relations in embedding space, while allowing 

less certain relations to change. Specifically, gradient updates to the representation of item 𝑘 
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are mutually applied to all other items 𝑖𝑗 ≠ 𝑖𝑘, but scaled by certainty 𝐴𝑗,𝑘 (see Methods). The 

free parameter 𝛾 determines the rate at which the certainty matrix is updated as the 

underlying representations change. This model generalises the case of vanilla SGD which is the 

special case where 𝛾 = 0. When training the neural network to solve the transitive inference 

task, it is possible to recover both successful and less successful knowledge assembly observed 

in humans by varying 𝛾 (Fig. 6, Fig. S7B). 

 

 

 

 

 

 

 

 

 

 

We gave the network approximately the same number of train_short and boundary trials as 

human participants had experienced (960 trials, or 8 cycles, and 20 trials respectively). Over 

test_short training, the network learned to represent items on two parallel magnitude lines, 

regardless of the value of gamma (Fig. 6A). Interestingly, performance and training dynamics 

were indistinguishable across 𝛾 values after train_short (Fig. S7A). However, the values of the 

certainty matrix A (inset) for within-context relations still depended on 𝛾 values. SGD-like 

Figure 6. Knowledge assembly in artificial neural network. Fits of neural network to good and poor performers 
on test_long. Top row: data were generated under the optimal value of 𝛾 = 2𝑒−3, which leads to SGD-like 
training and maximised the fit (mean squared error) to average choice matrices from poor performers 
(accuracy < median). The two leftmost panels (A and B) show two dimensional MDS of hidden layer 
representations after train_short (A) and train_long (boundary training) (B) with accompanying certainty 
matrices (inset). Note the lack of certainty acquistion, suggesting that there is no representational relational 
among items. After train_short, embeddings for the two contexts (1-6, blue and 1-7 red) lie on two 
overlapping lines, but these lines are only slightly elongated after train_long (separation between red and blue 
dots). Bottom row: the same data generated under optimal  𝛾 = 0.11. This minimal change allows the 
network to behave like the best human performers. Equivalent matrices for humans are shown in Fig. 4D 
above. 
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training dynamics (𝛾 ≈ 0, top row), failed to encode that within-context items are all related 

to each other in embedding space with certainty, and so the magnitude lines for each context 

continued to be parallel and overlapping, with the boundary trained items as an exception. By 

contrast, networks with  𝛾 ≈ 0.1 (bottom row) learned with high certainty that objects were 

related within contexts (𝑖1 − 𝑖6 and 𝑖7 − 𝑖12).  As a result, this allowed mutual parameter 

updates to conserve these relations even with the limited information provided during 

boundary training (Fig. 6B, lower panel).  These updates pushed the contexts in opposing 

directions, qualitatively consistent with the elongation scheme observed in humans. 

Interestingly, increasing gamma further causes overly-rapid updates, leading the items of the 

boundary condition to disconnect from their contexts before the hidden representation were 

fully elongated (Fig. S7C), suggesting a “sweet spot” for knowledge assembly (Fig. S7B). In fact, 

we found that we could capture both the high performing human participants and the 

participants who learned  𝑖6 > 𝑖7 as an exception by varying 𝛾 (Fig 6D). This exercise revealed 

good fits for low performers at both 𝛾 = 2𝑒−3 and 𝛾 = 0.87, while only one minima around 

𝛾 = 0.11 fit the participants who correctly assembled the knowledge structures (Fig. S7B; see 

Methods). 

 

Discussion 
 

We report behavioural and neural evidence for “knowledge assembly” in human participants. 

Just 20 boundary training trials were enough for most participants to learn how two sets of 

related objects were linked. Strikingly, neural representations in multivoxel BOLD patterns 

rapidly reconfigured into a novel geometry that reflects this knowledge, especially in dorsal 

stream structures such as PPC and dmPFC. A subset of participants instead considered the 

boundary relation 𝑖6 > 𝑖7 an exception, and performed more poorly on the subsequent test of 

transitive inference. while displaying a neural geometry that more consistent with that belief. 

 

The list linking task we use [27] requires participants to make inferences that go beyond the 

training data – in this case, after boundary training it is parsimonious to assume that because 

item 𝑖6 > 𝑖7, then item 𝑖7 < 𝑖1−6, and 𝑖6 > 𝑖7−12. How are these inferences made? One 

possibility is that a dynamic process occurs at the time of inference, proposed by models of 

transitive inference based on the hippocampus in which updates spread across items via online 
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recurrance. [30]. However, because it takes more cycles to bridge the associative distance 

between disparate items (e.g. 𝑖1 and 𝑖6), this scheme predicts that more these items would 

garner longer reaction times and lower accuracy rates– the opposite of the symbolic distance 

effect we see here. 

 

An alternative is that periods of sleep or quiet resting may allow for replay events, such as 

those associated with sharp wave ripples in rodents and humans, which might facilitate 

planning and inference [36], as well as spontaneous reorganisation of mental representations 

during statistical  learning [37].  While we acknowledge that these explanations are not entirely 

ruled out on the basis of our data, our paradigm allowed very little time for rehearsal or replay 

– boundary training was few-shot, lasting approximately 2 minutes and comprising just 20 trials 

in total. Instead, our model proposes that items are earmarked during initial learning in a way 

that might help future knowledge restructuring, by coding certainty about relations among 

items (here, a trained transitive ordering). We describe such a mechanism, and show that it 

can account for our data. Our model is agnostic about how precisely certainty is encoded, but 

one idea is that in neural systems connections may become tagged in ways that render them 

less labile. On a conceptual level, this resembles previously proposed solutions to continual 

learning which freeze synapses to protect existing knowledge from overwriting [38,39]. Thus, 

notwithstanding a recent interest in replay as a basis for structure memory – including in 

humans [40–42] –  our model has implications for the understanding of other phenomena that 

involve retrospective reevaluation or representational reorganisation, such as sensory 

preconditioning [43]. 

 

One curiosity of our findings is that unlike for the neural network models, neural manifolds for 

the transitive series were not straight but inflected around the midpoint (ranks 3/4 in 

test_short or 6/7 in test_long), forming a horseshoe shape in low-dimensional space. We have 

previously observed this pattern in geometric analysis of whole-brain scalp EEG signals evoked 

by transitively ordered images [25] and a recent report has emphasised a similar phenomenon 

in macaque PPC and medial PFC during discrimination of both faces and dot motion patterns 

[33].  The reasons for this form to the manifold shape is unclear. One possibility is that the axis 

coding for choice certainty is driven by the engagement of additional control processes invoked 

when stimuli evoke conflicting responses, and that these proceses are currently missing from 
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our neural network model [44]. Another is that the horseshoe shape allows neighbouring items 

to be linearly discriminated, by the judicious application of hyperplanes with gradually varying 

angle with respect to the neural manifold.  Resolving this issue is likely to be an important goal 

for future studies. 

 

In sum, we observed rapid recorganization of neural codes for object relations in dorsal stream 

structures, including the PPC and dmPFC. This is consistent with a longstanding view that dorsal 

structures, and especially the parietal cortex, encode an abstract representation of magnitude 

or a mental “number  line” [7,45,46]. Recently, many studies have emphasised instead that the 

medial temporal lobe, and especially the hippocampus and entorhinal cortex, may be 

important for learning about the structure of the world [3,6,22,47]. One important difference 

between our work and many studies reporting MTL structures is that our study involved an 

active decision task (infer brispiness) whereas previous studies have used passive viewing or 

implicit tasks to measure neural structure learning. It may be that dorsal stream structures 

encode structure most keenly when relevant for an ongoing task. We do not doubt that both 

regions are important for coding relational knowledge, but their precise contributions remain 

to be defined. 
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Online Methods 

 

Participants 

Thirty-seven healthy adult participants were recruited for this study. One was excluded for 

failure to reach performance threshold (see above), and two more for practical reasons (failure 

to attend scanning session; discomfort in scanner leading to early termination of the 

experiment). This left n = 34 total (19 males, mean age: 23.3 ± 3.4 years). Participants reported 

no history of psychiatric or neurological disorders, and gave informed consent prior to 

scanning. The study was approved by the ethics committee of the University of Granada. 

Participants’ base compensation was 35 Euros, plus a performance-based bonus for an average 

payment of 40.93 ± 2.57 Euros. Participants were given a voluntary anonymous debrief 

concerning their insight into the test_long session, which we display in Supplementary Table 

1. 

 

Stimulus and task 

Stimuli were novel objects drawn from the NOUN database [28]. Out of the 60 possible images 

in this database, objects that were rated as most similar to the others (e.g. a similarity rating 

within 1 standard deviation of the maximum) and objects that were rated as most familiar (e.g. 

less than 50% for inverse familiarity score) were excluded, resulting in 41 possible objects. For 

each participant, 12 of these 41 objects were randomly selected for use throughout the study. 

Selected objects were arbitrarily assigned a rank from 1-12, with ranks 1-6 belonging to context 

A and 7-12 to context B. We denote these 𝑖1 − 𝑖12 in the text. 

 

Before entering the scanner, participants performed a computerised training phase which we 

call train_short. This training phase consisted of between 3 and 10 blocks of 120 trials. On each 

block, objects were sampled from a single context for 60 trials (A or B) and then the alternate 

context for another 60 trials. Each trial began with the presentation of two objects drawn from 

adjacent ranks withinin a single context (e.g. 𝑖3 and 𝑖4 or 𝑖8 and 𝑖9), which were shown either 

side of a central fixation point. Above the point the words “more brispy?” or “less brispy?” 

appeared in Spanish (i.e. “mas brispo?” or “menos brispo?”). These objects remained on screen 

for 5000 ms or until response, whichever was shorter. Participants were instructed to select 
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the corresponding object (i.e. that which was more or less brispy) using either the “F” (left 

object) or “J” (right object) keys. Once a response was recorded, a red or green box would 

appear around the selected object to indicate whether it was the correct selection, and this 

response feedback box persisted for 475 ms. If participants did not respond within 5000 ms, 

the trial was considered incorrect and was not repeated. After feedback there was a blank 

screen for a variable delay of up to 50 ms before the next trial. Critically, participants were only 

trained to compare 5 object pairs from each context, e.g. 𝑖1 − 𝑖2, 𝑖2 − 𝑖3, 𝑖3 − 𝑖4, 𝑖4 − 𝑖5, and 

𝑖5 − 𝑖6, from context A and 𝑖7 − 𝑖8, 𝑖8 − 𝑖9, 𝑖9 − 𝑖10, 𝑖10 − 𝑖11, and 𝑖11 − 𝑖12, from context B. 

Whether participants were asked to select the more or less brisp object, and hemifield 

presentation of the objects, were randomised on each trial. Additionally, the trial-order of each 

object pair was randomly shuffled. Participants performed this task for at least 3 blocks, and 

until they reached a criterion of 90% correct on both contexts and correct responses for the 

final 12 comparisons of each context. One participant was excluded for failing to reach this 

criterion after 10 blocks (see Fig. 1C) .  

 

The format of the test phases test_short and test_long was identical (but different to 

train_short). Test phases occurred in the scanner, and consisted of 288 trials in which lone 

objects were presented in a random sequence, with the constraint that each combination of 

12 (current trial) x 12 (previous trial) ranked objects occurred exactly once in the first half (144 

trials) and once in the second half (144 trials) of the test phase. Each object was presented 

centrally for 750 ms, after which participants had 2000 ms to respond whether it was  more or 

less brispy than the previous object. The words “more” and “less” appeared randomly on the 

left and right of the screen, and the mapping from  more/less to left/right buttons (held in 

either hand) switched midway through the test phase. After the response, there was a 

pseudorandomly jittered interval of 1500-5500 ms, and the fixation dot turned blue if a 

response was recorded within this deadline, while a red letter X appeared if the response was 

missed. Critically, participants did not receive trial-wise feedback and were instead were 

rewarded bonus points at the end of each block. These bonus points were proportional to their 

accuracy on that block and were translated into additional monetary reward at the end of the 

experiment.   
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The boundary training phase occurred  between  test_short and test_long. It was similar to 

train_short except that it lasted just 20 trials, and the only items presented were objects 

ranked (arbitrarily) as 6 and 7. These could occur on either side of the screen, with “more” or 

“less” randomised over trials as in train_short. Participants viewed the objects for 3000 ms 

after which a feedback screen stayed up for 1500 ms, be it a green or red bounding box, or a 

red X at fixation if no response was recorded. There was then a variable intertrial interval from 

1400-5000 ms before the next trial. 

 

Finally, after completing test_long, participants remained in the scanner and performed a 

number localiser task, which was identical to test_short / test_long with the exception that 

objects were replaced with Arabic digits 1-12 and participants responded “more” or “less” 

according to whether each number was greater or less than the previous. 

 

Idealised Behavioral Matrices 

 

We analyses behavioural data by plotting accuracies and RTs for each combination of 12 

objects shown at test, and/or as a function of symbolic distance (i.e. the distance in rank 

between the current and previous item). We constructed idealised reaction time and choice 

matrices (Fig. S4A) under the assumption that choices were noiseless triangular matrices and 

that RTs depended linearly on symbolic distance. Specifically, our RT matrices were 

constructed by 1 (1 + 𝑑𝑖𝑠𝑡(𝑣′, 𝑣))⁄ , where 𝑣 = [1: 6 1: 6] for test_short and [1: 12] for 

test_long, and 𝑣’ it’s transpose. Our accuracy matrices were created by setting the upper 

triangle of each quadrant (in test_short) or the entire matrix (in test_long) to 1 and the lower 

triangle to zero. Note that as participants did not compare objects to themselves, diagonal 

elements of our design matrices were excluded from analyses. 

 

fMRI data acquisition  

 

MRI data were acquired on a 3T Siemens scanner. T1 weighted structural images were 

recorded directly prior to the task using an MPRAGE sequence: 1x1x1 mm3 voxel resolution, 

176x256x256 grid, TR = 2530 ms, TE = 2.36 ms, TI = 1100ms. Each fMRI image contained 72 

axial echo-planar images (EPI) acquired at a multiband acceleration factor of 4 in interleaved 
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sequence. Voxel resolution was 2 mm3 isotropic, slice spacing of 1.6 mm, TR = 1355 ms, flip 

angle = 8, and TE of 32.4 ms. 560 EPI images were recorded for the localiser and 1220 EPI 

images for each of the experimental sessions. This resulted in 3000 EPI images per participant 

with a scanning time of about 100 min. Scans were realigned to the mean scan within each 

session. The anatomical scan was co-registered to the mean of all functional images. 

Anatomical scans were normalized to the standard MNI152 template brain. The functional EPI 

images were then normalized and smoothed with a full width half maximum Gaussian kernel 

of 8mm. Images were then downsampled by reslicing to 3 x 3 x 3 voxel mm3  voxel resolution 

before performing analyses. 

 

fMRI: Data analysis  

 

Scanning sessions were concatenated and constants included in the GLMs to identify runs and 

account for differences in mean activation and scanner drift. All GLMs used delta functions 

convolved with the canonical haemodynamic response function (HRF) and time-locked to trial 

events. We also included the 6 head motion parameters derived from pre-processing as 

nuisance regressors [translation in x, y, z; yaw, pitch, roll]. Automatic orthogonalization was 

switched off. Data were analyzed with SPM12 and in-house scripts. All contrasts were 

constructed as simple t-contrasts with first-level t-maps as input. Unless otherwise noted, we 

only report clusters that fell below an FWE-corrected p value of 0.01 (as in [48]) with a setting 

of cluster extent to 10 voxels or more and a voxel-wise uncorrected threshold of p < 0.001. 

Data were visualized using the XjView toolbox (http://www.alivelearn. net/xjview).  

 

We fit our data with 4 different general linear models (GLMs). The first GLM was used to define 

ROIs from the number localiser. The design matrix for GLM1 included parametric modulators 

time-locked to stimulus onset for each number, as well as 6 nuisance motion regressors. We 

considered clusters of voxels that passed a threshold of FWE p < 0.01 in response to the 

stimulus regressor. Althought several regions passed this threshold, we focussed on ROIs in 

dmPFC and PPC, chosen on the basis of previously stated predictions (we show searchlight 

results in addition to ROI analyses, which seem to justify this choice)  [7]. The second and third 

GLMs were used to estimate neural patterns associated with each object within test_short and 

test_long. The design matrix for these models each included 12 regressors, one for each of the 
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objects locked to stimulus onset, as well as 6 additional nuisance regressors for head motion. 

In one case (GLM2) we estimated this regression separately for each block of 72 trials (n = 4). 

This allowed us conduct analyses that required between-run crossvalidation (e.g. SVM 

analysis). In the other case (GLM3) we modelled all trials within test_short or test_long. This 

latter GLM was used for calculating RDMs in ROI and searchlight analyses of fMRI data. In a 

fourth GLM, we additionally included either 11 (test_short) or 22 (test_long) regressors coding 

for the distance from the current to previous image. Fits from GLM4 were used to generate 

data for multidimensional scaling visualization aids.  

 

Representational Similarity Analysis 

 

BOLD RDMs were constructed by taking the correlation distance between voxel patterns 

elicited by each of the objects in test_short and test_long, yielding a 12 x 12 RDM. For 

searchlight analyses, we used a radius of 12mm. For each searchlight sphere or ROI, we 

computed the neural DMs from mthe condition-by-voxel matrix of estimated neural responses 

using Pearson corelation distance between pairs of conditions. 

 

These were compared to model RDMs which were created from linear distances between item 

ranks within context (1-6 and 7-12; RDMmag), distances between ranks across contexts (1-12; 

RDMmag_long) and between contexts  themselves (i.e. 0 within context, 1 between context). All 

model RDMs were standardised and comparisons to neural data were conducted with tests of 

correlation (pearsons 𝑟), or regression. The additional RDM reported here (RDMNN) was 

obtained by taking the Euclidean distance between the 12 hidden-layer activations elicited by 

probing the network with one-hot inputs corresponding to 𝑖1 − 𝑖12).  Z-scored neural RDMs 

were regressed, or correlated, with z-scored mmodel RDMs. All statistics reported for RSA 

analyses were obtained by evaluating RDMs at the single subject level and conducting group-

level (random effects) inference on the resulting coefficients, using FWE correction where 

appropriate.  

 

To visualise neural state spaces, we used multidimensional scaling with metric stress 

(equivalent to plotting the first principal components of the data) in two dimensions, using 

GLM4 (see above). 
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Support Vector Machine Decoding 

 

All classification analyses utilised a multiclass support vector machine model. GLM2 utilised 4 

beta values for each object (one for each run), and so we trained binary SVM classifiers on data 

from objects in context 1, and tested the model on objects in context 2. The classifier used  a 

“one versus one” coding design,  meaning that each learner  𝑙 was trained on observations in 

2 classes, treating one as the positive class and the other as the negative class and ignoring the 

rest. To exhaust all combinations of class-pair assignments, we fit  𝐾 ∗
𝑘−1

2
  binary SVM models, 

where 𝑘 are the unique classes (ranks 1-6 here). Specifically, let M be the coding design matrix 

with elements 𝑚𝑘𝑙, and 𝑠𝑙  be the predicted classification score for the positive class of 

learner 𝑙 (without loss of generality). The algorithm assigns a new observation (from context 

2) to the class �̂�  that minimizes the aggregate loss for the 𝐿 binary learners. 

 

�̂� = argmin
𝑘

∑ |𝑚𝑘𝑙|𝑔(𝑚𝑘𝑙
𝐿
𝑙=1 , 𝑠𝑙)

∑ |𝑚𝑘𝑙|
𝐿
𝑙−1

 

 

Each of these binary learners used a linear kernel function.  

 

Brain Behavior Correlations 

We performed a correlation analysis to quantify the extent to which the elongation of neural 

representations predicted integrated behavioral responses. We analyzed human choice 

patterns by computing idealsed choice matrices (described above) and inputting both the 

test_short and test_long patterns into a competitive regression model. The degree of 

behavioral integration was defined as the the relative fit of each of these matrices. Similarly, 

we constructed neural model RDMs describing the ground truth symbolic distance between 

each pair of item in test_short and test_long (see above). We then defined the degree of neural 

elongation as the relative fit to each of these RDMs in a competitive regression model. We 

then tested at the group level the extent to which the degree of neural elongation predicted 

the degree of behavioral integration using pearsons correlation. 
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Neural Network Simulations 

 

We implemented a two-layer feedforward neural network with coupled input weights to study 

the computational underpinnings of the task, its solutions and possible failure modes. All 

simulations were run for 𝑛 = 20 random seeds and plots show averages across seeds. The 

network received two one-hot vectors, coding respectively for the object on the left (𝑥𝑎) and 

right side (𝑥𝑏) of the screen (a one-hot vector for object 𝑖 has zeros everywhere except at the 

i-th position which is equal to one). The one-hot vectors were then propagated forward by the 

coupled weights W1 and -W1 respectively, followed by a rectified linear unit (ReLU) to create 

the hidden layer representation of 20 neurons. Finally, the hidden layer representation was 

projected onto a single output value by the readout weights w2: 

 

�̂� = 𝑤2ReLU (𝑊1𝑥𝑎 − 𝑊1𝑥𝑏) 

 

By coupling the input weights we ensured that the hidden layer representation of each object 

was independent from the position on the screen. Note that due to objects being represented 

as one-hot vectors, hidden representations of objects are independent from each other, i.e. 

the i-th column of the weight matrix 𝑊1. Further, due to the symmetry in the first-layer 

weights, if the two one-hot vectors encode the same object the network's output is zero. 

 

The network was optimised using stochastic online gradient descent 

 

Δ𝑊 =  −𝜂
𝜕ℒ

𝜕𝑊
 

 

on single pairs of objects, i.e. a batch size of 1, with learning rate 𝜂 = 0.05 on the mean 

squared error between the network's output �̂� and the target values 𝑦 = 1 for 𝑖𝑎 > 𝑖𝑏 and 

otherwise 𝑦 = −1: 

ℒ =  
1

2
(�̂� − 𝑦)2 
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Since inputs to the network were two one-hot vectors, in each training step only two columns 

of the first layer weight matrix 𝑊1 were updated, we denote these two column vectors by 

Δ𝑤1𝑎 and Δ𝑤1𝑏. 

 

Synaptic weights were initialised from a zero-centered Gaussian distribution with standard 

deviation 𝜎 = 𝑔 ∗ √1 𝑓𝑎𝑛_𝑖𝑛⁄  where 𝑔 = 0.025 and 𝑔 = 1 in hidden and readout layers 

respectively. The hidden layer weights were initalised to small values to encourage a low-

dimensional (“rich”) solution [32]. We employed a training procedure very similar to that used 

for human subjects. Networks were first trained for 8 cycles, where each cycle was compmrised 

of 120 trials (60 per context) - leading to a total of 960 steps of gradient descent training. 

Subsequently, we performed 20 training steps on the two objects of the boundary condition. 

 

Learning relational certainty 

 

In order to recover the rapid knowledge assembly observed in humans, we adapted vanilla 

SGD, by applying mutual updates on synaptic weights 𝑊1 based on the pairwise certainty that 

two object representations bear an accurate relation to one another in embedding space, and 

in addition, correcting for potential drift in the readout weights 𝑤2. For a given trial 𝑡 with 

inputs 𝑥𝑎,𝑡 and 𝑥𝑏,𝑡 we compute the certainty value as a sigmoidal function of the loss incurred 

ℒ𝑡, with the slope 𝛼 and the bias 𝛽 of the sigmoid as potentially free parameters (here we set 

them to 𝛼 = 1000 and 𝛽 = 0.01) 

Φ(ℒ𝑡) =
1

1 + exp(𝛼(ℒ𝑡 − 𝛽))
 

 

Pairwise certainty values were then stored in the certainty matrix A as an exponential moving 

average 

𝐴𝑏𝑎
𝑡+1 = 𝐴𝑎𝑏

𝑡+1 = (1 − 𝛾)𝐴𝑎𝑏
𝑡 + 𝛾Φ(ℒ𝑡) 

 

where the free parameter 𝛾 determined how quickly old values were discounted.  

 

In addition, to infer certainty values for pairs of items that were not presented to the network, 

a fraction of the certainty values for item 𝑖𝑏 were added to the certainty values of 𝑖𝑎. 
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𝐴𝑎∗
𝑡+1 = 𝐴∗𝑎

𝑡+1 = (1 − 𝛾)𝐴𝑎∗
𝑡 + 𝛾Φ(ℒ𝑡)𝐴𝑏∗

𝑡   

 

and vice versa. Note that the certainty matrix is symmetric and therefore rows 𝐴𝑎∗ are identical 

to columns 𝐴∗𝑎. These row-wise updates followed the heuristic: If item 𝑎 is correctly related in 

embedding space to item 𝑐 and item 𝑎 is correctly related to item 𝑏, then infer that item 𝑏 is 

also correctly related to item 𝑐. Synaptic weights were then mutually updated by outer 

products: 

𝑊1
𝑡+1 = 𝑊1

𝑡 + Δw1a(𝐴𝑎∗
𝑡+1𝑐𝑎)𝑇 + Δ𝑤1𝑏(𝐴𝑏∗

𝑡+1𝑐𝑏)𝑇 

 

where 𝐴𝑎∗  denotes the 𝑎th column of the certainty matrix. Note that 𝑐𝑎 and 𝑐𝑏 are vectors of 

scaling factors to correct for drift in the readout weights as follows: 

𝑐𝑎 =  
Δ𝑤1𝑎

𝑇 𝑤2 + Δ𝑤2
𝑇(𝑤1𝑎 + Δ𝑤1𝑎) − 𝑊1

𝑇Δ𝑤2

Δ𝑤1𝑎
𝑇 (𝑤2 + Δ𝑤2)

, 

 

Ins order to perform a SGD step on the items currently presented to the network (i.e. the a-th 

and b-th column of 𝑊1) the 𝑎-th and 𝑏-th entry of 𝐴𝑎∗, 𝑐𝑎 and 𝐴𝑏∗, 𝑐𝑏 respectively are set to 

1. 

 

Fitting Human Choice Matrices 

 

To fit human choice matrices we applied a sigmoid function to the linear neural network output 

 

𝜎(�̂�) =
1

1 + exp(−𝑠�̂�)
 

 

We fit different parameterisations separately to choice matrices for high and low performers 

(defined by a median split, as in Fig. 4). For each, we performed a grid search on combinations 

of 𝛾 in range 0 to 1 and s in range 0.01 and 100 (both in log10 units) and mapped the resulting  

deviation between predicted and observed choice matrices for that participant group (Fig. 

S7B). Because neural network models are stochastic, we repeated the simulations for 20 

random initial seeds and averaged the resulting deviance for fitting. Low performers were fit 
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well with 𝑠 ≈ 1 and had a U-shaped relationship with accuracy for varying 𝛾, leading to two 

local minima, such that values that were close to zero (vanilla SGD) and close to one both 

resulted in a failure to stitch information appropriately (Fig. S7B). For low 𝛾, tha algorithm fails 

to acquire certainty and thus does not perform mutual updates, behaving like vanilla SGD. 

Similarly, for large 𝛾, the certainty matrix is rapidly udated, such that the boundary items form 

a high certainty cluster separate from the rest of the items (Fig. S7C). In this case, after few 

mutual update steps that partly disentangle the representations, the certainty matrix rapidly 

approaches zero for non-boundary items, again leading to SGD-like updates on boundary items 

only. Behaviourly, these two failure modes can be interpreted as either failing to relate items 

in the two conditions during after boundary training for low 𝛾 or by relating the items of the 

boundary condition as independent group during train_short for large 𝛾. On the other hand, 

high performers had a single minimum for 𝑠 > 2 and 𝛾 ≈ 0.1 (Fig. S7B).  
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Supplementary Materials 

 

 

 

Supplementary Figure 1. Univariate activation in Number Localiser. Three views (sagittal, axial, coronal) 
of maps of significant BOLD response to stimulus onset (Arabic digits 1-6) during the number localiser 
task.  This independent task was used to define regions of interest (ROIs) for our main analyses (Fig. 
3E). Overlays indicate voxels showing a main effect of stimulation in the localiser task at the group level 
(GLM1; see Methods). We use a statistical threshold determined using a familywise error (FWE) 
threshold of p < 0.01, corresponding to t33 > 6.1.  
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Supplementary Figure 2. Cross-validated Neural RDMs. These RDMs were computed by taking neural 
pattern (correlation) distances between each of the 12 objects in each run and every other 
(nonidentical) run. Thus, the diagonals are not necessarily zero in this analysis. This also allows us to 
show exemplar discriminability across sessions, i.e. the similarity between each object and itself across 
runs, which is highest in extrastriate visual cortex (EVC; rightmost plot). As there are 4 sessions, each of 

these plots is the average of all 6 possible cross-validated distances [6 =  (4
2
)]; purple values indicate 

lower distances, while yellow values indicate higher ones. As we counterbalanced responses within 
participants (see Methods), these plots average over experimental sessions with opposing response 
mappings.   
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Supplementary Figure 3. Multidimensional scaling plots in ROIs. Supplemental multidimensional scaling 
views of BOLD representations during test_short (left panels) and test_long (right panels) from the PPC 
and dmPFC regions of interest. Each axis shows one of the three dimensions identified by MDS. Axis 
rotation is different in each plot and chosen for illustrative purposes. Each dot is a stimulus, shaded by 
its rank from “most brispy” (darker colors) to “least brispy” lighter colours. Items from context A (ctxA) 
are shown in blue and context B (ctxB) in red. Distances between circles approximate similarities in the 
RDM (in low rank). These plots correspond to the 2D MDS plots reported in the main text (Fig. 3C and 
Fig. 5B); they are provided as visualization aids – all statistical analyses were performed on the full-rank 
representational dissimilarity matrices. 
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Supplementary Figure 4. Idealised behavioral matrices and Neural RDMs. A.  Idealised behavioral 
matrices for choice (top row) and reaction times (RT; bottom row) used for test_short (left column) and 
test_long (right column). The choice matrix has values of 1 for each ground truth “more” response, 0 
for each ground truth “less” response, and 0.5 for each ambiguous response. The RT matrices are scaled 
linearly with symbolic distance, ranging from 0 (fastest RT for comparisons with symbolic distance = 5) 
to 1 (slowest RT for comparisons of symbolic distance = 0). These idealised matrices were used to 
quantify Human participant behavioral choice and reaction time patterns (Fig. 4), and so diagonal axes 
were set to empty values (indicated with white cells). B. Test_long neural hypotheses: boundary training 
could have altered neural codes to accommodate new information in several ways. Here, we plot the 
idealised predictor RDMs utilized in regression models testing the Hierarchical (top) vs Elongation 
(bottom) candidate theories of knowledge assembly hypotheses reported in the main text (Fig. 5).  
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Supplementary Figure 5. Brain-behaviour correlations. A. Top row: Maps of the brain-behaviour 
correlation across participants between the difference in fit between model RDMs (RDMmag_long - 
RDMmag) to neural data and the difference in fit between idealised choice matrices (test_long - 
test_short) thresholded at pfwe<0.05 – the same threshold displayed in Fig. 5E. Bottom row: Similar to 
A, but now thresholded at pfwe<0.05. Note that all brain images were estimated with a searchlight 
approach and display MNI coordinates [11 33 51]. B. Top panels: Brain-behaviour correlations defined 
by choice matrices thresholded at puncorr<0.01. This cluster was no longer significant after correction at 
pfwe<0.05. Note that all brain images were estimated with a searchlight approach and display MNI 
coordinates [11 33 51]. Bottom panel: We plot the neural-behavioral correlation within the cluster 
shown in the top row. The legend displays the relative RDMs (y-axis) and relative choice matrices (x-
axis), each rotated into alignment with the axis, from which the neural and behavioural scores were 
calculated. Each dot is a participant with a colour that denotes its accuracy. The main text (Fig. 5E) 
shows the equivalent for idealised RT matrices (also see Fig. S4 above).  
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Supplementary Figure 6. Univariate activation in response to stimulus onset during boundary training. 
Map of the regions that showed significant activation in response to the onset of the two boundary 
items during the 20 learning trials (train_long). Brain maps are thresholded at pfwe < 0.05, corresponding 
to t33 > 5.67. We observed peaks in left medial frontal [MNI coordinates: -9 6 51, t33 = 11.0] and right 
frontal cortex [MNI coordinates: 42 9 30 t33 = 9.9, puncorr < 0.0001] but a lack of hippocampal activation 
(t33 < 2.5 over bilateral hippocampus and bilateral parahippocampal regions). Additionally, 
hippocampus did not appear to code for context in test_long (𝑟 =  0.41), similar to results observed in 
PPC (𝑟 =0.22) and dmPFC (𝑟 =0.6, all p>0.5) 
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Supplementary Figure 7. Fitting low and high performers. A. Left column: Average training loss during 
train_short averaged across n=20 randomly initialized seeds of the neural network for different values 
of gamma (see legend, right) are indistinguishable. Middle column: When fitting the average human 
choice matrix after train_short, the optimal s and resulting mean squared error (MSE) are stable across 
values of gamma (central panel), further indicating that behaviour is indistinguishable after initial 
training across low and high performers. Right column: Average training loss during train_long across 
n=20 seeds is indistinguishable between different values of gamma (see legend, right). B. Mean squared 
error of behavioural fits for low (left panel) and high performers (right panel) across gamma and s values 
in log units. Minima are indicated by white x’s. Fits to average choice matrix of low performers reveal 
two minima, both around s=1 and either at low or high gamma (s=1, gamma=0.002;  s=1, gamma=0.87). 
We also display the squared difference between the fitted behavioural matrices for the two local 
minima (inset). The average choice matrix of high performers is fit well for low gamma and s>2 (s= 4.87, 
gamma=0.11). C. Here we show the same plots as in Fig. 6 but for the second local minima of low 
performer’s fit (s=1, gamma=0.8). We plot the two-dimensional MDS of hidden layer representations 
after train_short (first panel) and train_long (second panel) with accompanying certainty matrices 
(insets). We show the Euclidean distances for all combinations of items across both contexts (third 
panel), as well as the best fit neural network choice matrix to low performers’ behavior (fourth panel)  
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Normalisation 

Since an elongated brispiness axis was observed during both test_short and test_long in ROIs 

from our number localiser (see Methods), we next asked about the relationship between these 

representations across tasks. To do this, we fit a GLM to data jointly across all three experiment 

types. As with those reported in the main text, this GLM used delta functions convolved with 

the canonical haemodynamic response function (HRF) and time-locked to trial events. The 

design matrix for this model included 30 regressors, one for each of the Arabic digits or objects 

locked to stimulus onset, as well as 6 additional nuisance regressors for head motion. We then 

constructed RDMs as in the main text to assess the similarity of evoked neural patterns, this 

time focusing on how patterns were related across the experiments (Fig. S8A).  

 

We hypothesized that neural populations could code for either ground truth magnitude, in 

which case we would expect the test_long axis to be twice as long as in test_short and the 

number localiser (RDMnone, Fig. S8B), or for relative magnitude, meaning the axes in all three 

experiments should be compressed to the same length (RDMsub,div, Fig. S8B). Specifically, for 

RDMnone, distances were computed between the following arrays: [1: 6] in the number localiser 

and in test_short and [1: 12] in test_long. We also constructed an idealized matrix under a 

subtractive normalization scheme, RDMsub, that computed distances between arrays for the 

number localiser and test short, constructed as [1: 6]  −  mean([1: 6]), as well as test_long: 

[1: 12] −  mean([1: 12]). Finally, we also derived an idealized matrix under a subtractive and 

divisive scheme, RDMsub,div in which we computed distances between the following arrays  

[1:6] − mean([1:6])

max ([1:6] − mean([1:6])
  (used for the number localizer and test_short ) and  

[1:12] − mean([1:12])

max ([1:12] − mean([1:12])
 (test_long). All model and neural RDMs were z-score normalized before 

comparison.  

 

We found evidence for this normalised coding scheme in both PPC and dmPFC (Fig. S8B; one-

sided t-tests on Pearson correlations: RDMsub,div t33 = 3.86, 6.29, p’s<0.001; RDMnone t33 = -3.07, 

-0.5, p’s>0.95; RDMsub t33 = -1.8, 0.15, p’s > 0.6; PPC and dmPFC respectively). This type of 

normalisation has previously been observed in other settings [24], and its potential role in 

knowledge assembly is an intriguing point for further investigation. 
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Supplementary Figure 8. Cross task Normalization in Human fMRI. A. Cross-experiment 
Representational dissimilarity matrices (top) and multidimensional scaling plots (bottom) are 
plotted for the PPC (yellow) and dmPFC (green) ROIs reported in the main text. Each entry 
indicates the similarity of the neural patterns evoked by pairs of stimuli presented during the 
number localiser (black), test_short (dark grey) or test_long (light grey). We also overlay the 
context conditions (blue and red) in test_short and test_long for guidance. Note that as this 
analysis was intended to compare neural signals between the different experiment types, it 
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used BOLD signals estimated using a GLM fit across all three experiments simultaneously.  B. 
We constructed idealised distances matrices under different hypotheses of how this 
normalization could occur to quantify neural representations plotted in A. On the left, we 
devised a model of the ground-truth cross-experimental ordinal rankings (RDMnone). In the 
center, we considered a subtractive normalization scheme (RDMsub). Finally, on the right, we 
considered a subtractive and divisive normalization scheme (RDMsub,div). We considered only 
the distances between experiment types in this analysis, as indicated by the grey shaded 
regions of these idealized matrices. Pearson’s correlations between our observed and idealised 
matrices are plotted for PPC (yellow) and dmPFC (green), with stars indicating significance at p 
= 0.001. 
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Supplementary Table 1: Participant responses to the debrief question below after completing 

the experiment. Answers were sorted by accuracy on comparisons between items initially in 

different sets (xAcc). Note that the debrief was voluntary, and one participant declined to 

answer. 

 

“In the second learning session, you learned that there were two groups 
of objects were connected. Specifically, the most brisp object of one 
group was no less than the least brisp object of the other group. Did you 
notice that? Was it clear that all the objects were part of one order? 
Even if not, tell us here if and how you thought the objects were related 
after the second learning session.” 
 

Answer 
 

       (% xACC) 

I realized, but at first it was not clear. Apart from that, I could not find another 
relationship  

51 

No, I did not think there was any relationship ordered the objects 51 

Yes, I noticed that.  53 

I thought that the whole first group was more brisp then the second 57 

It was clear that something changed. Yes. 58 

No Response 61 
Yes, but I got confused and changed the hierarchy completely in one to two blocks, 
thinking that the objects had to be completely reordered 

61 

Sometimes it was clear 62 
Yes I think 63 

Yes I noticed. 64 

No, I thought they followed the same order as before, only that the other was added 
between them 

65 

Yes but it was very difficult to link both groups. 65 

The objects were in two groups. It was hard to tell the order of the categories 68 

I didn't realize either 69 
I did notice the presence of the common brispiness but it was not always clear. 71 

I did not realize. I thought that I had to choose according to the order I learned in the 
previous tests. 

76 

Yes. I realized that but the problem was that I did not remember well what object 
belongs to each group, little by little I was starting to remember that. 

82 

I did not realize that fact, but everyone was still in order. Therefore, I have tried to do 
it taking into account each group separately and then in common 

83 

No I didn't think it was related 85 

Yes, as the exercise progressed, the order became clearer. groups 1 and 2, they were 
related. group 2 had more brispiness. 

89 

At the beginning of the test I could not link the two groups correctly but in the next 
attempt I linked them perfectly.  

90 
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I did notice that they connected by brisperity after the second phrase. By the end, 
everything was clear. 

93 

Yes, I realized that it was a way of relating both groups 95 

There was a common order that was clear when I was shown the last object of the 
second group and the first of the first group. I knew the second group was before. 

96 

Yes, after the second session the order was very clear. In my head it was like an 
elevator moving between different levels. When an object came with great brispness 
I thought the next one would probably be low and vice versa. 

96 

Yes 97 

Yes. Once the two groups were connected, I was able to visualize the complete order. 
I continued without finding a relationship. 

97 

Yes, it was clear that they were all part of the same order 98 

Yes I understood that 98 

Yes, especially those I practiced before the fMRI 98 

Exactly, after the second learning session I was clear about the order 99 

Yes, it was clear that they were all ordered by their "brsipness” 99 

I noticed. Yes, it was clear. 99 

Yes, it was clear that one group was higher than the other. 100 
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