
Recent years have seen a dramatic resurgence 
in optimism about the progress of artificial 
intelligence (AI) research, driven by advances 
in deep learning1. ‘Deep learning’ is the 
name given to a methodological toolkit 
for building multilayer (or ‘deep’) neural 
networks that solve challenging problems 
in supervised classification2, generative 
modelling3 or reinforcement learning4,5. 
Neuroscience and AI research have a rich 
shared history6, and deep networks are now 
increasingly being considered as promising 
theories of neural computation. The recent 
literature is studded with comparisons of 
the behaviour and activity of biological 
and artificial systems7–21, summarized in 
a growing number of review articles22–30.

In this Perspective, we assess the 
opportunities and challenges presented by 
this new wave of intellectual synergy between 
neuroscience and AI research. We begin by 
considering the recent proposals that have 
sought to reframe neural theory as a deep 
learning problem. We assess extant evidence 
that deep networks form representations 
or exhibit behaviours in ways that resemble 
biological agents and consider a host of new 

and computer scientists proposed neural 
networks as solutions to key problems 
in perception, memory and language31. 
Contemporary deep networks resemble 
scaled- up connectionist models, and 
recent advances in machine learning are 
also heavily indebted to the ubiquity of 
digital data and the relatively low cost 
of computation in the twenty- first century26. 
It might thus be tempting to dismiss current 
excitement around deep learning models for 
neuroscience as a rehashing of earlier ideas, 
owing more to the slow churn of scientific 
fashion than to genuine intellectual progress. 
However, many researchers believe that 
deep learning models have the potential to 
radically reshape neural theory, and to open 
new avenues for symbiotic research between 
neuroscience and AI research23,32–34. This 
is because contemporary deep networks 
are grounded in quasi- naturalistic sensory 
signals (such as image pixels13 or auditory 
spectrograms15) that allow them to perform 
tasks of far greater complexity than was 
previously possible. Contemporary deep 
networks can thus learn ‘end- to- end’ 
(that is, without researcher intervention) in 
a sensory ecology that resembles our own: 
natural sounds and scenes for supervised 
learning and generative modelling, and 
3D environments with realistic physics for 
deep reinforcement learning. This advent 
of end- to- end models of biological function 
has enabled researchers to attempt to model, 
for the first time, the de novo emergence 
of neural computations that can solve 
real- world problems.

Networks capable of high performance 
on complex real- world tasks have enabled 
a host of recent advances at the intersection 
of machine learning and neuroscience. 
For example, one major line of research has 
examined the representations formed by 
supervised deep networks that are trained 
to label objects in natural scenes2 (Fig. 1). 
A striking observation is that biologically 
plausible neural representations can emerge 
in networks that combine gradient descent 
with a handful of simple computational 
principles29 (gradient descent is a training 
method where weights are adjusted 
incrementally to encourage the network 
outputs towards an objective). When deep 
networks are endowed with properties 
including local connectivity, convolutions, 

questions, inspired by deep learning, that 
neuroscientists are only just beginning to 
address. In doing so, we highlight specific 
falsifiable hypotheses that often underpin 
deep learning models, drawing on the 
domains of perception, memory, inference 
and control processes. We point to the limits 
of correlating representations of brains and 
complex deep learning architectures, and 
argue for a focus on learning trajectories 
and complex behaviours. Finally, we ask 
how deep network theories can provide 
explanation and understanding, by drawing 
on recent research that is beginning to 
develop mathematical descriptions of 
network learning dynamics and behaviour. 
In doing so, we argue that deep networks 
can and should be used to provide a new 
generation of falsifiable theories of how 
humans and other animals think, learn 
and behave.

Neoconnectionism?
The idea that neural networks can serve as 
theories of neural computation is not new. 
During the parallel distributed processing 
movement of the 1980s, psychologists 
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pooling and normalization, the early layers 
acquire simple filters for orientation and 
spatial frequency2, just like neurons in the 
primary visual cortex (Fig. 1a), whereas in 
deeper layers, the distributions and similarity 
structure of neural representations for 
objects and categories resemble those in 
the primate ventral stream12–14,19 (Fig. 1b,d). 
Notably, representational equivalence may 

be stronger in networks that perform object 
recognition more accurately13 (Fig. 1e). 
One corollary of these findings is that the 
sophisticated behaviours and structured 
neural representations observed in humans 
and other animals might emerge from a 
limited set of computational principles, as 
long as the input data are sufficiently rich and 
the network is appropriately optimized25,35.

A deep learning framework
This claim has potentially profound 
implications for neuroscience. It has already 
prompted calls for systems neuroscientists 
to refrain from building theories that 
impose intuitive functional importance 
on neural circuits by fiat, and instead 
to study the computations that emerge 
spontaneously during the training of deep 
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Fig. 1 | Representational equivalence between neural networks and the 
primate brain. This figure summarizes evidence for representational 
correspondence between deep networks and biological brains. a | Left: 
schematic illustration of simple and complex cell receptive fields from 
mammalian primary visual cortex (V1). Right: example filters learned in  
the first hidden layer of a deep convolutional neural network (CNN)2.  
b | Representational similarity analysis is a method by which the similarity 
of the population response to each stimulus (images of faces, bees, leaves 
and balls in this example) can be assessed. Example representational simi
larity matrices illustrating the similarity (blue indicating similar and red 
indicating dissimilar) in population activity evoked by objects in early visual 
areas of the primate brain (left; recorded with electrophysiology) and in the 
intermediate layers in a deep CNN14 (right). c | Hypothetical neural firing 
rates in response to a series of natural images (dark blue trace) and corre
sponding hypothetical activity predicted as a linear transform of the neural 
network activity (light blue trace)13. d | Representational similarity matrices 
as in part b but comparing inferior temporal cortex (IT) with the final layers 
of a CNN14. e | Illustration of the relationship between variance explained 

in IT signals and classification accuracy for pseudo randomly generated 
neural networks that are trained to maximize either classification perfor
mance (light blue line) or explanation of variance in neural signals (dark 
blue line)13. f | Left: state space analysis of neural signals from macaque 
lateral intraparietal area (LIP) recorded during a dot motion categorization 
task. Red and blue lines show different motion directions belonging to 
opposing categories; trajectories are plotted in two dimensions. Right: 
same analysis conducted on hidden units of a recurrent neural network 
(RNN)45. g | Left: state space analysis performed on neural signals recorded 
from macaque dorsomedial prefrontal cortex (DMPFC) during perfor
mance of a long interval or short interval reproduction task, plotted in 
three dimensions. Right: same analysis conducted on hidden units of an 
RNN48. Part a adapted with permission from reF.2, Neural Information 
Processing Systems. Parts b and d adapted from reF.14, CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/). Panel c left insert credit: Wolfgang 
Flamisch/Getty. Panel c middle insert credit: KDP/Getty. Part f adapted 
with permission from reF.45, Elsevier. Part g adapted with permission from 
reF.48, Elsevier.

56 | January 2021 | volume 22 www.nature.com/nrn

P e r s P e c t i v e s

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


networks23,32–34. One such enjoinder33 that 
invokes the term ‘deep learning framework’ 
encourages researchers to avoid explicit 
characterizations of neural computation 
(for example, how simulated neurons with 
handcrafted tuning curves and hand-  
engineered network connectivity might 
implement a certain function such as object 
recognition). Instead, it proposes that 
the role of the researcher is to specify the 
overall network architecture, the learning 
rule and the cost function; control is thus 
relinquished over the microstructure 
of computation, which instead emerges 
organically over the course of network 
training33. This proposal has raised the 
question of whether neural computation 
is sufficiently interpretable to be worth 
explaining at all. A related proposal draws 
an analogy between optimization over 
computation in neural networks and 
optimization over biological forms by 
evolution: in both cases, interpretable 
functional adaptations emerge without 
meaningful constraints being imposed 
on the search process32. In other words, 
it has been claimed that neural systems 
are fundamentally uninterpretable, and 
that structured theories of perception 
and cognition are ‘just- so stories’ that 
reflect more closely the researcher’s quest 
for meaning than the reality of neural 
computation32. We consider this view in 
more detail herein.

The claim has also been made that 
modelling brains as neural networks 
relieves researchers of the burden of 
exhaustively documenting and interpreting 
the coding properties of single neurons33. 
As methodological advances have permitted 
simultaneous recordings from large numbers 
of neurons36, a doctrine has emerged 
according to which neural representation 
is dynamically multiplexed across 
populations37. From this perspective, single 
neurons code for multiple experimental 
variables and their interactions38–41, 
exhibiting non- linear mixed selectivity. 
Although a focus on population coding 
emerged independently of the growing 
interest in deep learning, mixed selectivity is 
often (but not always)42 a hallmark of coding 
in deep network models4. In the brain, this 
tendency seems to be most pronounced in 
higher cortical areas, such as the parietal 
cortex and prefrontal cortex, that support 
working memory and action selection38–40. 
In these regions, the coding properties of 
single neurons can be highly heterogenous 
and vary in mystifying ways over the course 
of a given trial38,39,43. However, when neural 
activity is examined at the population 

level — for example, using dimensionality 
reduction — neural patterns emerge that 
meaningfully distinguish experimental 
variables44,45.

Another key observation is that these 
patterns of population activity can be 
recreated when the same analysis is applied 
to unit activations in recurrent neural 
networks trained to evaluate time- varying 
decision evidence44–46 (Fig. 1f), judge 
the length of a time interval47,48 (Fig. 1g) 
or maintain information over a delay 
period49–51. Accordingly, deep recurrent 
neural networks that have been trained 
from scratch are increasingly being 
proposed as computational theories for 
sensorimotor integration and working 
memory that go beyond existing models 
with more ‘handcrafted’ features, such as 
attractor models. In the domain of working 
memory, a particularly interesting new 
line of research has used recurrent networks 
to address a key question in systems 
neuroscience, namely when codes for  
stored information should be static or 
dynamic49. This work has contributed 
to claims that it is futile to characterize the 
coding properties of individual cells or to 
infer how they participate in computation38. 
Instead, it is argued the computational 
model is explainable only at the aggregate 
level of the population, which is ultimately 
driven by the structure of the network and 
the way it is optimized.

Together, these findings have been 
invoked to argue that attempts to explain 
computation in single neurons or local  
brain areas are fruitless, and that meaningful 
descriptions of neural computation are better 
given by design choices or hyperparameter 
settings from machine learning models. 
For our part, although we celebrate the 
opportunity to study biological brains 
through the lens of neural network models, 
we reject the view that this means giving up 
on the attempt to explain computation. We 
elaborate on this in the following sections.

From framework to hypothesis
The deep learning framework proposes 
powerful new tools for modelling the 
bewildering volumes of data that are 
now routinely recorded in systems 
neuroscience laboratories. However, 
we hope that enthusiasm for deep networks 
as computational models will be tempered 
with a sober consideration of how they can 
be usefully deployed to understand neural 
mechanism and cognitive function. That 
is, if deep learning is the answer, what are 
the questions that neuroscientists should 
ultimately be asking?

One strength of the deep learning 
framework is its generality: it offers a 
unified vision for studying computation 
across functions, species and brain regions. 
However, it has yet to provide a concrete 
road map for systems neuroscience 
research23,32–34. If neural computation 
emerges uncontrollably through blind, 
unconstrained optimization, how can 
neuroscientists formulate new, empirically 
testable hypotheses about brain function? 
Such hypotheses are argued to take the 
form of design choices about learning rules, 
regularization principles or architectural 
constraints in deep networks33. There is 
some evidence that more judicious design 
choices for deep networks may permit 
a closer match to biology29. For example, 
adding recurrent connections improves 
the fit to neural data18, especially for those 
natural images that are harder to classify 
and at later poststimulus time points17, 
whereas including a biologically plausible 
front end (a ‘retina net’) encourages the 
formation of realistic coding properties, 
including cell types typically found in the 
thalamus52. In general, however, we lack 
overall guiding principles for making 
such design choices. In machine learning 
research, networks are rarely built with 
biological plausibility in mind, and so there 
is relatively little prior guidance in how 
they might be used to model neural systems. 
Moreover, understanding the mapping from 
design to performance in deep networks 
is challenging, which is presumably why 
AI has a relatively poor track record 
in conducting interpretable or overtly 
hypothesis- driven research, preferring to 
focus instead on whether a system works 
rather than why it works53.

At worst, the deep learning framework 
seems to face neuroscience with an 
existential challenge. The research 
programme asks researchers to document 
how different architectures or algorithms 
can encourage deep networks to form 
semantically meaningful representations or 
exhibit complex behaviours, as humans and 
other animals do. This endeavour sounds 
suspiciously similar to contemporary AI 
research itself. The deep learning framework 
seems to break with a long tradition 
of searching for explanations of neural 
computation in biological brains. Rather, 
it seems to propose sweeping away existing 
knowledge about how specific classes of 
computation underpin behaviour, merging 
the goals of theoretical neuroscience with 
those of contemporary AI research.

We recognize the promise of the deep 
learning framework and are excited about 
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the new possibilities offered by neural 
network models as theories of neural 
computation. We believe the strongest 
version of this framework will build on 
existing neural theories and maintain a 
pointed focus on explaining computation 
in biological brains. In other words, we 
hope that deep learning will provide not 
just a framework for neuroscience research 
but also a set of explicit hypotheses about 
behaviour, learning dynamics and neural 
representation in biological networks.

Deep networks as neural models
The deep learning framework is built 
on the proposal that neural networks 
learn representations and computations 
that resemble those in biological brains 
(Fig. 2). However, it is possible that the 
equivalence between deep networks and 
animal brains has been overstated22. Indeed, 
comparing the multivariate representations 
in brains and neural models is fraught 
with statistical challenges54. Currently, 
one popular approach is to learn a linear 
mapping from network units to neurons, 
and to evaluate the predictive validity of 
the resulting regression model in a held- out 
dataset. If this approach is adopted for image 
classification, the highest- performing deep 

networks can explain an impressive 60% of 
the variance in neuronal responses in the 
primate inferior temporal cortex. However, 
neural networks that perform substantially 
worse at image classification explain just 
5% less55. Indeed, the difference in the 
accuracy of predictions of blood oxygen 
level- dependent signals between trained 
networks and untrained networks (that is, 
those with random weights) is quite small — 
on the order of 5–10% accuracy difference 
for most visual regions19. It is often forgotten 
that landmark studies on which claims of 
equivalent representations in deep networks 
and the brain are based actually used deep 
networks that were not trained with gradient 
descent13. It is not fully clear, then, whether 
existing evidence strongly separates deep 
learning from the more generic notion of 
computation in a densely wired multilayer 
network. Thus, an important goal for future 
research is going to be to more rigorously 
and systematically assess the status of the 
claim that deep networks and biological 
brains learn in similar ways, for example 
by measuring and comparing changes in 
representations over learning (Fig. 2a).

Testing whether neural signals are a linear 
transform of model activations is a good 
start, but such a relationship could exist even 

if the neural patterns in brains and neural 
networks differ wildly in terms of sparsity 
or dimensionality. Stricter tests of shared 
coding are provided by methods that restrict 
the freedom of the mapping function, such 
as representational similarity analysis56, 
in which representations are characterized 
by the distance between population 
activity vectors evoked by different inputs. 
Representational similarity analysis discloses 
a superficial resemblance between brains 
and networks, but this agreement may 
be driven principally by shared similarity 
structure for stimuli that are physically 
similar, such as faces14. To go beyond 
correlations, systems neuroscience will need 
to use causal assays of the predictive links 
between artificial and biological networks, 
such as harnessing network activations 
for novel image synthesis57,58 (Fig. 2c). Such 
closed- loop experimental designs promise 
strong tests of the mapping between artificial 
and biological brains.

Another way to test the equivalence 
between biological and artificial systems 
is to study their patterns of response. This is 
vital because the computations in a neural 
system can often profitably be understood in 
the context of the behaviour they produce59. 
Revealingly, humans and machines make 
strikingly different sorts of errors in assays 
of object recognition. In one study, networks 
were prone to confuse object classes that 
humans and even monkeys could safely tell 
apart, such as dogs and guitars, and patterns 
of confusion among individual images were 
shared by humans and macaques, but not 
deep networks11 (Fig. 2b, top). Similarly, 
humans generalize far better than deep 
networks to images that have been perturbed 
by addition of pixelated noise, or bandpass 
filtering9 (Fig. 2b, bottom), and are less  
prone to be fooled by deliberately misleading 
images7,21,22. There is a widespread view that 
biological vision exhibits a robustness that  
is currently lacking in supervised deep 
neural networks.

More generally, animal behaviour is 
richly structured, in theory permitting 
researchers to make systematic comparisons 
with machine performance60. For example, 
animal decisions are subject to stereotyped 
biases, but also irreducibly noisy61; animals 
are flexible but forgetful, behaving as if 
memory and control systems were capacity 
limited62; and the rate and effectiveness of 
information acquisition depend strongly on 
the structure and order of study materials63. 
Mature theories of biological brain function 
should be able account for these phenomena, 
and we hope that future deep network 
models will be held to this standard.

Fig. 2 | Emerging methods for comparing deep learning and the brain. a | Comparing representa
tional change throughout learning. Top: over the course of learning and development, behaviour may 
systematically improve (schematized here as reduction in error on a task). Bottom: experiments can 
track how neural representations change during learning (schematized as representational similarity 
analysis (RSA) matrices in inferior temporal cortex (IT) at three time points; top row), and whether these 
changes are predicted by deep networks trained using specific learning rules (schematized as RSA 
matrices of a convolutional neural network (CNN); bottom row). Comparing learning trajectories can 
help assess whether the learning procedure, rather than only the final representations, in deep neural 
networks is similar to that in the primate brain. b | Finer grained comparisons of behaviour. Top: meas
uring discriminability of one image against distractor objects isolates behavioural variance that is 
specifically image driven but not predicted by the object. Patterns of confusion among individual 
images are shared by humans (y axis) and macaques (primate zone) but not deep networks. Light blue 
bars show the human performance consistency of models based on low level visual representations, 
while dark blue bars show human performance consistency of publicly available deep neural networks 
(VGG is a model developed by the Visual Geometry Group at the University of Oxford, NYU is a model 
developed at New York University)11. Bottom: classification performance of ResNet50 trained from 
scratch on ImageNet (a database of images of objects) is close to perfect when it is trained and tested 
on standard colour images (left) and when it is trained and tested on images with additive uniform 
noise (middle). However, when it is trained on images with salt and pepper noise and tested on images 
with uniform noise (right), performance is at chance even though the noise types do not seem different 
to human observers9. This is one way in which humans generalize better than current deep networks. 
c | Causal tests of deep learning models. One approach, illustrated schematically here, uses ‘closed 
loop’ experimental designs to test the predictive power of deep networks57,58,149. In one study149, natural 
images were presented to mice while evoked neural activity (dark blue traces in the top right panel) 
was recorded, and a deep neural network was trained to predict this activity (the light blue trace 
illustrates correspondence between unit 1 and neuron 1 in the bottom right panel). The deep network 
was then used to compute a maximally exciting input image (MEI) that strongly activates that parti
cular neuron in the model (peach pathway). This MEI is then shown to the mouse, and the resulting 
neural response is measured (peach part of the top right panel). If the deep network captures the 
mapping from pixels to neural response, the MEI should also strongly excite the biological neuron 
(neuron 1). Part b adapted from reF.11, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).  
Part b adapted with permission from reF.9, Neural Information Processing Systems. Part c adapted from 
reF.149, Springer Nature Limited. Part c left insert (chairs) credit: Wolfgang Flamisch/Getty. Part c middle 
insert (mountain) credit: KDP/Getty.
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Thus far, we have argued that neural 
networks, and in particular modern tools 
from deep learning, have great potential  
to shape our theories of neural computation. 
However, we have offered two reasons to 
be cautious. First, we should take care not 
to overstate the extent to which existing 
experimental comparisons between deep 
networks and biological systems endorse 
deep learning as a framework for biology. 
Second, if we wish to use deep learning 
as a framework for neuroscience, it is 
important to be clear about what new 
research questions it allows us to ask. If we 
wish to adjust learning rules or architectures 
to model biological systems, where do we 
begin? What empirical phenomena might 
deep networks predict that conventional 
models from classical neuroscience might 
not? Which theories can we validate or 
falsify? In what follows, we take steps 
towards answering these questions.

Learning rules for perception
Perception provides a key opportunity  
to test several planks of the deep learning 
hypothesis. For instance, psychologists 
and neuroscientists have long debated the 
extent to which perceptual representations 
are prespecified by evolution or learned via 
experience64; as an example, whether primate 
face representations are innate or acquired 
remains controversial63,65. The deep learning 
hypothesis reframes this debate by asking 
whether neural codes could emerge from 
a learning principle applied to a relatively 
generic architecture and starting point.  
One strong candidate is supervised learning 
with gradient descent, in which representa-
tions are sculpted by feedback about the 
label, name or category associated with a 
sensory input29. As detailed earlier herein, 
supervised models have been a major focus 
of comparisons between deep networks 
and biology29. However, a long tradition 
in neuroscience emphasizes unsupervised 
principles such as Hebbian learning, or 
relatedly that representations are formed by 
a pressure to accurately predict the spatially 
or temporally local environment under an 
efficiency constraint66–68. Indeed, recent deep 
generative models show a remarkable ability 
to disentangle complex, high- dimensional 
signals into their latent factors under 
this latter self- supervised objective69,70. 
By contrast, a successful AI model that 
has yet to impact neuroscience proposes 
instead that representation formation is 
driven by the need to accurately predict the 
motivational value of experience5. It remains 
to be seen whether some combination of 
these more complex learning mechanisms 

can account for the full diversity of 
perceptual neural responses across 
modalities without building in specific 
domain content.

A second proposal of deep learning 
that is in need of testing is end- to- end 
learning. One way to evaluate learning 
rules is to assess their ability to furnish 
deep networks with rich representations 
and complex behaviours when exposed to 
naturalistic data. However, this approach 
is challenging. As noted earlier, learning 
may only modestly improve the match 
to data, suggesting that deep network 
representations rather than deep learning 
might drive much of the correspondence. 
Moreover, standard supervised models, such 
as those described earlier that are popular 
for explaining primate object recognition, 
seem to require improbable quantities of 
labelled data — unlike human infants, who 
gain sophisticated object understanding 
even before language is acquired. Another 
challenge for networks trained with gradient 
descent is to identify a biologically realistic 
implementation — that is, one where 
updates are local and forward and backward 
connectivity in the network is not required 
to be symmetric. Although mechanisms 
adopted by machine learning researchers  
for assigning credit to individual synapses 
were once thought to be biologically 
implausible, we now have a growing set 
of candidate implementations in need of 
empirical tests71,72.

Given these difficulties, a more direct 
test of different learning principles could 
focus on how representations change 
during prolonged training. This opens the 
door to studies of perceptual learning 
that can attempt to confirm or refute 
these predictions73,74. For example, Fig. 3 
shows the predictions of a neural network 
model trained to classify tilted gratings 
with gradient descent74. Extant neural 
and behavioural phenomena emerge 
seamlessly from the model, such as stronger 
sharpening of the tuning functions of the 
most informative neurons (Fig. 3b,c), earlier 
representational changes in higher cortical 
stages (that is, deeper layers) during training 
(Fig. 3d), greater proneness to transfer coarse 
rather than fine discrimination abilities to 
other non- trained stimuli (Fig. 3e) and the 
transfer of fine discrimination early but not 
late during training73,74.

Critically, other learning principles may 
make qualitatively different predictions 
(Fig. 3f). For example, under correlational 
Hebbian learning, one might predict that the 
most active (rather than most informative) 
neurons would change their tuning the most. 

Other learning principles such as contrastive 
Hebbian learning72 or predictive coding75, 
which involve feedback connectivity, might 
predict different distributions and timings 
of activity changes across layers. In this 
way, comparisons of learning trajectories 
can distinguish computational principles of 
learning even without specifying biological 
implementations. This approach opens the 
door to a new programme of experiments 
focused on measuring the dynamics of 
representational change across cortical 
stages during prolonged training using 
macroscopic imaging techniques such 
as functional MRI (fMRI) or wide- field 
calcium imaging.

Deep learning for cognition
Deep neural networks excel at classifying 
complex inputs into distinct classes such 
as objects or words. Equally important, 
however, is what our brains do next: we link 
objects and items into diverse knowledge 
structures that describe our world. We 
know, for example, that a dog can bark and 
that a maple is a type of tree. Moreover, we 
form semantic categories from multimodal 
features, connecting the written and spoken 
name for an object with its shape, odour 
and texture. This conceptual knowledge of 
the world transcends physical appearance, 
interlinking diverse and even unobservable 
object properties (for example, that a dog 
has a spleen). The abstractions we acquire 
over the course of development form the 
building blocks for flexible generalization 
and higher- level cognition in maturity76.

Evaluating deep learning insights 
beyond the realm of perceptual tasks is a 
key open opportunity for neuroscientists. 
The behaviour of humans and other animals 
is governed by a rich array of cognitive 
functions, including modular memory 
processes and attentional and task- level 
control, and neural systems for navigation, 
planning, mental simulation, reasoning and 
abstract inference. These cognitive functions 
are implemented in a regionally specialized 
brain, in which a patchwork of subcortical 
and allocortical structures interconnects 
with granular and infragranular cortical 
zones, each housing unique cell types and 
circuits. If we are committed to deploying 
deep learning models as theories for 
biology, we need to take seriously the 
question of how such elaborate structure 
in cognition and behaviour emerges via 
optimization. How do humans learn abstract 
representations, divorced from physical 
object properties? How do we assemble 
knowledge into relational structures such 
as trees, rings and grids? How do we 
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compose new behaviours from existing 
subcomponents? How do we rapidly  
acquire and generalize new memories? 
These are important questions for AI 
researchers as well, and indeed, some have 
expressed a hope that machine learning will 
soon offer more powerful models in which 
higher cognitive functions emerge naturally 

via a ‘blind search’ process, allowing 
neuroscientists to sidestep the problem of 
modelling them explicitly32. Indeed, recent 
advances in AI research have followed the 
successful fusion of deep learning with other 
methods, such as reinforcement learning5, 
content- addressable memory77,78 or Monte 
Carlo tree search4, demonstrating a proof of 

concept for end- to- end learning in complex 
cognitive architectures.

Neuroscientists can harness their 
familiar experimental toolkit to study 
cognition using deep networks, pressing 
towards more complex behaviours and 
exposing current limitations of the deep 
learning hypothesis. One potentially fruitful 
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approach is to identify specific problems 
or tasks in which human performance and 
network performance are qualitatively 
different. For example, if networks struggle 
with one problem class whereas humans 
do not, one can use techniques from 
psychology and neuroscience to identify 
how humans solve the problem, and then 
ask how the learning rule or architecture 
may be varied to accommodate the same 
behaviour in deep networks. Experimental 
interrogation of interacting brain systems 
can help to identify constraints on network 
submodules that generate forms of 
information processing that resemble 
memory, attention or reasoning systems 
in biological agents. Thus, the research 
programme should build upon the work 
of past decades, in which neuroscientists 
have experimentally dissected cognitive 
systems, in many cases providing a detailed, 
computationally grounded account of their 
function. For example, we understand  
a great deal about the navigation system  
in the rodent medial temporal lobe (MTL)79, 
the motor system in songbirds80 and the 
saccadic system in the macaque81. With this 
foundation, deep learning approaches can 
help explain key computational trade- offs 
and underlying reasons for the specialized, 
interacting subsystems evident in biology.

Abstraction and generalization
Deep networks excel when data are 
abundant and training is exhaustive. 
However, they struggle to extrapolate this 
knowledge to new environments populated 
by previously unseen features and objects. 
Humans, by contrast, seem to generalize 
effectively28. For example, most people can 
navigate a foreign city where the language, 
coinage and customs are unfamiliar, because 
they understand concepts such as ‘greeting’, 
‘taxi’ and ‘map’. A popular view is that deep 
networks fail to transfer knowledge because 
they do not form neural codes that abstract 
over physically dissimilar domains. Building 
deep networks that can generalize in this 
way would be a major milestone for machine 
learning. In parallel, this difference provides 
an incentive for neuroscientists to study 
how biological brains encode, compose 
and generalize abstract knowledge82–84.

Unfortunately, key methodological 
challenges arise for neuroscientists 
seeking to address this question. First, 
it is unknown whether experimental 
animals such as rodents and macaques 
(or even our closer primate cousins)85 have 
evolved neural mechanisms that permit 
the strong, flexible transfer of knowledge 
characteristic of human intelligence. 

It is thus unclear whether invasive tools 
for recording and interference (such 
as electrophysiology or optogenetics) 
can be used to study generalization and 
transfer in animals. Moreover, to study 
human abstraction, we are obliged to 
use macroscopic imaging methods such 
as fMRI, magnetoencephalography and 
electroencephalography that are less well 
suited to revealing how computation unfolds 
in neural circuits. Nevertheless, inventive 
new ways of using these tools are being 
developed, allowing researchers to probe 
replay86–88, changes in excitatory–inhibitory 
balance89,90 and hexagonal (grid) coding91,92 
in human brain signals. Second, humans 
(and other animals) usually enter the 
laboratory with rich past experiences that 
sculpt the ways in which they learn. This 
complicates direct comparisons between 
humans and neural networks, because it 
is difficult to imbue artificial systems with 
equivalent priors, or to eliminate human 
priors using wholly novel stimuli. Third, 
humans and neural networks learn over 
very different timescales. For example, 
deep reinforcement learning systems exceed 
human performance on Atari video games 
but require many times more training than  
a human player to acquire this proficiency93.

In an end- to- end learning system, 
abstract representations need to be 
grounded in experience. One possibility is 
that lifelong exposure to huge volumes of 
sensory data might allow strong invariances 
to emerge naturally via either supervised or 
unsupervised learning. There is evidence 
that cells in the MTL, which sits at the apex 
of the primate ventral stream, develop 
physically invariant coding properties. 
For example, in humans, ‘concept’ cells 
encode famous individuals or landmarks, 
irrespective of whether they are denoted by 
pictures or words94. Echoes of this coding 
scheme in which MTL coding is tied more 
tightly to allocentric space can be seen in 
other animals. For example, in rodents, 
hippocampal place cells encode locations 
in a way that is invariant to viewpoint 
and heading direction95, and in primates, 
‘schema’ cells activate across environments 
in a way that allows for generalization 
over common spatial configurations96. 
These neural codes for high- level concepts 
can form when different features, objects 
or locations are repeatedly associated 
in space or time, for example through 
Hebbian learning97. Indeed, fMRI studies of 
statistical learning have revealed that neural 
similarities (such as multivoxel pattern 
overlap) in the MTL recapitulate association 
strengths for pairs, lines, maps or hierarchies 

of stimuli94,98–104. Moreover, in a bandit 
task, the entorhinal cortex is one brain 
region where a consistent mapping exists 
between neural patterns and the covariance 
among stimuli and rewards, irrespective of 
the physical images involved105. Stitching 
together multiple patterns of association, 
and learning their structures, could enable 
animals to learn a comprehensive model 
of the world that can be used for navigation, 
inference and planning106.

In parallel with this growing emphasis on 
the virtues of model- based computation in 
neuroscience, machine learning researchers 
are building powerful deep generative 
models that are capable of disentangling 
the world into its latent factors, and 
recomposing these to construct realistic 
synthetic 3D images70,107,108. However, to 
date, wiring these generative models up 
with control systems to build intelligent 
agents has proved challenging, despite some 
promising efforts78. Indeed, AI researchers 
have struggled to build model- based 
systems that can hold their own against 
model- free agents in benchmark problems 
such as Atari games109. It is paradoxical that 
this is occurring against a rich backdrop 
of neuroscience research that emphasizes 
the virtues of model- based inference. 
Neuroscientists have even begun to 
unravel how seemingly idiosyncratic coding 
properties in the MTL and other structures 
may be hallmarks of a normative scheme 
for computationally efficient planning and 
inference110,111. For example, grid cell codes in 
the medial entorhinal cortex and elsewhere 
may be signatures of a neural code that has 
learned the geometry by which space itself 
is structured, potentially supporting transfer 
learning for navigation111. There are even 
hints that this coding scheme may apply 
to non- spatial as well as spatial domains92, 
potentially laying the foundations for a 
theory of higher- order human reasoning112. 
Although machine learning researchers have 
noted that lattice- like codes may emerge 
when deep reinforcement learning systems 
are trained to navigate113,114, they have yet  
to build on these insights for building 
stronger AI. More generally, understanding 
how to simulate biologically plausible model- 
based computations in a way that is useful to 
machine learning researchers is a potentially 
rich intellectual seam that neuroscientists are 
only just beginning to exploit.

Resource allocation in learning
Humans and other animals continue to 
learn across their lifespan. This ‘continual’ 
learning might allow a human to acquire 
a second language, a monkey to adopt a 
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new social role or a rodent to navigate in a 
novel environment. This is in stark contrast 
to most current AI systems, which lack 
the flexibility to acquire new behaviours 
once they have achieved convergence on 
an initial task. Building machines that can 
learn continually, as humans and other 
animals do, is proving one of the thorniest 
challenges in contemporary machine 
learning research115. Fortunately, however, 
this question has opened up new avenues 
for neuroscience research focused on 
how biology may have solved continual 
learning8,116.

It has long been noted that, in neural 
networks, learning pursuant to an initial  
task A is often overwritten during subsequent 
training on task B (known as ‘catastrophic 
interference’)117. This occurs because a 
parameterization that solves task A is not 
guaranteed to solve any other task, and so 
during training on task B, gradient descent 
drives network weights away from the local 
minimum (that is, a setting that specifies 
a local optimum for behaviour) for task A. 
It occurs even when the network has 
sufficient capacity to perform both tasks, 
because simultaneous (or ‘interleaved’) 
training allows the discovery of a setting 
that jointly solves tasks A and B. In humans, 
new learning can sometimes degrade extant 
performance, for example when memorizing 
associate pairs A–C after having encoded 
pairs A–B, but in general interference 
effects are far less dramatic than for neural 
networks118.

One popular model suggests 
that mammals have evolved to solve 
continual learning by using complementary 
learning systems in the hippocampus and 
neocortex116,119,120. Unlike the cortex, the 
hippocampus can rapidly learn sparse 
(or ‘pattern- separated’) representations of 
specific experiences, often called ‘episodic 
memories’121, and these memories are 
replayed offline during periods of rest or 
sleep122. Hippocampal replay provides an 
opportunity for virtual interleaving of past 
and present experiences, potentially allowing 
memories to be gradually consolidated 
into neocortical circuits in a way that 
circumvents the problem of catastrophic 
interference. This theory is supported 
by a wealth of evidence, including the 
finding that hippocampal damage leads 
to a gradient of retrograde amnesia123, 
and reports of double dissociations between 
instance- based memory (or ‘recollection’) 
in the hippocampus and summaries of 
past experience (or ‘familiarity’) in the 
neocortex124. In more recent years, artificial 
replay of past experiences has emerged as 

a crucial factor that enables deep networks 
to exhibit strong performance in temporally 
correlated environments125, including 
deep reinforcement learning agents for 
dynamic video games5. Pleasingly, this has 
allowed theorists to draw a link between 
computational solutions to continual 
learning in biological intelligence and AI126. 
Adaptations of the complementary learning 
system framework allow it to account for 
seemingly contradictory phenomena, such 
as the involvement of MTL structures in 
rapid statistical learning116.

Although evidence that offline 
replay may be important for memory 
consolidation has grown, the problem 
of continual learning has prompted new 
questions for neuroscientists. Is biological 
learning actively partitioned so as to avoid 
catastrophic interference? Unlike neural 
networks, animals do not always benefit 
from interleaved study conditions (imagine 
learning the violin and the cello at once). 
For example, humans who have been 
trained in a blocked regimen to classify 
naturalistic stimuli (trees) according to 
two orthogonal boundaries (their ‘leafiness’ 
versus their ‘branchiness’) perform better 
on a later interleaved test compared with 
those who experienced the same conditions 
at training and test8. Other evidence 
from human category learning implies 
that human knowledge may be actively 
partitioned by time and context127,128. 
Indeed, promising solutions to continual 
learning in the machine learning literature 
rely on the identification of weight 
subspaces in which new learning is least 
likely to cause retrospective interference, 
for example by ‘freezing’ synapses that 
are more likely to participate in extant 
tasks129,130. These tools are more effective 
when coupled with a gating process that 
overtly earmarks neural subspaces for new 
learning, in a way that resembles top- down 
attention in the primate neocortex131,132. 
Another intriguing possibility is that 
unsupervised processes facilitate continual 
learning in biological systems by clustering 
neural representations according to their 
context. Hebbian learning might encourage 
the formation of orthogonal neural codes 
for different temporal contexts133, which 
in turn enables tasks to be learned in 
different neural subspaces132. The curious 
phenomenon of ‘representational drift’ 
(in which neural codes meander 
unpre dictably over time)134 might reflect 
the allocation of information to different 
neural circuits in distinct contexts, enabling 
task knowledge to be partitioned in a way 
that minimizes interference135.

A more general question concerning 
resource allocation is how biological systems 
have evolved both to minimize negative 
transfer (interference) and maximize 
positive transfer (generalization) among 
tasks. One fascinating theoretical perspective 
argues that the capacity limits that are 
inherent in biological control processes 
are a response to this conundrum136. 
Using simulations involving deep networks, 
Musslick et al. show that shared and separate 
task representations have mixed costs 
and benefits, with shared codes enabling 
generalization between tasks at the risk of 
interference between tasks. They suggest 
that the brain has found a solution by 
promoting shared neural codes, which in 
turn enables strong transfer, but deploying 
control processes to gate out irrelevant 
tasks that might provoke interference. They 
suggest that this answers the question of 
why, despite a brain that comprises billions 
of neurons and trillions of connections, 
humans struggle with multitasking problems 
such as typing a line of computer code while 
answering a verbal question136.

Understanding deep networks
To fully realize the promise of deep neural 
networks as scientific theories of brain 
function, we need to understand how  
they work. Unfortunately, the computations 
performed by deep networks are enmeshed 
in millions of trainable parameters, such 
that they have been dubbed ‘black boxes’. 
Despite this complexity, however, in neural 
networks we can access every synaptic 
weight and unit activation over the course  
of learning, a feat that remains impossible  
in animal models. These considerations 
raise thorny questions concerning the 
utility of deep networks as neural models, 
and more generally, what it means to 
‘understand’ a neural process via a 
computational model34.

Thus far, many neuroscientists drawing 
on the deep learning toolkit have preferred 
to use simulations of off- the- shelf black 
box deep networks as neural models29. 
However, collaborations between theoretical 
neuroscientists, physicists and computer 
scientists have paved the way for a new 
approach that uses idealized neural 
network models to understand the 
mathematical principles by which they 
learn137, and deploys the results to predict 
or explain phenomena in psychology 
or neuroscience138. For this endeavour 
to be tractable, deep network models 
must be simplified (Fig. 4), for example by 
using linear activation functions (‘deep 
linear’ networks)139 (Fig. 4a–c) or specially 
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structured environments140,141. Often the 
behaviour of deep networks becomes 
simpler in ‘limit’ cases, such as when the 
number of neurons per layer diverges 
towards infinity (infinite width limit)142,143 
(Fig. 4d) or when the number of data 
samples and model parameters both diverge 
towards infinity but their ratio is finite 
(the high- dimensional limit)144,145 (Fig. 4e,f). 
Paradoxically, infinite-size networks can be 
more interpretable than those with fewer 
units, because their learning trajectory is 
stabler and not prone to being waylaid by 

bad local minima in the loss landscape, 
leading to suboptimal outcomes141,144,146 
(Fig. 4d). Leveraging these simplifying 
assumptions has allowed researchers to 
derive exact solutions for the learning 
trajectories that every single synapse 
will follow in certain networks139,142,143 
(Fig. 4a,b,d). These network idealizations 
have generated mathematical insight 
into perplexing questions about network 
behaviour, including why deep networks 
are often slower to train138 (Fig. 4c), why an 
initial epoch of layer- by- layer statistical 

learning reminiscent of critical period 
plasticity (‘unsupervised pretraining’) can 
accelerate future learning with gradient 
descent139 (Fig. 4c) and why generalization 
to unseen data suffers at the transition to 
overparameterization144–146 (Fig. 4e,f). This 
work challenges the notion that deep neural 
networks are black boxes and promises 
interpretable neural network models of 
biological phenomena.

Recently, this approach has been applied 
to the study of semantic cognition138 (Fig. 5). 
During development, children transition 
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through quasi- discrete stages in which 
they rapidly acquire new categories or 
concepts. Their learning is also highly 
structured: for example, semantic 
knowledge is progressively differentiated, 
as children pick up on broader hierarchical 
distinctions (‘animal’ versus ‘plant’) before 
finer distinctions (‘rose’ versus ‘daisy’), and 
displays stereotyped errors (such as thinking 
that worms have bones)147. Deep networks 
trained on richly structured data (Fig. 5a) 
are known to exhibit these phenomena148, 
but only recently has it been shown: that 
stage- like transitions arise due to so- called 
saddle points in the error surface (Fig. 5c), 
that progressive differentiation arises 
from the way the singular values of the 
input–output correlations drive learning 
over time (Fig. 5a–d) and that semantic 
illusions arise from pressure to sacrifice 
accuracy on exceptions to meet the global 
supervised objective138 (Fig. 5e). Moreover, 
these phenomena can be shown to be a 
consequence of depth itself, arising in 
deep linear networks but not shallow 
networks (Fig. 5c,e), even though the two 

classes of model converge to identical 
terminal solutions. This highlights the 
importance for neuroscientists of studying 
learning dynamics — that is, the trajectory 
that learning takes — rather than simply 
examining representations in networks that 
have converged.

One potential concern is that insights 
acquired in this way might not scale, 
because models are idealizations that  
eschew the messy complexity of state-  
of- the art deep networks and make 
assumptions that are false for biology 
(such as linear transduction, or layers 
of infinite width). However, we argue that 
neural theory is well served by analytical 
formulations of complex phenomena that 
give rise to specific, falsifiable predictions 
for neural circuits and systems. We hope 
that neuroscientists will incorporate 
reductions of deep network models 
into their canonical set of neural theories, 
rather than only seeking correspondences 
between brains and fully fledged deep 
learning systems that offer little hope 
of being understood.

Conclusions
Deep learning models have much to offer 
neuroscience. Most exciting is the potential 
to go beyond handcrafting of function, 
and to understand how computation 
emerges from experience. Neuroscientists 
have recognized this opportunity, but its 
exploitation has only just begun. In this 
Perspective, we have tried to offer a road 
map for researchers wishing to use deep 
networks as neural theories. Our principal 
exhortation for neuroscientists is to use deep 
networks as predictive models that make 
falsifiable predictions, and to use model 
idealization methods to provide genuine 
understanding of how and why they might 
capture biological phenomena. We caution 
against using increasingly complex models 
and simulations that outpace our conceptual 
insight, and discourage the blind search for 
correspondences in neural codes formed 
by biological and artificial systems. Instead, 
we hope that neuroscientists will build 
models that explain human behaviour, 
learning dynamics and neural coding in 
rich and fruitful ways, but without losing 
the interpretability inherent to classical 
neural models.
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