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ABSTRACT

Reinforcement learning (RL) algorithms have proven transformative in a range of
domains. To tackle real-world domains, these systems often use neural networks
to learn policies directly from pixels or other high-dimensional sensory input. By
contrast, much theory of RL has focused on discrete state spaces or worst case
analyses, and fundamental questions remain about the dynamics of policy learning
in high-dimensional settings. Here we propose a simple high-dimensional model
of RL and derive its typical dynamics as a set of closed-form ODEs. We show that
the model exhibits rich behavior including delayed learning under sparse rewards;
a speed-accuracy trade-off depending on reward stringency; and a dependence
of learning regime on reward baselines. These results offer a first step toward
understanding policy gradient methods in high dimensional settings.

1 INTRODUCTION

Recent years have seen rapid progress in Reinforcement Learning (RL), both from an algorithmic
and engineering standpoint, leading to super-human performance in a variety of domains including
complex games (Silver et al., 2016; Mnih et al., 2015). Despite this, theory—particularly for high-
dimensional problems requiring non-linear function approximation—is still limited (Yang et al.,
2020). Many theoretical results to date are based on tabular RL, where the state and action spaces
are small enough for value functions to be represented as tabular data (i.e. without function approx-
imation). Because of the curse of dimensionality, these methods are limited to low-dimensional
problems. Further, tabular methods cannot generalise to unseen states and across seen states.
Consequently, much of this theoretical work provides limited insight to the RL practitioner, who
increasingly relies on deep neural networks to approximate value functions, policies and associated
building blocks of RL. Moreover, while RL theory has addressed ‘worst-case’ performance and
convergence behavior (Du et al., 2020; 2021), fewer methods exist to characterise typical behaviour.
On the other hand, there is a growing sub-field of deep learning theory dedicated to employing tools
from statistical mechanics to analyse various learning paradigms in the average-case, see Seung
et al. (1992); Engel & Van den Broeck (2001); Carleo et al. (2019); Bahri et al. (2020) for reviews.
While this approach has recently been extended to curriculum learning (Saglietti et al., 2022),
continual learning (Lee et al., 2021; 2022), few-shot learning (Sorscher et al., 2022) and transfer
learning (Gerace et al., 2022), RL algorithms with function approximation are yet to be analysed
under the framework of statistical mechanics—a gap we attempt to address here.

We build on the Teacher-Student framework widely used in the statistical physics community, in
particular the classic works of Gardner & Derrida (1989), Biehl & Schwarze (1995), and Saad &
Solla (1995). Our work adapts these methods to the RL setting. We present a novel application
of the teacher-student framework to a sequential policy learning task with sparse delayed reward,
which allows to characterize the typical learning curves of policy gradient RL agents with an exact
set of Ordinary Differential Equations (ODEs). The ODEs permit efficient exploration of learning
behaviour in a large number of scenarios, highlighting the advantages and disadvantages of different
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Figure 1: Overview of the RL-Perceptron. (a) Schematic of classic supervised teacher-student per-
ceptron model. (b) Schematic of the RL-Perceptron setup, with sequential inputs xi conditioned
on underlying states si. (c) Comparison of simulation with ODE solution for evolution of expected
reward, and order parameters R and Q (inset), for the case where all decisions must be correct in an
episode of length 12 and η2 = 0.

algorithmic choices. After introducing the model, we explore its rich behavior, including a delay
in learning from sparse rewards; a speed-accuracy trade-off with varying reward stringency; and the
effect of reward baselines on policy gradient learning.

2 SETUP

Teacher-student models provide an analytically tractable model of a learning setting. In the classic
supervised learning version, shown in Fig. 1a, a teacher perceptron defines a rule that a student
perceptron must learn. Inputs are sampled from i.i.d. Gaussians xt ∼ N (0,1D), and labeled by the
teacher y∗t = sgn(w∗⊺xt), with w∗ uniformly drawn from a D-dimensional hypersphere of radius√
D. The student learns from the dataset D = {(xt, yt)}t using a given loss and optimizer (e.g.

MSE and stochastic gradient descent).

In RL, agents face a sequential decision-making task in which a sequence of correct intermediate
choices is required to succeed in an episode. We schematise this process into the ‘RL perceptron’
depicted in Fig. 1b: the student w takes a sequence of T choices over an episode. The correct
choices are governed by the same teacher network w∗, i.e. the same underlying rule throughout
every time-step of every episode. Crucially, unlike the supervised learning setting, the student does
not observe the correct choice for each input; instead, it receives a reward which can depend on
whether earlier decisions are correct. For instance, the student could receive reward only if all T
choices are correct, and no reward otherwise—a considerably less informative learning signal.

Because the student in the RL perceptron makes choices in response to high dimensional inputs, it is
analogous to a policy network. We therefore consider a policy gradient learning update inspired by
the REINFORCE algorithm. At the end of the µth episode, w is updated according to the equation:

wµ+1 = wµ +
η1√
D

(
1

T

T∑
t=1

ytxtI(Φ)

)µ

− η2√
D

(
1

T

T∑
t=1

ytxt(1− I(Φ))

)µ

, (1)

where I is an indicator function and Φ is a condition that depends on the student’s decisions. For
instance, Φ might be the condition that the student is correct at every timestep. The update is
general in the sense that it prescribes a ‘positive’ update for the fulfillment of the condition, and a
‘negative’ update otherwise (1 − I(Φ) = 1). Note that in the case of T = 1, η2 = 0, this update
is equivalent to the perceptron learning rule for the classic supervised perceptron (Biehl & Riegler,
1994) (for suitably chosen Φ).

Using methods from statistical physics—details are reported in Appendix A—we can define and
track the evolution of two order parameters, R = w∗⊺w/D and Q = w⊺w/D, that can be used to
evaluate the expected reward at all times during training, as shown in Fig. 1c.
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Figure 2: Learning dynamics. (a) Evolution of the expected reward for simulation (solid) and ODE
solution (dashed) when all decisions in an episode of length T are required correct, and η2 = 0.
(b) Evolution of the normalised angle between student and teacher weights for simulation (solid)
and ODE solution (dashed) for the case where n or more decisions in an episode of length 13 are
required correct for an update with η2 = 0. (c) Heat map of average time for learning to begin over
a range of learning rates overlayed with region well predicted to learn by ODEs, for an initialisation
of 1.57 radians of w relative to w∗.

REINFORCE: This framework and update in eq. 1 can be grounded in policy gradient meth-
ods (Sutton et al., 2000) where, at every timestep t, the agent occupies some state st in the en-
vironment, and receives an observation xt conditioned on st. An action yt is then taken by sampling
from the policy π(yt | xt), and the agent receives a reward accordingly. Policy gradient methods aim
to optimise parameterised policies with respect to the total expected reward J . The gradient step for
the REINFORCE policy gradient method is given in eq. 2. Our sequential decision-making task can
be reformulated in the language of policy gradient methods: at each timestep t, the state st of the en-
vironment can be one of two states s+, s− and xt ∼ P (·|st) is a high dimensional sample represen-
tative of the underlying state, with P (·|s±) = N±(·|w∗). Where N+(·|w∗) is the N(0,1D) distri-
bution, but with zero-probability mass everywhere except in the half-space whose normal is parallel
to w∗, and N−(·|w∗) is correspondingly non-zero in the half-space with a normal that is antiparallel
to w∗ — (N(0,1D) has been partitioned in two). The next state st+1 is sampled with probability
P (st+1|st) ≡ P (st+1) = 1/2 independently from the decision made by the student at previous
steps. At the end of an episode, after all decisions have been made, we update the agent as in eq. 1.
Within this framework we can consider both rewards and penalties, i.e. at the end of an episode we
may consider a reward (penalty) of size η1 (η2) depending on the fulfilment (unfulfillment) of Φ. For-
mally, the mapping to the RL setting can be stated by introducing the states and a deterministic policy
πw (y | x) = 1/(1 + exp−yw⊺x/

√
D). The REINFORCE policy gradient update in this case is

∇wJ =

〈
T−1∑
t=0

∇w log πw (yt | xt)

(
T∑

t′=t+1

rt′

)〉
≈

〈
T−1∑
t=0

ytxt [η1I(Φ)− η2(1− I(Φ))]

〉
(2)

−→ ∆w ∝ η1

〈
T−1∑
t=0

ytxtI(Φ)

〉
− η2

〈
T−1∑
t=0

ytxt(1− I(Φ))

〉
(3)

The approximation in eq. 2 holds in the early phases of learning–when w⊺x/
√
D is small (Ap-

pendix B)–and gives us the possibility to understand the most complex part of the problem when
the student is still learning the rule. In this way, the update in eq. 1 is analogous to the REINFORCE
policy gradient in the same way that the perceptron update is analogous to SGD on the squared loss
for a perceptron in binary classification.

3 RESULTS

We derive a set of dynamical equations that describe the dynamics of the student in the high-
dimensional limit where the input dimension goes to infinity. We give explicit dynamics for
different reward conditions Φ, namely requiring all decisions correct in an episode of length T ;
requiring n or more decisions correct in an episode of length T ; and receiving reward for each
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correct response. Due to the length of these expressions, we report the generic expression of the
updates here and give the full forms and derivations in Appendix A.

dR

dα
= (η1 + η2)UR,1(R,Q; Φ)− η2UR,2(R,Q), (4)

dQ

dα
=

2 (η1 + η2)

T
UQ,1(R,Q; Φ)− 2η2

T
UQ,2(R,Q)

+
η21 − η22

T 2
UQ,3(R,Q; Φ) +

η22
T 2

UQ,4(R,Q);

(5)

where α serves as a continuous time variable (not to be confused with t which counts episode steps).
The validity of these equations for the case where all decisions must be correctly made for episodes
of length T = 12 is shown in Fig. 1c. All simulations and corresponding numerical solutions of
ODEs are done with D = 900. We now turn to several phenomena exhibited by this model.

Learning plateaus and sparse rewards. When rewarded for getting all T decisions correct, we
observe a characteristic initial plateau in expected reward followed by a rapid jump (Fig. 2a).
The length of this plateau increases with T , consistent with the notion that sparse rewards make
exploration hard and slow learning (Bellemare et al., 2016). Plateaus during learning, which arise
from saddle points in the loss landscape, have also been studied for (deep) neural networks in the
supervised setting (Saad & Solla, 1995; Dauphin et al., 2014), but do not arise in the supervised
perceptron. Hence the RL setting can qualitatively change the learning trajectory.

Speed-accuracy trade-off and reward stringency. Fig. 2b shows the evolution of the cosine angle
between the student and teacher for simulation and ODE, in the case where n or more decisions
must be correctly made in an episode of length 13 in order to receive a reward (and η2 = 0).
We observe a speed-accuracy trade-off, where decreasing n increases the initial speed of learning
but leads to worse asymptotic performance. In essence, a lax reward function is probabilistically
more achievable early in learning; but it rewards some fraction of incorrect decisions, leading to
lower asymptotic accuracy. By contrast a stringent reward function slows learning but eventually
produces a highly aligned student. For a given MDP, it is known that arbitrary shaping applied to the
reward function will change the optimal policy (reduce asymptotic performance) (Ng et al., 1999).
Empirically, reward shaping has been shown to speed up learning and help overcome difficult
exploration problems (Gullapalli & Barto, 1992). Reconciling these results with the phenomena
observed in our setting is an interesting avenue for future work.

Reward baselines and learning regimes. A common problem with REINFORCE is high variance
gradient estimates leading to bad performance (Marbach & Tsitsiklis, 2003; Schulman et al., 2015).
The reward (η1) and punishment (η2) magnitude alters the variance of the updates, potentially
changing learning behavior. Indeed, we observe different regimes in the learning dynamics. Fig. 2c
shows the time for learning to begin in simulations over a range of η1, η2, explained in Appendix C.
In one regime, learning is stereotyped and well predicted by the ODEs (white regions); in a
second fluctuation driven regime (coloured regions), learning still succeeds but depends on small
fluctuations, making the exact learning time vary widely across runs. These regimes depend upon
the initialisation of the student, reward and punishment magnitudes, and the condition for reward Φ;
and the ODEs describe this boundary well (solid green line). This framework opens the possibility
for studying phase transitions between learning regimes (Gamarnik et al., 2022).

4 CONCLUSION

Our proposed teacher-student model provides a framework to investigate the REINFORCE policy
gradient method in RL for a range of plausible sparse reward structures. We derive closed ODEs that
capture the average-case learning dynamics in high-dimensional settings and permit a reduction in
cost of calculating learning behavior compared to simulation-based methods for large numbers of
parameters. Our framework offers a starting point to explore additional settings that are closer to
many real-world RL scenarios, such as those with conditional next states. Furthermore, the RL per-
ceptron offers a means to study common training practices, including curricula; and more advanced
algorithms, like actor-critic methods. We hope to extract more analytical insights from the ODEs,
particularly on how initialization and learning rate influence an agent’s learning regime. Our findings
emphasize the intricate interplay of task, reward, architecture, and algorithm in modern RL systems.
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A APPENDIX

Thermodynamic Limit: In going from the stochastic evolution of the state vector w to the deter-
ministic dynamics of the order parameters, we must take the thermodynamic limit. For the ODE
involving R we must take the inner product of Eq 1 with w∗.

wµ+1 = wµ +
η1√
D

(
1

T

T∑
t=1

ytxtI(Φ)

)µ

− η2√
D

(
1

T

T∑
t=1

ytxt(1− I(Φ))

)µ

(6)

DRµ+1 = DRµ +
η1√
D

(
1

T

T∑
t=1

ytw
∗⊺xtI(Φ)

)µ

− η2√
D

(
1

T

T∑
t=1

ytw
∗⊺xt(1− I(Φ))

)µ

(7)

we subtract DRµ and sum over l episodes, the LHS is a telescopic sum, and 7 becomes
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D(Rµ+l −Rµ)

l
=

η1√
D

1

l

l−1∑
i=0

(
1

T

T∑
t=1

ytw
∗⊺xtI(Φ)

)µ+i

− η2√
D

1

l

l−1∑
i=0

(
1

T

T∑
t=1

ytw
∗⊺xt(1− I(Φ))

)µ+i
(8)

dR

dα
=

η1 + η2√
D

〈
1

T

T∑
t=1

ytw
∗⊺xtI(Φ)

〉
− η2√

D

〈
1

T

T∑
t=1

ytw
∗⊺xt

〉
(9)

We go from eq. 8 to eq. 9 by taking the limit D → ∞, l → ∞ and l/D = dα → 0. The
RHS of eq. 9 is a sum of a large number of random variables, and by the central limit theorem
is self-averaging in the thermodynamic limit (under the assumption of weak correlations between
episodes), consequently the LHS is self-averaging. A similar procedure can be followed for order
parameter Q, but we instead take the square of eq. 1 and got to the limit described, obtaining:

dQ

dα
=

2 (η1 + η2)

T
√
D

〈
T∑

t=1

ytw
⊺xtI(Φ)

〉
− 2η2

T
√
D

〈
T∑

t=1

ytw
⊺xt

〉

+
η21 − η22
T 2D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′I(Φ)

〉
+

η22
T 2D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′

〉 (10)

We introduce auxiliary variables (known in the literature as the aligning fields)

ν =
w∗⊺x√

D
and λ =

w⊺x√
D

, (11)

which are sums of N independent terms and by the central limit theorem they obey a Gaussian
distribution. One finds

⟨ν⟩ = ⟨λ⟩ = 0 (12)

⟨ν2⟩ = D , ⟨λ2⟩ = DQ (13)

⟨νλ⟩ = w∗⊺w = DR (14)

Substituting 11 into 9 and 10 we can rewrite as

dR

dα
=

η1 + η2
T

〈
T∑

t=1

νtsgn(λt)I(Φ)

〉
− η2 ⟨νsgn(λ)⟩ (15)

dQ

dα
=

2 (η1 + η2)

T

〈
T∑

t=1

λtsgn(λt)I(Φ)

〉
− 2η2 ⟨λsgn(λ)⟩

+
η21 − η22
T 2D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′I(Φ)

〉
+

η22
T 2D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′

〉
.

(16)

Computing Averages: It remains to compute the expectations in eqs. 15 and 16. All expectations
can be expressed in terms of the constituent expectations given below, which are trivially computed
by considering the Gaussianity of ν and λ and x:
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⟨νsgn(λ)⟩ =
√

2

π

R√
Q
, ⟨λsgn(λ)⟩ =

√
2Q

π
, ⟨νsgn(ν)⟩ =

√
2

π
, ⟨λsgn(ν)⟩ =

√
2

π
R (17)

1

D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′

〉
=

1

D

〈(
T∑

t=1

x⊺
t xt + 2

T∑
t=2

t−1∑
t′=1

ytyt′x
⊺
t xt′

)〉
(18)

= T +O(1/D) (19)

The terms involving Φ will in general consist of expectations containing step functions θ(x) (1 for
x > 0, 0 otherwise), specifically θ(νλ) (1 if student decision agrees with teacher, 0 otherwise) and
θ(−νλ) (1 if student decision disagrees with teacher, 0 otherwise). When we encounter these terms,
they can be greatly simplified by considering the following equivalences:

sgn(λ)θ(νλ) =
1

2
(sgn(λ) + sgn(ν)) and sgn(λ)θ(−νλ) =

1

2
(sgn(λ)− sgn(ν)) (20)

We show as an example the case where Φ is the condition to get all decisions correct in an episode,
I(Φ) =

∏T
t=1 θ(νtλt), where θ(x) is the step function (1 for x > 0, 0 otherwise). The first term in

Eq. 15 can be addressed:

〈
1

T

T∑
t=1

νtsgn(λt)I(Φ)

〉
→

〈
1

T

T∑
t=1

νtsgn(λt)

T∏
s=1

θ(νsλs)

〉
(21)

= ⟨νtsgn(λt)θ(νtλt)⟩

〈
T∏

s̸=t

θ(νsλs)

〉
(22)

=
1

2
⟨νt(sgn(λt) + sgn(νt))⟩PT−1 (23)

=
1√
2π

(
1 +

R√
Q

)
PT−1 (24)

where P is the probability of making a single correct decision, and can be calculated by consid-
ering that an incorrect decision is made if x lies in the hypersectors defined by the intersection of
N±(·|w∗) and N±(·|w), the angle ϵ subtended by these hypersectors is equal to the angle between
w∗ and w.

P =
(
1− ϵ

π

)
=

(
1− 1

π
cos−1

(
R√
Q

))
(25)

Similarly, the first term in Eq. 16 can be addressed:

〈
2

T

T∑
t=1

λtsgn(λt)

T∏
s=1

θ(νsλs)

〉
= ⟨λt(sgn(λt) + sgn(νt))⟩PT−1 (26)

=

√
2Q

π

(
1 +

R√
Q

)
PT−1 (27)

The cross terms in 16 can also be computed:

1

D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′

T∏
s=1

θ(νsλs)

〉
=

1

D

〈(
T∑

t=1

x⊺
t xt′ + 2

T∑
t=2

t−1∑
t′=1

ytyt′x
⊺
t xt′

)
T∏

s=1

θ(νsλs)

〉
(28)

= T +O(1/D) (29)

8
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where the 2nd term can be neglected in the high dimensional limit. Substituting these computed
averages into equations 15 and 16, the ODEs for the order parameters can be written:

dR

dα
=

η1 + η2√
2π

(
1 +

R√
Q

)
PT−1 − η2R

√
2

πQ
(30)

dQ

dα
= (η1 + η2)

√
2Q

π

(
1 +

R√
Q

)
PT−1 − 2η2

√
2Q

π
+

(η21 − η22)

T
PT +

η22
T

(31)

Equivalence of state formulation

The ODEs governing the dynamics of the order parameters in the previous section can be equiva-
lently calculated under the formulation involving the underlying states {s+, s−} defined in section
2. The underlying system can take a multitude of trajectories (τ ) in state space, there are 2T trajec-
tories in total (as the system can be in 2 possible states at each timestep), and expectations must now
include the averaging over all possible trajectories. All expectations will now be of the following
form, where the dot (·) denotes some arbitrary term to be averaged over.

⟨·⟩ =
∑
τ

P(τ) ⟨· | τ⟩ (32)

By considering symmetry of the Gaussian and ‘half-Gaussian’ (N±) distributions, all expectations
in 17 can be seen to be identical regardless of whether expectations are taken with respect to the full
Gaussian or the half-Gaussian distributions, i.e.

⟨·⟩N = ⟨·⟩N+
= ⟨·⟩N− (33)

this implies that all expectations are independent of the trajectory of the underlying system, hence
averaging over all trajectories leaves all expectations unchanged. This also allows the extension to
arbitrary transition probabilities between the underlying states {s+, s−}.

Other Reward structures

The expectations can be calculated in other conditions of Φ from considering combinatorical argu-
ments. We state the ODEs for two reward conditions.

n or more: the case where Φ is the requirement of getting n or more decisions in an episode of
length T correct. We give the ODEs below for the case of η2 = 0

dR

dα
=

η1

T
√
2π

T∑
i=n

(
T

i

)[
i

(
1 +

R√
Q

)
(1− P )− (T − i)

(
1− R√

Q

)
P

]
P i−1 (1− P )

T−i−1

(34)

dQ

dα
=

η1
T

√
2Q

π

T∑
i=n

(
T

i

)[
i

(
1 +

R√
Q

)
(1− P )− (T − i)

(
1− R√

Q

)
P

]
P i−1 (1− P )

T−i−1

+
η21
T

T∑
i=n

(
T

i

)
P i (1− P )

T−i

(35)

Breadcrumb Trails We also consider the case where a reward of size η1 is received if all decisions in
an episode are correct in addition to a smaller reward of size β for each individual decision correctly
made in an episode:

9
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dR

dα
=

1√
2π

(
1 +

R√
Q

)(
η1P

T−1 + β
)
+ β(T − 1)

√
2

π

R√
Q
P (36)

dQ

dα
=

√
2Q

π

(
1 +

R√
Q

)(
η1P

T−1 + β
)
+ 2β(T − 1)

√
2

π
P

+

(
η21
T

+ 2η21β
2

)
PT +

β2

T 2

(
(1 + (T − 1))T 2

)
P 2

(37)

B ALTERNATIVE DERIVATION OF EQ.3

∇w log π(y|x) = ∇w log
1

1 + e−yw·x (38)

≈ −∇w log e−yw·x = yx (39)

where the approximation is true in the early phases of learning, when the student is still trying to
learn the rule (w · x ≈ 0). Later phases are not fully captured anymore by this approximation but
our focus is mostly about the first part where an interesting dynamics occurs.

C TIME FOR LEARNING TO BEGIN

In Fig. 2c, the times ascertained for learning to begin are computed by specifying the the first
timestep where accuracy (R/

√
Q) is monotonic increasing. The ODE boundary is computed by

by finding the line separating the regions where ODE accuracy increases monotonic from initialisa-
tion and where ODE accuracy is unchanging.
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