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If deep learning is the answer, what
is the question?

Andrew Saxe®, Stephanie Nelli@® and Christopher Summerfield

Abstract | Neuroscience research is undergoing a minor revolution. Recent
advances in machine learning and artificial intelligence research have opened up
new ways of thinking about neural computation. Many researchers are excited by
the possibility that deep neural networks may offer theories of perception,
cognition and action for biological brains. This approach has the potential to
radically reshape our approach to understanding neural systems, because the
computations performed by deep networks are learned from experience, and not
endowed by the researcher. If so, how can neuroscientists use deep networks to
model and understand biological brains? What is the outlook for neuroscientists
who seek to characterize computations or neural codes, or who wish to understand
perception, attention, memory and executive functions? In this Perspective, our
goal is to offer a road map for systems neuroscience research in the age of deep
learning. We discuss the conceptual and methodological challenges of comparing
behaviour, learning dynamics and neural representations in artificial and biological
systems, and we highlight new research questions that have emerged for
neuroscience as a direct consequence of recent advances in machine learning.

Recent years have seen a dramatic resurgence
in optimism about the progress of artificial
intelligence (AI) research, driven by advances
in deep learning'. ‘Deep learning’ is the

name given to a methodological toolkit

for building multilayer (or ‘deep’) neural
networks that solve challenging problems

in supervised classification’, generative
modelling’ or reinforcement learning**.
Neuroscience and Al research have a rich
shared history®, and deep networks are now
increasingly being considered as promising
theories of neural computation. The recent
literature is studded with comparisons of

the behaviour and activity of biological

and artificial systems’, summarized in

a growing number of review articles?*~.

In this Perspective, we assess the
opportunities and challenges presented by
this new wave of intellectual synergy between
neuroscience and Al research. We begin by
considering the recent proposals that have
sought to reframe neural theory as a deep
learning problem. We assess extant evidence
that deep networks form representations
or exhibit behaviours in ways that resemble
biological agents and consider a host of new

questions, inspired by deep learning, that
neuroscientists are only just beginning to
address. In doing so, we highlight specific
falsifiable hypotheses that often underpin
deep learning models, drawing on the
domains of perception, memory, inference
and control processes. We point to the limits
of correlating representations of brains and
complex deep learning architectures, and
argue for a focus on learning trajectories
and complex behaviours. Finally, we ask
how deep network theories can provide
explanation and understanding, by drawing
on recent research that is beginning to
develop mathematical descriptions of
network learning dynamics and behaviour.
In doing so, we argue that deep networks
can and should be used to provide a new
generation of falsifiable theories of how
humans and other animals think, learn
and behave.

Neoconnectionism?

The idea that neural networks can serve as
theories of neural computation is not new.
During the parallel distributed processing
movement of the 1980s, psychologists
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and computer scientists proposed neural
networks as solutions to key problems
in perception, memory and language’’.
Contemporary deep networks resemble
scaled-up connectionist models, and
recent advances in machine learning are
also heavily indebted to the ubiquity of
digital data and the relatively low cost
of computation in the twenty-first century™.
It might thus be tempting to dismiss current
excitement around deep learning models for
neuroscience as a rehashing of earlier ideas,
owing more to the slow churn of scientific
fashion than to genuine intellectual progress.
However, many researchers believe that
deep learning models have the potential to
radically reshape neural theory, and to open
new avenues for symbiotic research between
neuroscience and Al research*>**~**. This
is because contemporary deep networks
are grounded in quasi-naturalistic sensory
signals (such as image pixels'” or auditory
spectrograms’) that allow them to perform
tasks of far greater complexity than was
previously possible. Contemporary deep
networks can thus learn ‘end-to-end’
(that is, without researcher intervention) in
a sensory ecology that resembles our own:
natural sounds and scenes for supervised
learning and generative modelling, and
3D environments with realistic physics for
deep reinforcement learning. This advent
of end-to-end models of biological function
has enabled researchers to attempt to model,
for the first time, the de novo emergence
of neural computations that can solve
real-world problems.

Networks capable of high performance
on complex real-world tasks have enabled
a host of recent advances at the intersection
of machine learning and neuroscience.
For example, one major line of research has
examined the representations formed by
supervised deep networks that are trained
to label objects in natural scenes’ (FIC. 1).
A striking observation is that biologically
plausible neural representations can emerge
in networks that combine gradient descent
with a handful of simple computational
principles® (gradient descent is a training
method where weights are adjusted
incrementally to encourage the network
outputs towards an objective). When deep
networks are endowed with properties
including local connectivity, convolutions,
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Fig. 1| Representational equivalence between neural networks and the
primate brain. This figure summarizes evidence for representational
correspondence between deep networks and biological brains. a | Left:
schematic illustration of simple and complex cell receptive fields from
mammalian primary visual cortex (V1). Right: example filters learned in
the first hidden layer of a deep convolutional neural network (CNN)2.
b | Representational similarity analysis is a method by which the similarity
of the population response to each stimulus (images of faces, bees, leaves
and balls in this example) can be assessed. Example representational simi-
larity matrices illustrating the similarity (blue indicating similar and red
indicating dissimilar) in population activity evoked by objects in early visual
areas of the primate brain (left; recorded with electrophysiology) and in the
intermediate layers in a deep CNN" (right). ¢ | Hypothetical neural firing
rates in response to a series of natural images (dark blue trace) and corre-
sponding hypothetical activity predicted as a linear transform of the neural
network activity (light blue trace)’. d | Representational similarity matrices
asin part b but comparing inferior temporal cortex (IT) with the final layers
of a CNN™. e | lllustration of the relationship between variance explained

in IT signals and classification accuracy for pseudo-randomly generated
neural networks that are trained to maximize either classification perfor-
mance (light blue line) or explanation of variance in neural signals (dark
blue line)”. f| Left: state space analysis of neural signals from macaque
lateralintraparietal area (LIP) recorded during a dot motion categorization
task. Red and blue lines show different motion directions belonging to
opposing categories; trajectories are plotted in two dimensions. Right:
same analysis conducted on hidden units of a recurrent neural network
(RNN)*. g| Left: state space analysis performed on neural signals recorded
from macaque dorsomedial prefrontal cortex (DMPFC) during perfor-
mance of a long-interval or short-interval reproduction task, plotted in
three dimensions. Right: same analysis conducted on hidden units of an
RNN*. Part a adapted with permission from REF.?, Neural Information
Processing Systems. Parts b and d adapted from REF.**, CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/). Panel c left insert credit: Wolfgang
Flamisch/Getty. Panel ¢ middle insert credit: KDP/Getty. Part f adapted
with permission from REF.**, Elsevier. Part g adapted with permission from
REF.“8, Elsevier.

pooling and normalization, the early layers
acquire simple filters for orientation and
spatial frequency?, just like neurons in the
primary visual cortex (FIC. |a), whereas in

deeper layers, the distributions and similarity

structure of neural representations for
objects and categories resemble those in
the primate ventral stream'>'*" (FIG. 1b,d).
Notably, representational equivalence may

be stronger in networks that perform object
recognition more accurately” (FIG. 1e).

One corollary of these findings is that the
sophisticated behaviours and structured
neural representations observed in humans
and other animals might emerge from a
limited set of computational principles, as
long as the input data are sufficiently rich and
the network is appropriately optimized*-*.

A deep learning framework

This claim has potentially profound
implications for neuroscience. It has already
prompted calls for systems neuroscientists
to refrain from building theories that
impose intuitive functional importance

on neural circuits by fiat, and instead

to study the computations that emerge
spontaneously during the training of deep
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networks**>~**, One such enjoinder* that
invokes the term ‘deep learning framework’
encourages researchers to avoid explicit
characterizations of neural computation
(for example, how simulated neurons with
handcrafted tuning curves and hand-
engineered network connectivity might
implement a certain function such as object
recognition). Instead, it proposes that

the role of the researcher is to specify the
overall network architecture, the learning
rule and the cost function; control is thus
relinquished over the microstructure

of computation, which instead emerges
organically over the course of network
training®. This proposal has raised the
question of whether neural computation
is sufficiently interpretable to be worth
explaining at all. A related proposal draws
an analogy between optimization over
computation in neural networks and
optimization over biological forms by
evolution: in both cases, interpretable
functional adaptations emerge without
meaningful constraints being imposed

on the search process™. In other words,

it has been claimed that neural systems
are fundamentally uninterpretable, and
that structured theories of perception

and cognition are ‘just-so stories’ that
reflect more closely the researcher’s quest
for meaning than the reality of neural
computation™. We consider this view in
more detail herein.

The claim has also been made that
modelling brains as neural networks
relieves researchers of the burden of
exhaustively documenting and interpreting
the coding properties of single neurons™.
As methodological advances have permitted
simultaneous recordings from large numbers
of neurons®, a doctrine has emerged
according to which neural representation
is dynamically multiplexed across
populations”. From this perspective, single
neurons code for multiple experimental
variables and their interactions™*,
exhibiting non-linear mixed selectivity.
Although a focus on population coding
emerged independently of the growing
interest in deep learning, mixed selectivity is
often (but not always)* a hallmark of coding
in deep network models’. In the brain, this
tendency seems to be most pronounced in
higher cortical areas, such as the parietal
cortex and prefrontal cortex, that support
working memory and action selection®-*.
In these regions, the coding properties of
single neurons can be highly heterogenous
and vary in mystifying ways over the course
of a given trial’*****. However, when neural
activity is examined at the population

level — for example, using dimensionality
reduction — neural patterns emerge that
meaningfully distinguish experimental
variables**°.

Another key observation is that these
patterns of population activity can be
recreated when the same analysis is applied
to unit activations in recurrent neural
networks trained to evaluate time-varying
decision evidence*~* (FIG. 1, judge
the length of a time interval”* (FIC. 1g)
or maintain information over a delay
period”~". Accordingly, deep recurrent
neural networks that have been trained
from scratch are increasingly being
proposed as computational theories for
sensorimotor integration and working
memory that go beyond existing models
with more ‘handcrafted’ features, such as
attractor models. In the domain of working
memory, a particularly interesting new
line of research has used recurrent networks
to address a key question in systems
neuroscience, namely when codes for
stored information should be static or
dynamic®. This work has contributed
to claims that it is futile to characterize the
coding properties of individual cells or to
infer how they participate in computation™.
Instead, it is argued the computational
model is explainable only at the aggregate
level of the population, which is ultimately
driven by the structure of the network and
the way it is optimized.

Together, these findings have been
invoked to argue that attempts to explain
computation in single neurons or local
brain areas are fruitless, and that meaningful
descriptions of neural computation are better
given by design choices or hyperparameter
settings from machine learning models.

For our part, although we celebrate the
opportunity to study biological brains
through the lens of neural network models,
we reject the view that this means giving up
on the attempt to explain computation. We
elaborate on this in the following sections.

From framework to hypothesis

The deep learning framework proposes
powerful new tools for modelling the
bewildering volumes of data that are

now routinely recorded in systems
neuroscience laboratories. However,

we hope that enthusiasm for deep networks
as computational models will be tempered
with a sober consideration of how they can
be usefully deployed to understand neural
mechanism and cognitive function. That
is, if deep learning is the answer, what are
the questions that neuroscientists should
ultimately be asking?
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One strength of the deep learning
framework is its generality: it offers a
unified vision for studying computation
across functions, species and brain regions.
However, it has yet to provide a concrete
road map for systems neuroscience
research®>**~*. If neural computation
emerges uncontrollably through blind,
unconstrained optimization, how can
neuroscientists formulate new, empirically
testable hypotheses about brain function?
Such hypotheses are argued to take the
form of design choices about learning rules,
regularization principles or architectural
constraints in deep networks™. There is
some evidence that more judicious design
choices for deep networks may permit
a closer match to biology”. For example,
adding recurrent connections improves
the fit to neural data'®, especially for those
natural images that are harder to classify
and at later poststimulus time points'’,
whereas including a biologically plausible
front end (a ‘retina net’) encourages the
formation of realistic coding properties,
including cell types typically found in the
thalamus™. In general, however, we lack
overall guiding principles for making
such design choices. In machine learning
research, networks are rarely built with
biological plausibility in mind, and so there
is relatively little prior guidance in how
they might be used to model neural systems.
Moreover, understanding the mapping from
design to performance in deep networks
is challenging, which is presumably why
AT has a relatively poor track record
in conducting interpretable or overtly
hypothesis-driven research, preferring to
focus instead on whether a system works
rather than why it works™.

At worst, the deep learning framework
seems to face neuroscience with an
existential challenge. The research
programme asks researchers to document
how different architectures or algorithms
can encourage deep networks to form
semantically meaningful representations or
exhibit complex behaviours, as humans and
other animals do. This endeavour sounds
suspiciously similar to contemporary Al
research itself. The deep learning framework
seems to break with a long tradition
of searching for explanations of neural
computation in biological brains. Rather,
it seems to propose sweeping away existing
knowledge about how specific classes of
computation underpin behaviour, merging
the goals of theoretical neuroscience with
those of contemporary Al research.

We recognize the promise of the deep
learning framework and are excited about
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<« Fig. 2| Emerging methods for comparing deep learning and the brain. a| Comparing representa-

tional change throughout learning. Top: over the course of learning and development, behaviour may
systematically improve (schematized here as reduction in error on a task). Bottom: experiments can
track how neural representations change during learning (schematized as representational similarity
analysis (RSA) matrices in inferior temporal cortex (IT) at three time points; top row), and whether these
changes are predicted by deep networks trained using specific learning rules (schematized as RSA
matrices of a convolutional neural network (CNN); bottom row). Comparing learning trajectories can
help assess whether the learning procedure, rather than only the final representations, in deep neural
networks is similar to that in the primate brain. b | Finer-grained comparisons of behaviour. Top: meas-
uring discriminability of one image against distractor objects isolates behavioural variance that is
specifically image-driven but not predicted by the object. Patterns of confusion among individual
images are shared by humans (y axis) and macaques (primate zone) but not deep networks. Light blue
bars show the human-performance consistency of models based on low-level visual representations,
while dark blue bars show human-performance consistency of publicly available deep neural networks
(VGGis amodel developed by the Visual Geometry Group at the University of Oxford, NYU is a model
developed at New York University)'. Bottom: classification performance of ResNet-50 trained from
scratch on ImageNet (a database of images of objects) is close to perfect when it is trained and tested
on standard colour images (left) and when it is trained and tested on images with additive uniform
noise (middle). However, when it is trained on images with salt-and-pepper noise and tested onimages
with uniform noise (right), performance is at chance even though the noise types do not seem different
to human observers’”. This is one way in which humans generalize better than current deep networks.
c| Causal tests of deep learning models. One approach, illustrated schematically here, uses ‘closed-
loop’ experimental designs to test the predictive power of deep networks*”**!*°, In one study'*, natural
images were presented to mice while evoked neural activity (dark blue traces in the top-right panel)
was recorded, and a deep neural network was trained to predict this activity (the light blue trace
illustrates correspondence between unit 1 and neuron 1 in the bottom-right panel). The deep network
was then used to compute a maximally exciting input image (MEI) that strongly activates that parti-
cular neuron in the model (peach pathway). This MEl is then shown to the mouse, and the resulting
neural response is measured (peach part of the top-right panel). If the deep network captures the
mapping from pixels to neural response, the MEI should also strongly excite the biological neuron
(neuron 1). Part b adapted from REF.*}, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
Part b adapted with permission from REF.?, Neural Information Processing Systems. Part c adapted from
REF.*, Springer Nature Limited. Part c left insert (chairs) credit: Wolfgang Flamisch/Getty. Part c middle
insert (mountain) credit: KDP/Getty.

the new possibilities offered by neural
network models as theories of neural
computation. We believe the strongest
version of this framework will build on
existing neural theories and maintain a
pointed focus on explaining computation
in biological brains. In other words, we
hope that deep learning will provide not
just a framework for neuroscience research
but also a set of explicit hypotheses about
behaviour, learning dynamics and neural
representation in biological networks.

Deep networks as neural models

The deep learning framework is built

on the proposal that neural networks

learn representations and computations
that resemble those in biological brains

(FIG. 2). However, it is possible that the
equivalence between deep networks and
animal brains has been overstated”. Indeed,
comparing the multivariate representations
in brains and neural models is fraught

with statistical challenges®. Currently,

one popular approach is to learn a linear
mapping from network units to neurons,
and to evaluate the predictive validity of
the resulting regression model in a held-out
dataset. If this approach is adopted for image
classification, the highest-performing deep

networks can explain an impressive 60% of
the variance in neuronal responses in the
primate inferior temporal cortex. However,
neural networks that perform substantially
worse at image classification explain just
5% less™. Indeed, the difference in the
accuracy of predictions of blood oxygen
level-dependent signals between trained
networks and untrained networks (that is,
those with random weights) is quite small —
on the order of 5-10% accuracy difference
for most visual regions®. It is often forgotten
that landmark studies on which claims of
equivalent representations in deep networks
and the brain are based actually used deep
networks that were not trained with gradient
descent'. It is not fully clear, then, whether
existing evidence strongly separates deep
learning from the more generic notion of
computation in a densely wired multilayer
network. Thus, an important goal for future
research is going to be to more rigorously
and systematically assess the status of the
claim that deep networks and biological
brains learn in similar ways, for example
by measuring and comparing changes in
representations over learning (FIG. 2a).
Testing whether neural signals are a linear
transform of model activations is a good
start, but such a relationship could exist even
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if the neural patterns in brains and neural
networks differ wildly in terms of sparsity
or dimensionality. Stricter tests of shared
coding are provided by methods that restrict
the freedom of the mapping function, such
as representational similarity analysis™,

in which representations are characterized
by the distance between population

activity vectors evoked by different inputs.
Representational similarity analysis discloses
a superficial resemblance between brains
and networks, but this agreement may

be driven principally by shared similarity
structure for stimuli that are physically
similar, such as faces'. To go beyond
correlations, systems neuroscience will need
to use causal assays of the predictive links
between artificial and biological networks,
such as harnessing network activations

for novel image synthesis®”** (FIG. 2¢). Such
closed-loop experimental designs promise
strong tests of the mapping between artificial
and biological brains.

Another way to test the equivalence
between biological and artificial systems
is to study their patterns of response. This is
vital because the computations in a neural
system can often profitably be understood in
the context of the behaviour they produce®.
Revealingly, humans and machines make
strikingly different sorts of errors in assays
of object recognition. In one study, networks
were prone to confuse object classes that
humans and even monkeys could safely tell
apart, such as dogs and guitars, and patterns
of confusion among individual images were
shared by humans and macaques, but not
deep networks'" (FIG. 2b, top). Similarly,
humans generalize far better than deep
networks to images that have been perturbed
by addition of pixelated noise, or bandpass
filtering’® (FIC. 2b, bottom), and are less
prone to be fooled by deliberately misleading
images”*"*”. There is a widespread view that
biological vision exhibits a robustness that
is currently lacking in supervised deep
neural networks.

More generally, animal behaviour is
richly structured, in theory permitting
researchers to make systematic comparisons
with machine performance®. For example,
animal decisions are subject to stereotyped
biases, but also irreducibly noisy®'; animals
are flexible but forgetful, behaving as if
memory and control systems were capacity
limited®’; and the rate and effectiveness of
information acquisition depend strongly on
the structure and order of study materials®.
Mature theories of biological brain function
should be able account for these phenomena,
and we hope that future deep network
models will be held to this standard.
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Thus far, we have argued that neural
networks, and in particular modern tools
from deep learning, have great potential
to shape our theories of neural computation.
However, we have offered two reasons to
be cautious. First, we should take care not
to overstate the extent to which existing
experimental comparisons between deep
networks and biological systems endorse
deep learning as a framework for biology.
Second, if we wish to use deep learning
as a framework for neuroscience, it is
important to be clear about what new
research questions it allows us to ask. If we
wish to adjust learning rules or architectures
to model biological systems, where do we
begin? What empirical phenomena might
deep networks predict that conventional
models from classical neuroscience might
not? Which theories can we validate or
falsify? In what follows, we take steps
towards answering these questions.

Learning rules for perception
Perception provides a key opportunity

to test several planks of the deep learning
hypothesis. For instance, psychologists

and neuroscientists have long debated the
extent to which perceptual representations
are prespecified by evolution or learned via
experience®; as an example, whether primate
face representations are innate or acquired
remains controversial®>*°. The deep learning
hypothesis reframes this debate by asking
whether neural codes could emerge from

a learning principle applied to a relatively
generic architecture and starting point.

One strong candidate is supervised learning
with gradient descent, in which representa-
tions are sculpted by feedback about the
label, name or category associated with a
sensory input”. As detailed earlier herein,
supervised models have been a major focus
of comparisons between deep networks

and biology”. However, a long tradition

in neuroscience emphasizes unsupervised
principles such as Hebbian learning, or
relatedly that representations are formed by
a pressure to accurately predict the spatially
or temporally local environment under an
efficiency constraint®**. Indeed, recent deep
generative models show a remarkable ability
to disentangle complex, high-dimensional
signals into their latent factors under

this latter self-supervised objective®”".

By contrast, a successful Al model that

has yet to impact neuroscience proposes
instead that representation formation is
driven by the need to accurately predict the
motivational value of experience’. It remains
to be seen whether some combination of
these more complex learning mechanisms

can account for the full diversity of
perceptual neural responses across
modalities without building in specific
domain content.

A second proposal of deep learning
that is in need of testing is end-to-end
learning. One way to evaluate learning
rules is to assess their ability to furnish
deep networks with rich representations
and complex behaviours when exposed to
naturalistic data. However, this approach
is challenging. As noted earlier, learning
may only modestly improve the match
to data, suggesting that deep network
representations rather than deep learning
might drive much of the correspondence.
Moreover, standard supervised models, such
as those described earlier that are popular
for explaining primate object recognition,
seem to require improbable quantities of
labelled data — unlike human infants, who
gain sophisticated object understanding
even before language is acquired. Another
challenge for networks trained with gradient
descent is to identify a biologically realistic
implementation — that is, one where
updates are local and forward and backward
connectivity in the network is not required
to be symmetric. Although mechanisms
adopted by machine learning researchers
for assigning credit to individual synapses
were once thought to be biologically
implausible, we now have a growing set
of candidate implementations in need of
empirical tests’""%.

Given these difficulties, a more direct
test of different learning principles could
focus on how representations change
during prolonged training. This opens the
door to studies of perceptual learning
that can attempt to confirm or refute
these predictions™”*. For example, FIC. 3
shows the predictions of a neural network
model trained to classify tilted gratings
with gradient descent™. Extant neural
and behavioural phenomena emerge
seamlessly from the model, such as stronger
sharpening of the tuning functions of the
most informative neurons (FIG. 3b,c), earlier
representational changes in higher cortical
stages (that is, deeper layers) during training
(FIG. 3d), greater proneness to transfer coarse
rather than fine discrimination abilities to
other non-trained stimuli (FIG. 3¢) and the
transfer of fine discrimination early but not
late during training’>”.

Critically, other learning principles may
make qualitatively different predictions
(FIC. 3). For example, under correlational
Hebbian learning, one might predict that the
most active (rather than most informative)

neurons would change their tuning the most.

Other learning principles such as contrastive
Hebbian learning’ or predictive coding”,
which involve feedback connectivity, might
predict different distributions and timings
of activity changes across layers. In this
way, comparisons of learning trajectories
can distinguish computational principles of
learning even without specifying biological
implementations. This approach opens the
door to a new programme of experiments
focused on measuring the dynamics of
representational change across cortical
stages during prolonged training using
macroscopic imaging techniques such

as functional MRI (fMRI) or wide-field
calcium imaging.

Deep learning for cognition
Deep neural networks excel at classifying
complex inputs into distinct classes such
as objects