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ABSTRACT 

 

Our ability to remember the past is essential for guiding our future behavior. Psychological and 

neurobiological features of declarative memories are known to transform over time in a process 

known as systems consolidation. While many theories have sought to explain the time-varying 

role of hippocampal and neocortical brain areas, the computational principles that govern these 

transformations remain unclear. Here we propose a theory of systems consolidation in which 

hippocampal-cortical interactions serve to optimize generalizations that guide future adaptive 

behavior. We use mathematical analysis of neural network models to characterize fundamental 

performance tradeoffs in systems consolidation, revealing that memory components should be 

organized according to their predictability. The theory shows that multiple interacting memory 

systems can outperform just one, normatively unifying diverse experimental observations and 

making novel experimental predictions. Our results suggest that the psychological taxonomy and 

neurobiological organization of declarative memories reflect a system optimized for behaving well 

in an uncertain future. 
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INTRODUCTION 

  

Memory, the process by which experience is stored and transformed in neural circuits, lies 

at the heart of our ability to make adaptive decisions1. It is threaded through cognition, from 

perception through spatial navigation to decision-making and explicit conscious recall. Befitting 

the central importance of memory, brain regions including the hippocampus appear specifically 

dedicated to this challenge2–4.   

The concept of memory has refracted through psychology and neurobiology into diverse 

subtypes and forms that have been difficult to reconcile. Taxonomies of memory have been drawn 

on the basis of psychological content, for instance differences between memories for detailed 

episodes and semantic facts5; on the basis of anatomy, for instance differences between memories 

that are strikingly dependent on hippocampus versus those that are not6; and on the basis of 

computational properties, for instance differences between memories reliant on pattern-separated 

or distributed neural representation7. Many previous theories have tried to align and unify 

psychological, neurobiological, and computational memory taxonomies8–12. However, none yet 

resolve long-standing debates on where different kinds of memories are stored in the brain, and, 

fundamentally, why different kinds of explicit memories exist.  

Classical views of systems consolidation, such as the standard theory of systems 

consolidation8,13,14, have held that memories reside in hippocampus before transferring completely 

to neocortex (Fig. 1a). Related neural network models, such as the complementary learning 

systems theory, have further offered a computational rationale for systems consolidation based on 

the benefits of coupling complementary fast and slow learning systems9,15. However, these theories 

lack explanations for why some memories remain forever hippocampal dependent, as shown in a 

growing number of experiments16,17. On the other hand, more recent theories, like multiple trace 

theory11,18 and trace transformation theory19,20, hold that the amount of consolidation can depend 

on memory content, but they do not provide a quantitatively clear criterion for what content will 

consolidate, nor why this might be beneficial to behavior. 

One possible way forward is to see that memories serve not only as veridical records of 

experience, but also to support generalization in novel circumstances21–26. Here we introduce a 

mathematical neural network theory of systems consolidation founded on the principle that 

memory systems and their interactions collectively optimize generalization. The resulting theory 
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unifies diverse experimental phenomena that have vexed prior theories, explains why multiple 

interacting brain areas are beneficial, and reveals that the predictability of experiences should 

determine when and where memories reside. Our results provide a quantitative and unified picture 

of the organization of explicit memories based on their utility for future adaptive behavior. 

  

  

Fig. 1. Neural network model of systems consolidation. (a) The standard theory of systems consolidation.  
(b, c) Our theoretical framework assumes that neocortex extracts and encodes environmental relationships 
within the weights between distributed neocortical neurons in a process mediated by hippocampal 
reactivations. (d)  Cartoon of the teacher-student-notebook formalism; subscripts “i” and “o” refer to input 
and output layers.  (e) Core neural network model architecture (see Methods for details). (f-k) Stages of 
learning and inferences in the model.  
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RESULTS 

 

Formalizing systems consolidation 

We conceptualize an animal’s experiences in the environment as structured neuronal activity 

patterns that the hippocampus rapidly encodes and the neocortex gradually learns to produce 

internally9,15,27,28 (Fig. 1b). We hypothesize that systems consolidation allows neocortical circuits 

to learn many structured relationships between different subsets of these active neurons. Focusing 

on one of these relationships at a time, neocortical circuitry might learn to produce the responses 

of a particular output neuron from the responses of other input neurons (Fig. 1c). For example, in 

a human, an output neuron contributing to a representation of the word “bird” might receive strong 

inputs from neurons associated with wings and flight. In a mouse, an output neuron associated 

with freezing might receive strong inputs from neurons associated with the sound of an owl, the 

smell of a snake, or the features of a laboratory cage where it had been shocked29. 

We first sought to develop a theoretically rigorous mathematical framework to formalize this 

view of how systems consolidation contributes to learning. Our framework builds on the 

complementary learning systems hypothesis9,15, which posits that fast learning in hippocampus 

guides slow learning in neocortex to provide an integrated learning system that outperforms either 

subsystem on its own. Here we formalize this notion as a neocortical “student” that learns to predict 

an environmental “teacher,” aided by past experiences recorded in a hippocampal “notebook” (Fig. 

1d). We note that other anatomical mappings may be possible30–32. 

We modeled each of these theoretical elements with a simple neural network that permitted 

analytical analysis (Fig. 1e, Methods). Specifically, we modeled the teacher as a linear feedforward 

network that generates input-output pairs through fixed weights with additive output noise, the 

student as a size-matched linear feedforward network with learnable weights33–35, and the notebook 

as a sparse Hopfield network36–38. The student learns its weights from a finite set of examples 

(experiences) that contain both signal and noise. We modeled the standard theory of systems 

consolidation by optimizing weights for memory. This means that the squared difference between 

the teacher’s output and the student’s prediction should be as small as possible, averaged across 

the set of past experiences. Alternatively, we hypothesize that a major goal of the neocortex is to 

optimize generalization. This means that the squared difference between the teacher’s output and 
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the student’s prediction should be as small as possible, averaged across possible future experiences 

that could be generated by the teacher.  

Learning starts when the teacher activates student neurons (Fig. 1f, gray arrows). The notebook 

encodes this student activity by associating it with a random pattern of sparse notebook activity 

using Hebbian plasticity (Methods; Fig. 1f, pink arrows). This effectively models hippocampal 

activity as a pattern-separated code for indexing memories39,40. The dynamics of the notebook’s 

recurrent notebook network implement pattern completion36,41, whereby full notebook indices can 

be reactivated randomly from spontaneous activity or purposefully from partial cues42  (Methods; 

Fig. 1g). Student-to-notebook connections allow the student to provide the partial cues that drive 

pattern completion (Fig. 1g, orange arrows). Notebook-to-student connections then allow the 

completed notebook index to reactivate whatever student representations were active during 

encoding (Fig. 1g, blue arrows). Taken together, these three processes permit the student to use 

the notebook to recall memories from related experiences in the environment. Thus, our theory 

concretely models how the neocortex could use the hippocampus for memory recall. 

We model systems consolidation as plasticity of the student’s internal synapses (Figs. 1h, 1i). 

The student’s plasticity mechanism is guided by notebook reactivations (Fig. 1h), similar to how 

hippocampal replay is hypothesized to contribute to systems consolidation43. Slow, error-

corrective learning aids generalization44, and here we adjust internal student weights with gradient-

descent learning (Fig. 1i). Specifically, we assume that offline notebook reactivations provide 

targets for student learning (Methods), where the notebook-reactivated student output is compared 

with student’s internal prediction to calculate an error signal for learning. We consider models that 

set the number of notebook reactivations to optimize either memory transfer or generalization. 

Furthermore, the system can use the notebook (Fig. 1j) or only the learned internal student weights 

(Fig. 1k) to make output predictions from any input generated by the teacher. Our model uses 

whichever pathway makes statistically better predictions. 

 

Generalization-optimized complementary learning systems (Go-CLS)  

We next simulated the dynamics of memorization and generalization in the teacher-student-

notebook framework to investigate the impact of systems consolidation. We first modeled the 

standard theory of systems consolidation as limitless notebook reactivations that optimized student 

memory recall (Fig. 2a, c, e, Methods). Learning begins when the notebook stores a small batch 
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of examples, which are then repetitively reactivated by the notebook in each epoch to drive student 

learning (Methods). In separate simulations, examples were generated by one of three teachers that 

differed in their degree of predictability, here controlled by the signal-to-noise ratio (SNR) of the 

teacher network’s output (Fig. 1e, Methods). The notebook was able to accurately recall the 

examples provided by each teacher from the beginning (Fig. 2a, c, e, dashed blue lines), and we 

showed mathematically that recall accuracy scaled with the size of the notebook (Supplementary 

Material 5.2). Notebook-mediated generalization (Student In → Notebook → Student Out) was 

poor for all three teachers (Fig. 2a, c, e, dashed red lines), as rote memorization poorly predicts 

high-dimensional stimuli that were not previously presented or memorized (Supplementary 

Material 5.3). The student gradually reproduced past examples accurately (Fig. 2a, c, e, solid blue 

lines), but the signal in each example was contaminated by whatever noise was present during 

encoding and repetitively replayed throughout learning. Therefore, although the generalization 

error decreased monotonically for the noiseless teacher (Fig. 2a, solid red line), noisy teachers 

resulted in the student eventually generalizing poorly (Fig. 2c, e, solid red lines). From a 

mathematical point of view, this is expected, as the phenomenon of overfitting to noisy data are 

well appreciated in statistics and machine learning45,46. 

The implications of these findings for psychology and neuroscience are far reaching, as the 

standard theory of systems consolidation assumes that generalization follows naturally from 

hippocampal memorization and replay; it does not consider when systems consolidation is 

detrimental to generalization. For example, previous neural network models of complementary 

learning systems focused on learning scenarios where the mapping from input to output was fully 

reliable8,9. A goose is always a bird, and a rose is always a flower. Within our teacher-student-

notebook framework, this means that the teacher is noiseless and perfectly predictable by the 

student architecture. In such scenarios, standard systems consolidation continually improved both 

memorization and generalization in our model (Fig. 2a, solid red line). However, for less 

predictable environments, our theory suggests that too much systems consolidation can severely 

degrade generalization performance by leading the neocortex to overfit to unpredictable elements 

of the environment (Fig. 2c, solid red). In highly unpredictable environments, any systems 

consolidation at all can be detrimental to generalization (Fig. 2e, solid red). If the goal of systems 

consolidation is full memory transfer, then our theory illustrates that the system pays a price in 

reduced ability to generalize in uncertain environments. 
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Fig. 2. The predictability of experience controls the dynamics of systems consolidation. (a-h) 
Dynamics of student generalization error, student memorization error, notebook generalization error, and 
notebook memorization error when optimizing for student memorization (a, c, e, g) or generalization (b, d, 
f, h) performance. The student’s input dimension N = 100, and the number of patterns stored in the notebook 
P = 100 (all encoded at epoch = 1; epochs in the x-axis correspond to the time passage during systems 
consolidation). Notebook contains M = 2000 units, with a sparsity a = 0.05. During each epoch, 100 patterns 
are randomly sampled from the P stored patterns for reactivation and training the student. The student’s 
learning rate is 0.015. Teachers differed in their levels of predictability (a, b: SNR = infinity; c, d: SNR = 
4; e, f: SNR = 0.05; g, h: SNR ranges from 2-4

 to 24). (i-l) Memorization and generalization scores for the 
integrated student-notebook system as a function of time and SNR, when optimized for student 
memorization (i, k) or generalization (j, l). Memory and generalization scores are translated from respective 
error values by Score = (E0 - Et)/E0, E0 and Et are the generalization or memory errors before training starts 
and at epoch = t, respectively. Effect of notebook lesion on memory performance (cyan and orange lines, 
orange lines are simply the two-point version of the cyan lines) depended on optimization objective and 
time (i, j). 
 

Given the intricate effect of training example replay on generalization, what systems 

consolidation strategy would optimize generalization? Here we propose generalization-optimized 

complementary learning systems (Go-CLS) theory, which considers the normative hypothesis that 

the amount of systems consolidation is adaptively regulated to optimize the student’s 
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generalization accuracy based on the predictability of the input-output mapping (Fig. 2b, d, f). For 

the teacher with high degree of predictability, the student’s generalization error always decreased 

with more systems consolidation (Fig. 2b, solid red line), and the student could eventually recall 

all stored memories (Fig. 2b, solid blue line). Memory transfer therefore arises as a property of a 

student that learns to generalize well from this teacher’s examples. In contrast, a finite amount of 

consolidation (here modeled by a fixed number of notebook reactivations) was necessary to 

minimize the generalization error when the teacher had limited predictability (Fig. 2d, f), and our 

normative hypothesis is that systems consolidation halts at the point where further consolidation 

harms generalization (Fig. 2d, f, vertical black dashed line). The resulting student could generalize 

near optimally from each of the teachers’ examples (Fig. 2d, f, solid red lines, Supplementary 

Material 7.2), but its memory performance was hurt by incomplete memorization of the training 

data (Fig. 2d, f, solid blue lines). Nevertheless, the notebook could still recall the memorized 

examples (Fig. 2b, d, f, dashed blue lines). Go-CLS thus results in an integrated system that can 

both generalize and memorize by using two systems with complementary properties. We note that 

implementing this strategy for regulated systems consolidation requires a supervisory process 

capable of estimating the predictability of experience and the optimal amount of consolidation, a 

topic we address in the Discussion. 

These examples show that the dynamics of systems consolidation models interestingly depend 

on the degree of predictability of the teacher. We therefore leveraged our analytical results to 

comprehensively compare the standard theory of systems consolidation to the Go-CLS theory for 

regulated systems consolidation for all degrees of predictability (Supplementary Material 6, 7). 

Standard systems consolidation eventually consolidated all memories for any teacher (Fig. 2g, 

blue). As anticipated by Fig. 2a-f, the generalization performance varied dramatically with the 

teacher’s degree of predictability (Fig. 2g, red). Generalization errors were higher for less 

predictable teachers, and optimal consolidation amounts were lower. Therefore, regulated systems 

consolidation removed the detrimental effects of overfitting (Fig. 2h, red) but ended before the 

student could achieve perfect memorization (Fig. 2h, blue, non-zero error). Both the generalization 

performance and the memory performance improved as the teacher’s degree of predictability 

increased (Fig. 2h). 

The experimental literature on the time course of systems consolidation and time-dependent 

generalization provides important constraints on our theory. We thus sought to model these effects 
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by translating mean square errors (Fig. 2 g, h) into memory retrieval scores, where 0 indicates 

random performance and 1 indicates perfect performance (Fig. 2i-l, Methods). Our framework can 

use either the student or the notebook to recall memories or generalize (Fig. 1j, k), and we model 

the combined system by making predictions with whichever subsystem is more accurate (Methods). 

We simulated hippocampus lesions by disallowing the combined system from using notebook 

outputs and ending systems consolidation at the time of the lesion (Fig. 2i, j, cyan). Note that the 

combined memory (Figs. 2i, j) and generalization scores (Figs. 2k, l) often map onto the notebook 

and student performances, respectively, but it is also possible for the better subsystem to switch 

over time (Supplemental Material 6.1). As it takes time for the student to learn accurate 

generalizations, our systems consolidation models exhibit time-dependent generalization (Fig. 2k, 

l, purple). In contrast, the notebook permitted accurate memory retrieval from the start (Fig. 2i, j, 

black).   

Standard systems consolidation and regulated systems consolidation make strikingly different 

predictions for how retrograde amnesia and time-dependent generalization curves depend on the 

teacher’s degree of predictability (Fig. 2i-l). As expected, notebook lesions always produced 

temporally graded retrograde amnesia curves in the standard theory13 (Fig. 2i, orange). When 

systems consolidation was instead optimized for generalization, the effects of notebook lesions 

depended strongly on the predictability of the teacher (Fig. 2j, orange). In particular, the model 

could produce both graded and flat retrograde amnesia curves, with the slope of the amnesia curve 

increasing with the degree of predictability. Diverse generalization curves resulted from either 

model of systems consolidation (Fig. 2k, l), with maximal generalization performance increasing 

with the predictability of the teacher. However, student overfitting meant that only regulated 

systems consolidation maintained this performance over time. Standard systems consolidation 

could even result in a student that generalized maladaptively, resulting in worse-than-chance 

performance where the trained student interpolates noise in past examples to produce wildly 

inaccurate outputs (Fig. 2k).  

 

Go-CLS explains diverse experimental results 

These results allow Go-CLS theory to explain diverse experimental findings. Since real world 

experiences are composed of many elements that differ in their degree of predictability, our theory 

predicts that different components of human memory will consolidate to different degrees. In 
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human memory research, patients with selective hippocampal damage indeed show retrograde 

amnesia reflecting diverse dynamics of systems consolidation17,47. Researchers usually classify 

hippocampal amnesia dynamics according to whether memory deficits are similar for recent and 

remote memories (flat retrograde amnesia), more pronounced for recent memories (graded 

retrograde amnesia), or absent for both recent and remote memories (no retrograde amnesia) (Fig. 

3a). Some patients show graded retrograde amnesia consistent with the standard theory, while 

others either have flat retrograde amnesia or no retrograde amnesia17 (Fig. 3b). Regulated systems 

consolidation can recapitulate this diversity of retrograde amnesia curves (Fig. 3c). High and low 

predictability experiences lead to graded and flat retrograde amnesia, respectively (Figs. 2j, 3c, 

solid lines). A period of prior consolidation of highly predictable experiences decreases the slope 

of graded retrograde amnesia (Fig. 3c, dashed light-blue lines), and it’s possible to see no 

retrograde amnesia at all when the prior consolidation was extensive (Fig. 3c, dashed orange line, 

Methods). This conceptually resembles schema-consistent learning48. Similarly diverse retrograde 

amnesia curves have been seen in rodent memory tasks (Figs. 3d-g). For example, hippocampal 

lesions can result in either graded or flat retrograde amnesia in different individuals performing 

the same task49–51 (Figs. 3d-f), and individual animals can exhibit different types of amnesia on 

different tasks51. (Figs. 3f, g). In summary, our theory accounts parsimoniously for this wide range 

of experimental observations through the tuning of two parameters: the predictability of experience 

and the amount of prior consolidation. 

These empirical patterns are interpretable in light of Go-CLS theory. Generally reliable facts 

about public events and famous faces contain content of high degrees of predictability, and many 

patients can recall remote facts and faces without a functioning hippocampus17  (Fig. 3b). In 

contrast, the idiosyncratic content of an autobiographical memory, such as remembering specific 

events that happened during a birthday party is much less predictable52, because many incidental 

influences shape how complex real-life events unfold. Most patients cannot recall these memories 

without a hippocampus17 (Fig. 3b). Similarly, the Morris water maze requires a mouse to remember 

the detailed arrangement of environmental cues and platform positions53,54, both chosen arbitrarily 

and unpredictably by the experimenter, and this task consistently requires the hippocampus51,55,56 

(Figs. 3g).  
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Fig. 3. Regulated systems consolidation mirrors memory research findings in both humans and 
rodents. (a) Schematic of retrograde amnesia curves. (b) Reports of retrograde amnesia in human patients 
with selective hippocampal damage show diverse dynamics. Figure adapted from Yonelinas et al., 201917. 
(c) Regulated systems consolidation can reproduce the diversity of retrograde amnesia curves (see Methods 
for model details). (d, e) Lesioning hippocampus in rodents can produce both graded and flat retrograde 
amnesia. Figure adapted from Kim & Fanselow, 199257, Sutherland et al., 200850. Lesioning the 
hippocampus can result in graded (f) or flat (g) retrograde amnesia in the same animal performing different 
tasks (contextual fear conditioning and Morris water maze, respectively). Figure adapted from Winocur et 
al., 201351. (h) Discriminators can differentiate the original fear-conditioning context with another similar 
but novel context, whereas generalizers show similar amount of fear response to both contexts. (i) Silencing 
the hippocampus in mice 15 days after contextual fear conditioning differentially impact fear memory of 
the original context, depending on whether the animal show time-dependent fear generalization.  panels h 
and i are adapted from Wiltgen et al., 201058. (j, k) Regulated systems consolidation can reproduce similar 
correlation between time-dependent generalization and reduced hippocampal dependence of memories. 
High SNR (1000) and low SNR (0.6) simulations based on analytical solutions are used to model the 
“generalizers” and “discriminator”. 2000 total epochs are simulated with N = P = 100, notebook size M = 
5000, and learnrate = 0.005. (l) Face-location association task with rules vs no rules show different time-
dependent change in functional connectivity between cortical areas. Figure adapted from Sweegers et al., 
201459. (m) Regulated systems consolidation shows similar connectivity changes over time, as reflected in 
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the norm of the student’s weights. Student weight w is drawn i.i.d. from N(0, 0.5), where the weights’ non-
zero initial condition reflect the brain’s preexisting connectivity between these two regions. The student 
then learns from a high SNR teacher (SNR = 2) or a low SNR teacher (SNR = 0.05), while the weight norm 
is monitored through time (normalized to the initial norm). Note that a decrease in weight norm is expected 
on the low-SNR learning task, as a large weight norm generates substantial output variance that is 
uncorrelated with the teacher’s noisy output. 2000 total epochs are simulated with N = P = 100, notebook 
size M = 2000, and learnrate = 0.015.  
 

Go-CLS theory also explains diverse experimental results observed for time-dependent 

generalization49,60–62. For example, some mice showed increased fear responses to similar but not 

identical contexts in fear-conditioning experiments (“generalizers”, Fig. 3h, red bars), while others 

maintained distinct behavioral responses over time (“discriminators”, Fig. 3h, blue bars)49. 

Strikingly, only the discriminators required their hippocampus for memory recall of the original 

context (Fig. 3i). Our theory predicts that memory transfer and generalization improvement should 

be similarly correlated (Figs. 3j, k), as the same systems consolidation process leads to both 

memory transfer and time-dependent generalization. Unpredictable experiences should be 

susceptible to strong retrograde amnesia and avoid transfer leading to maladaptive generalization 

(Fig. 3j, k, blue bars). In contrast, predictable experiences should be associated with weak 

retrograde amnesia and useful learned generalizations (Fig. 3j, k, red bars). As with the amnesia 

results, our theory explains the diversity of these patterns through variability in the degree of 

predictability. Later, we further explore the diversity of fear conditioning dynamics (Figs. 3d-f, h, 

i), and human amnesia curves (Fig. 3b), by explaining why the predictability of experience varies 

across individuals. 

Direct tests of Go-CLS theory require experimental task designs that vary the degree of 

predictability and assess the effect on systems consolidation. One such experiment has been carried 

out by Sweegers et al59 (Fig. 3l, m). In their task design, healthy human participants had to 

associate specific faces with positions on a computer screen (Fig. 3l, left). Half of the locations 

were assigned faces through an unpredictable random process, whereas the other locations were 

assigned faces according to a hidden but fully reliable rule. The authors then used functional 

magnetic resonance imaging (fMRI) to assess how systems consolidation changed the functional 

connectivity between the fusiform face area (FFA) and right parietal cortex during memory recall. 

Remarkably, with time the functional connectivity increased for the rule-based locations and 

decreased for the no-rule locations (Fig. 3l, right). This result is expected from regulated systems 
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consolidation (Fig. 3m). In particular, the right parietal cortex is involved in spatial processing, 

and we interpret its functional connectivity from FFA in the teacher-student-notebook model as 

student weights used to predict neural activity coding location from neural activity coding faces. 

Our theory predicts that the predictability of the face-location relationship determines whether 

systems consolidation drives neocortical learning that links FFA to right parietal cortex. Indeed, 

these connections strengthened only when the face-location relationship was predictable. This 

empirical difference can be quantitatively captured by regulated systems consolidation (Fig. 3m). 

 

Normative benefits of complementary learning systems for generalization 

In addition to reproducing diverse experimental observations, our framework also provides 

theoretical insights into the complementary learning systems hypothesis, which posits that 

hippocampal and neocortical systems exploit fundamental advantages provided by coupled fast 

and slow learning modules9,15,63–65. We first investigated its basic premise by comparing 

generalization in the optimally regulated student-notebook network (Fig. 4a) to what is achievable 

with isolated student (Fig. 4b) and notebook networks (Fig. 4c). These simpler networks model 

learning with only neocortex or only hippocampus, respectively. 

Both the degree of predictability and the amount of available data impact the time course 

of systems consolidation in the student-notebook network (Supplementary Material 6, 7), so we 

used our analytical solutions to systematically examine how late-time memory and generalization 

jointly depend on the amount of training data and degree of predictability (Supplementary Fig. 2). 

With just a student (Fig. 4b), the system must learn online from each example with no ability to 

revisit it. This limitation prevented the optimal student-only network, which modulated its learning 

rate online to achieve best-case generalization performance (Supplementary Material 4.2), from 

generalizing as efficiently from predictable teacher-generated data as the optimal student-notebook 

network (Fig. 4d, blue vs red curves). We also confirmed that both networks generalized better 

than the notebook-only network (Fig. 4d). This is expected, because in high dimensions any new 

random pattern is almost always far from the nearest memorized pattern (Supplementary Material 

5.3); this is the so-called “curse of dimensionality”66.  
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Fig. 4. Normative benefits of complementary learning systems for generalization. (a-c) Schematics 
illustrating learning systems that can use both the student and the notebook (a), only the student’s weights 
(b), and only the notebook weights (c) for inference. In machine learning terminology, these systems 
implement batch learning, online learning, and nearest neighbor regression. (d) Generalization error as a 
function of normalized data quantity (or alpha (α), defined as α = P/N) for each learning system (SNR = 
1000), dashed gray line indicates α = 1. (e) Advantage of regulated systems consolidation over optimal 
online learning as a function of SNR and normalized data quantity, measured by the difference in 
generalization error. (f) Generalization error as a function of normalized data quantity for the combined 
system, learning either through regulated systems consolidation or standard systems consolidation (SNR = 
2.5). (g) Severity of overfitting, measured by the difference in generalization error between standard 
systems consolidation and regulated systems consolidation.   
 

The generalization gain provided by the student-notebook network over the student-only 

network was most substantial when the teacher provided a moderate amount of predictable data 

(Figs. 4d-e, dashed gray). This result follows because the student-notebook network was unable 
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to learn much when the data were too few or too noisy, and notebook-driven encoding and 

reactivation of data was unnecessary when the student had direct access to a large amount of 

teacher-generated data (Supplementary Material 4, 7). Hence an integrated dual memory system 

was normatively superior when experience was available, but limited, and the environment was at 

least somewhat predictable. This ethologically relevant regime is frequently experienced by 

animals, such as when limited past experiences with predators provide high-fidelity sensory cues 

for identifying them in the future. 

Regulated systems consolidation was most advantageous when the number of memorized 

examples equaled the number of learnable weights in the student (Fig. 4e, dashed gray). 

Remarkably, this amount of data was also the worst-case scenario for overfitting to noise in 

standard systems consolidation (Figs. 4f-g, dashed gray, Supplementary Fig. 2c), similar to the 

“double descent” phenomenon in machine learning67,68, where the worst overfitting also happens 

at a finite amount of data related to the network size. Intuitively, neural networks must fine-tune 

their weights to minimize their training error when the number of memorized patterns is close to 

the maximal achievable number (capacity). This often requires drastic changes in weights to 

reduce a small training error residual, producing noise-corrupted weights that generalize poorly. 

The optimal student-notebook network avoided this issue by regulating the amount of systems 

consolidation according to the predictability of the teacher. We propose that the brain might 

similarly regulate the amount of systems consolidation according to the predictability of 

experiences (see Discussion).  

 

Many facets of unpredictability 

Our simulations and analytical results show that the degree of predictability controls the 

consolidation dynamics that optimize generalization. We emphasized the example of a linear 

student (Fig. 5a) that learns from a noisy linear teacher (Fig. 5b). However, inherent noise is only 

one of several forms of unpredictability that can cause poor generalization without regulated 

systems consolidation. For example, when the teacher implements a deterministic transformation 
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Fig. 5. Many forms of unpredictability demand regulated systems consolidation. (a) The student-
notebook learning system. (b-d) Example teachers with unpredictable elements. (b) A teacher that linearly 
transforms inputs into noisy outputs. (c) A teacher that applies a nonlinear activation function at the output 
unit. (d) A teacher that only partially reveals the relevant inputs to the learning system. (e, f) Varying 
predictability within the three different teachers all lead to quantitatively similar learning dynamics 
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(complex teacher implements a sine function at the output unit, see Methods for simulation details). (g-i) 
The degree of predictability can vary in many ways. For example, the same inputs can differentially predict 
various outputs (g), features can cross predict each other with varying levels of predictability (h), and 
different learning systems could attend to different teacher features to predict the same output (i). (j) 
Cartoon illustrating a child’s experience at a lake with her father. (k) A cartoon illustrating conceptual 
differences between what is consolidated in standard systems consolidation and regulated systems 
consolidation. 
 
that is impossible for the student architecture to implement, the unmodellable parts of the teacher 

mapping are unpredictable and act like noise (Supplementary Material 9). For instance, a linear 

student cannot perfectly model a deterministic teacher with nonlinearities (Fig. 5c). Similarly, 

when the teacher’s mapping involves relevant input features that the student cannot observe, the 

contribution of the unobserved inputs to the output are generally impossible to model (Fig. 5d). 

This again results in unpredictability from the student’s perspective. These sources of 

unpredictability all consist of a modellable signal and an unmodellable residual (noise) 

(Supplementary Material 9), and they yield similar training and generalization dynamics (Fig. 5e, 

f). The real world is noisy and complicated, and the brain’s perceptual access to relevant 

information is limited. Realistic experiences thus frequently combine these sources of 

unpredictability. 

All the above-mentioned cases can be generally understood within the framework of 

approximation theory69. The unmodellable part represents a nonzero optimal approximation error 

for the student-teacher pair. For this unmodellable part to be generalization limiting, the student 

must also be expressive enough that the student weights overfit when attempting to fit limited data 

perfectly. Overfitting is also seen in more complex model architectures, such as modern deep 

learning models68 and we expect that the essential concepts presented here will also apply to 

broader model classes. For all of these types of generalization-limiting unpredictability, 

generalization is optimized when systems consolidation is limited for unpredictable experiences. 

Importantly, not all unpredictability limits generalization (Supplementary Material 8). 

Previously we have focused on the scenario of learning a single mapping. All real-life 

experiences are composed of many components, with relationships that can differ in predictability. 

Many relationships therefore must be learned simultaneously, and these representations are widely 

distributed across the brain. For instance, the same input features may have different utility in 

predicting several outputs (Fig. 5g). Furthermore, neocortical circuits may cross-predict between 
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different sets of inputs and outputs (Figs. 1e, 5h); for example, perhaps predicting auditory 

representations from visual representations and vice versa. In this setting, each cross prediction 

has its own predictability determined by the noise, the complexity of the mapping, and the features 

it is based upon. Predictability may also depend on overt and/or covert attention processes in the 

student. For example, a student may selectively attend to a subset of the inputs it receives (Fig. 5i), 

making the predictability of the same external experience dependent on internal states that can 

differ across individuals. A similar attention process could account for the diversity in fear 

generalization shown in Fig. 3h, if “generalizers” attend to generalizable features in the 

conditioning chamber while receiving the shock, whereas “discriminators” attend to more unique 

features. For all the above-mentioned scenarios, Go-CLS theory requires the student to optimize 

generalization by regulating systems consolidation according to the specific degree of 

predictability of each modelled relationship contained in an experience. The theory therefore 

provides a novel predictive framework for quantitatively understanding how diverse relationships 

within memorized experiences should differentially consolidate to produce optimal general-

purpose neocortical representations. 

 

DISCUSSION 

 

The theory presented here — Go-CLS — provides a normative and quantitative framework 

for assessing the conditions under which systems consolidation is advantageous or deleterious. As 

such, it differs from previous theories that sought to explain experimental results without explicitly 

considering when systems consolidation could be counterproductive8,9,13,17–19. The central claim 

of this work is that systems consolidation from the hippocampus to neocortex is most adaptive if 

it is regulated such that it improves generalization, an essential ability enabling animals to make 

predictions that guide behaviors promoting survival in an uncertain world. Crucially, we show that 

unregulated systems consolidation results in inaccurate predictions by neural networks when 

limited data contain a mixture of predictable and unpredictable components. These errors result 

directly from the well-known overfitting problem that occurs in artificial neural networks when 

weights are fine-tuned to account for data containing noise and/or unlearnable 

structure34,35,45,46,68,70–72. 
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For example, consider the experience of a girl spending a day in a boat with her father (Fig. 

5j, k). It may contain predictable relationships about birds flying, swimming, and perhaps even 

catching fish, as well as predictable relationships about fresh-picked strawberries tasting sweet. 

Our theory posits that these relationships should be extracted from the experience and integrated 

with memories of related experiences, through regulated systems consolidation, to produce, 

reinforce, and revise predictions (generalizations). On the other hand, unpredictable correlations, 

such as the color of her father’s shirt matching the color of the strawberries, should not be 

consolidated in the neocortex. They could nevertheless remain part of an episodic memory of the 

day, which would reside permanently in the hippocampus.  

Go-CLS reconciles many previous experimental results and highlights the normative 

benefits of complementary learning systems. It explains the diversity of retrograde amnesia 

dynamics in both humans and animal studies17,47 (Fig. 3a-g), the intriguing correlation between 

fear generalization and memory preservation after hippocampal lesioning49 (Fig. 3h-k), and 

different functional connectivity changes for learning rule-based or rule-lacking tasks59 (Fig. 3l, 

m). It also makes testable predictions that could affirm or refute the theory (Supplementary 

Material 10). Moreover, Go-CLS provides novel insights into the normative benefits of a dual-

memory system9,15. Specifically, gradual consolidation of past experiences benefits generalization 

performance the most when experience is limited and relationships are partially predictable (Fig. 

4), mirroring ethologically realistic regimes experienced by animals living in an uncertain world73. 

In addition, this benefit occurs in a regime where the danger overfitting is the highest34,35,68,70–72, 

highlighting the need for a regulated systems consolidation process. 

Previous theories have also sought to reconcile these and other experimental observations. 

Several early models—standard systems consolidation8,74 and complementary learning systems 

(CLS)9,15—posited gradual consolidation of memories from the hippocampus to neocortex. These 

theories have been highly influential, including motivating other theories that have attempted to 

address experimental demonstrations of the permanent role of the hippocampus in episodic 

memory. For example, multiple trace theory18 and trace transformation theory19,20 posit that 

episodic memories are consolidated as multiple memory traces, with the most detailed components 

permanently residing in the hippocampus. Contextual binding theory17 posits that items and their 

context remain permanently bound together in the hippocampus. These theories emphasize the role 

of the hippocampus in permanent storage of episodic details17–19,52,75, with the neocortex storing 
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less detailed semantic components of memories. In contrast, Go-CLS posits that predictability, 

rather than detail, determines consolidation. Similarly, Go-CLS favors predictability over 

frequency (or feature overlap) or salience as the central determinant of systems consolidation76–78. 

For example, frequent misinformation should not be consolidated, whereas rare gems from a wise 

source should be. Similarly, emotionally salient events might be prioritized for memory 

retention78,79, but only the predictable relationships contained in the experience should be 

consolidated in the neocortex. 

The Go-CLS theory does not specify the mechanisms by which memory consolidation 

should be regulated. Given the prominent role of sequence replay in existing mechanistic 

hypotheses about systems consolidation, this would be a natural target for regulation80–89. One 

possibility would be that memory elements reflecting predictable relationships could be replayed 

together, while unrelated elements are left out or replayed separately. Another would be that entire 

experiences are replayed, while other processes (e.g., attention mechanisms enabled by the 

prefrontal cortex90,91) regulate how replayed events are incorporated into neocortical circuits that 

store generalizations52. Regardless of the role of replay, a central question is how collections of 

elements are selected for systems consolidation. We posit that numerous bottom-up and top-down 

processes could participate in this process. For example, innate attention to facial features or other 

biologically salient cues could be prioritized92, and lifelong meta-learning93,94 could shape 

regulatory processes that label groups of elements as likely (or not) to contain predictable 

relationships.  

The proposed principle that the degree of predictability regulates systems consolidation 

reveals complexities about the traditional distinctions between empirically defined episodic and 

semantic memories5. Most episodic memories contain both predictable and unpredictable elements. 

Unpredictable coincidences in place, time, and content are fundamentally caused by the 

complexity of the world, which animals cannot fully discern or model. Memorizing such 

unpredictable events in the hippocampus is consistent with previous proposals suggesting that the 

hippocampus is essential for incidental conjunctive learning64, associating discontiguous items95, 

storing flexible associations of arbitrary elements10, relational or configural information96, and 

high-resolution binding97. However, our theory holds that predictable components of these 

episodic memories would consolidate separately to inform generalizations. In addition, some key 

aspects of an experience might themselves be semanticized98,99 — e.g., by consolidating the fact 
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that x, y, and z happened together at time t, or in sequence at times t1, t2, and t3, rather than 

consolidating the event as a remembered experience. In our model, in the extreme case of fully 

predictable events, the consolidated version fully captures the memorized event. However, real-

world events may never be 100% predictable. Furthermore, whether semanticized information 

about an experience should be considered an episodic memory is a matter of debate. We anticipate 

that psychologists and neurobiologists will be motivated by the Go-CLS theory to test and 

challenge it, with the long-range goal of providing new conceptual insight into the organizational 

principles and biological implementation of memory. 
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METHODS 

 

Teacher-Student-Notebook framework 

 

Please refer to the Supplementary Material for a detailed description of the Teacher-Student-

Notebook framework. The following sections provide a brief description of the framework and 

simulation details. 

 

Architecture. The teacher network is usually a linear shallow neural network generating input-

output pairs {xμ, yμ}, μ = 1,···, P, through 𝑦! 	= 	𝑤%𝑥! 	+ 	𝜀, as training examples. Components of 

the teacher’s weight vector, 𝑤% , are drawn i.i.d. from N(0, σ2w). 𝜀 is a Gaussian additive noise drawn 

i.i.d. from N(0, σ2ε). The signal-to-noise ratio (SNR) of the teacher’s mapping is defined as SNR 

= σ2w/σ2ε., and we set σ2w + σ 2ε =1 to generate output examples of unit variance. For the simulations 

in Figs. 2, 3, and 4, the student is a linear shallow neural network whose architecture matches the 

teacher (both with input dimension = 100 and output dimension = 1). We relaxed this requirement 

in Fig. 5 to allow mismatch between the teacher and student architectures (see Generative models 

section below). Student’s weight vector, 𝑤 , is initialized as zeros (i.e. tabula rasa), unless 

otherwise noted. The notebook is a sparse Hopfield network containing M binary units (states can 

be 0 or 1, M = 2000 to 5000 unless otherwise noted). The input and output layers of the student 

network are bidirectionally connected to the notebook with all-to-all connections.  

 

Training procedure. Training starts with the teacher network generating P input-output pairs, 

with certain predictability (SNR), as described above. For each of these P examples, the teacher 

activates the student’s input and output layers via identity mapping; at the same time, the notebook 

randomly generates a binary activity pattern, ξ μ, μ = 1,···, P, with sparsity a, such that exactly aM 

units are in the 1 state for each memory. At each of the example presentations, all of the notebook-

to-notebook recurrent weights and the student-to-notebook and notebook-to-student 

interconnection weights undergo Hebbian learning (Supplementary Material 1). This Hebbian 

learning essentially encodes ξ μ as an attractor state and associates it with the student's activation 

{xμ, yμ}, for μ = 1,···, P.  
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After all P examples are encoded through this one-shot Hebbian learning, at each of the 

following training epochs, P notebook-encoded attractors are randomly retrieved by initializing 

the notebook with random patterns and letting the network settle into an attractor state through its 

recurrent dynamics. Notebook activations are updated synchronously for 9 recurrent activation 

cycles, and we found that each memory was activated with near uniform probability. Once an 

attractor is retrieved, it activates the student’s input and output layers through notebook-to-student 

weights. Since the number of patterns is far smaller than the number of notebook units (P << M) 

in our model, the Hopfield network is well below capacity, and most of the retrieved attractors 

were perfect recalls of the original encoded indices. However, real hippocampal networks exhibit 

active forgetting that may enhance generalization or memory capacity21,100, and it would be 

interesting to consider alternate notebook models that incorporate forgetting effects101.  

Reactivation of the student’s output through the notebook, 𝑦)!, is then compared to the original 

output, 𝑦!, activated by the teacher to calculate how well the reactivation resembles the original 

experience, quantified as the mean squared error. For error corrective learning, the student uses 

the notebook reactivated 𝑥)!  and 𝑦)! . By comparing the student output that is generated by the 

reactivated 𝑦)*! = 𝑤𝑥)!  and the reactivated student output 𝑦)!  for all P examples, the student 

updates 𝑤 using gradient descent with "
#
∑ 	(𝑦)! −	𝑦)*!)$	#
!%" . The weight update follows: 

𝛥𝑤	 = 𝑙𝑒𝑎𝑟𝑛𝑟𝑎𝑡𝑒	 × 7𝑌9𝑋9& 	− 	𝑤𝑋9𝑋9&;, 

where 𝑋9 and 𝑌9  are the column wise stacked matrix form of the 100 reactivated input and output 

data points, respectively.  Training continues for 500-5000 epochs, and learnrate ranges from 

0.005 to 0.1. Ptest number (typically 1000) of additional teacher-generated examples are used to 

numerically estimate the generalization error at each time step by 	 "
#!"#!

∑ 	(𝑦'()'! −
#!"#!
!%"

		𝑤𝑥'()'!)$	. For some simulations we have applied optimal early-stopping regularization, where 

we stop the training when the generalization error reaches minimum.   

 

Retrograde amnesia curves. We draw the following connections from network performance in 

terms of mean squared error to memory and generalization scores, which is typically measured by 

behavior responses in a task designed to test memorization or generalization performances. At the 

time when no training occurs, the network error corresponds to a random performance in a task, 

which is typically set as the zero of a memory retrieval metric. As the error decreases with training, 
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the error is related to the memory retrieval score as follows: score = (E0 - Et)/E0, where E stands 

for memorization error or generalization error, and the subscript indicates the timestep during 

training. This is stating that the memory retrieval score at each time point is negatively correlated 

to the error at that time and normalized into a range where 0 indicates chance performance and 1 

indicates perfect performance. During memory retrieval, the system chooses whichever available 

module with lower memorization error.  Due to the poor generalization performance of the 

notebook, we assume the system only uses the student for predicting novel examples. To simulate 

notebook lesioning at time t, the system starts to use only the student for memory recall, in addition, 

student’s memory score will remain unchanged with time due to the lack of notebook-mediated 

systems consolidation. In Fig. 3c, both the SNR and amount of prior learning were varied to 

produce the diverse shapes of retrograde amnesia curves. For the control simulation, SNR is set to 

infinity. For the solid lines of retrograde amnesia curves, SNR values are 0.01, 0.1, 0.3, 1, and 8. 

SNR is set to 50 for the dotted lines simulating the effect of prior consolidation. Each line is a 

different simulation with the amount of prior consolidation ranging from 8 epochs to 2000 epochs 

(learnrate = 0.005). N = 100 and notebook size M = 5000.  P = 100 for the varying SNR simulations 

and P = 300 for varying prior consolidation simulations.  

 

Generative models for diverse teachers. To explore different ways unpredictability can exist in 

the environment, we generalize the teacher-student-notebook framework by relaxing the linear and 

size matched settings to allow for more complex teachers as generative models for producing 

training data. For the nonlinear teacher setting, a nonlinear activation function is applied to the 

linear transformation generate the teacher’s output. A sine function was chosen for the simulation 

in Fig. 5e. The corresponding noisy teacher’s SNR is numerically determined from the complex 

teacher’s nonlinearity detailed in Supplementary Material, Section 9. For the partially observable 

teacher, the input layer is larger than the student’s, and the student can only perceive a fixed 

subregion of the teacher input layer. The exact size of the partially observable teacher is set to 

match the calculated equivalent SNR of the complex teacher.  

 
Code availability:  

Code reproducing the results is available at https://github.com/neuroai/Go-CLS 
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1 The Teacher-Student-Notebook framework

We consider a setting in which an agent receives experience about a relationship
in the environment in the form of P pairs of activity patterns {xµ, yµ}, µ =
1, · · · , P . Given the input activity vector xµ ∈ RN of dimension N , the agent
desires to both memorize the associated scalar output activity yµ, and develop
the ability to predict outputs for new, unseen inputs. For example, xµ might
represent activity in visual cortex in response to an event like seeing a bird,
and yµ might represent activity in a higher association cortex derived from a
caregiver’s speech: “Look, a bird!” The agent wishes to memorize what was
said in this specific instance, but also learn more broadly what birds look like.

For any given event, there will be many such relationships to learn, which
collectively encode many diverse features and relations in the environment. For
instance, while viewing the bird, other neural circuits may encode the spatial
location of the event, the time of day, other objects in the scene, and so on. We
emphasize that our teacher-student-notebook model first considers just one of
these relationships, and we return to having multiple relationships in the final
sections of this document. We now describe the three principal components of
the teacher-student-notebook framework.

Teacher Network. The ground truth relationship between inputs and
output is represented by a “teacher” network, which generates an input-output

1
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pair by first drawing an input vector x in which each element is i.i.d. and
normally distributed with variance 1/N , i.e. xi ∼ N (0, 1/N), i = 1, · · · , N ,
such that the overall norm of the input is one in expectation. Next, the teacher
labels this input according to the rule

y = w̄x+ ε, (1)

where w̄ ∈ R1×N are the teacher weights, and ε is the teacher output noise.
That is, the teacher takes the form of a simple shallow linear network with
output noise. We take the teacher weights to be i.i.d. Gaussian with variance
σ2
w̄, w̄i ∼ N (0, σ2

w̄), i = 1, · · · , N , and fixed for all examples. The output noise
is i.i.d. Gaussian with variance σ2

ε on each sample.
A key parameter of this setting is the signal-to-noise ratio (SNR),

S =
σ2
w̄

σ2
ε

. (2)

This ratio measures the extent to which the teacher’s output follows a system-
atic mapping between input and output. To fix a similar scale across different
relationships, we often consider the case where the variance of the teacher’s
output is one,

〈y2〉 = σ2
w̄ + σ2

ε = 1, (3)

such that the SNR fixes the variances,

σ2
w̄ = S

1+S , (4)

σ2
ε = 1

1+S . (5)

Conceptually, the teacher provides a simple generative model of the environ-
ment. We emphasize that taking the teacher to be a simple neural network does
not reflect an assumption that the environment is a neural network. Rather, the
teacher network can be thought of as containing the optimal synaptic weights
for approximating the true generative model in the environment, which may
reflect diverse causal processes (such as the physics of the world and the neural
circuits that generate input and output activity patterns). In this sense, the
teacher is the goal or target configuration for the student network, not an ac-
tual mechanistic theory of the environment. We discuss further interpretations
of the teacher in Section 9.

Student Network. The goal of the “student” network is to learn to ap-
proximate the relationship defined by the teacher. Here we take the student
to have the same architecture as the teacher, that is, it is a shallow linear net-
work that receives an N -dimensional input x and produces a predicted output
ŷ according to

ŷ = wx, (6)

where w ∈ R1×N are the student weights. These weights are learned using
gradient descent on a loss function L(w)

τ
d

dt
w = − ∂

∂w
L(w), (7)
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here formulated in continuous time (also known as gradient flow) with time
constant τ . We take the loss function to be the mean squared error over a set
of patterns

L(w) =
1

P

P∑
µ=1

(yµ − ŷµ)2, (8)

where yµ is the scalar target output and ŷµ is the scalar network prediction in
response to input vector xµ. Here µ = 1, · · · , P indexes examples. As described
in more detail subsequently, the target patterns that drive learning can have
multiple sources–they may come directly from the teacher, or from notebook-
mediated replay of the past.

The performance of the student can be measured in two ways. First, its
predictions can be evaluated on the specific examples µ = 1, · · · , P seen during
training, which we refer to as the memory error Em (also known as the “training
error” in machine learning contexts),

Em =
1

P

P∑
µ=1

(yµ − ŷµ)2, (9)

where here we have not indicated the time dependence of ŷµ for notational
simplicity. Second, the student’s predictions can be evaluated on novel input-
output pairs drawn from the teacher, which we refer to as the generalization
error Eg (also known as the “test error” in machine learning contexts),

Eg = 〈(y − ŷ)2〉, (10)

= 〈(w̄x+ ε− wx)2〉 (11)

=
〈

((w̄ − w)x+ ε)
2
〉

(12)

= ||w̄ − w||22 + σ2
ε , (13)

where 〈·〉 denotes the average over the teacher input distribution and output
noise distribution, and we have used the fact that these distributions are inde-
pendent.

Notebook Network. Finally, the job of the notebook is to faithfully mem-
orize experienced patterns as attractors of neural network dynamics, making
possible later recall and replay. We consider a notebook of M neurons recur-
rently connected through the M ×M weight matrix J . The activity h ∈ RM in
this network evolves according to

h(u) = f(Jh(u− 1)− θ), (14)

where f is the Heaviside step function, u denotes discrete time steps of syn-
chronous activity propagation, and θ is a threshold which can be dynamically
adapted to maintain a desired sparsity of activity (as described subsequently).

The notebook represents memorized patterns as binary vectors of zeros and
ones by embedding these vectors as fixed points of the dynamics in Eq. (14).
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In particular, to store input-output pairs {xµ, yµ}, µ = 1, · · · , P , the notebook
first chooses P binary (0/1) vectors of length M , uniformly at random from the
set of vectors with sparsity a (i.e. with exactly aM nonzero entries). These
binary patterns of activity in the notebook act as distinctive neural codes (or
indexes) to be associated with each pattern.

Stacking the binary patterns into the columns of the M × P matrix ξ, and
similarly stacking the input and output patterns into the N × P and 1 × P
matrices X and Y respectively, the weights within the notebook and between
the notebook and student are given through a Hebbian scheme,

Jij =


(

(ξ−a)(ξ−a)T

Ma(1−a) − γ
aM

)
ij

for i 6= j

0 otherwise
, (15)

USx→N = (ξ − a)XT , (16)

USy→N = (ξ − a)Y T , (17)

V N→Sx =
X(ξT − a)

Ma(1− a)
, (18)

V N→Sy =
Y (ξT − a)

Ma(1− a)
. (19)

Here USx→N ∈ RM×N and USy→N ∈ RM×1 map from the student inputs x
and output y to the notebook activity h, and the matrices V N→Sx ∈ RN×M

and V N→Sy ∈ R1×M perform the reverse mapping from the notebook activity
back to the student input and output. The parameter γ in Eqn. 15 implements
global all-to-all inhibition, which causes activity that is far from stored patterns
to decay to a silent state [8]. In simulations, we take γ = 0.6, which lies in
the theoretically derived operating regime for this model [8]. For simplicity
and tractability, we take all neurons to be linear, save those in the notebook
(because attractor networks require nonlinearity to avoid having an abundance
of stable mixture states). These pathways allow diverse interactions between
notebook and student, and we describe a number of specific interaction patterns
subsequently.

The mean subtraction and normalization in these updates have been cho-
sen to aid performance, as derived subsequently in Section 5.1 for connections
from notebook neurons. In essence, the notebook generates distinct, pattern-
separated activity patterns, stabilizes these as attractors of its recurrent dynam-
ics, and links these bidirectionally to the student’s input and output neurons to
facilitate later reactivation and replay.

2 Learning setting

The Teacher-Student-Notebook framework can allow for diverse learning set-
tings in which examples from the teacher arrive at different times and in different
quantities. Here we usually characterize memorization and generalization per-
formance in a simple setting: the single-batch, high-dimensional regime. That

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.10.13.463791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.463791


is, we consider a scenario where an organism receives P training experiences
up front in a short time window, and memory and generalization performance
are evaluated subsequently over longer periods of time. For instance, a human
subject might learn a task in a single hour long session, but then be tested after
several weeks’ delay; or a rodent might perform several trials in a water maze
on one day, and be tested on the next. In our framework, these P experiences
are drawn i.i.d. from the teacher and constitute one single batch for learning
and consolidation. For convenience, we can collect this batch of samples into
the N ×P matrix X with columns xµ, µ = 1, · · · , P , and the 1×P row vector
Y with elements Yµ = yµ, µ = 1, · · · , P .

Given abundant training experience (P >> N), many different learning
schemes can converge to similar performance. However, real world learning is
often severely data limited. Animals may receive only one or two foot shocks.
A human subject may need to learn a new visual discrimination (possibly de-
pendent on millions of pixels) from just a few blocks of training trials. Real
world settings therefore place a premium on learning from limited experience.
Moreover, neuronal networks in the brain are typically very large relative to the
amount of training experience. Even a simple visual discrimination may engage
a network of millions or billions of neurons interconnected by billions or trillions
of adjustable synapses. To address this large network, limited data setting, we
analyze the high-dimensional regime, in which the size of the student network
and the number of training samples both tend to infinity (N → ∞, P → ∞),
but their ratio α = P/N remains finite. The “load” parameter α is a key pa-
rameter of our setting, and it measures the amount of experience relative to the
number of tunable synapses in the student network. For α < 1, the network
has more tunable parameters than training experiences, allowing analysis of
highly overparametrized learning settings. For α >> 1, the network has many
more training experience than tunable parameters, reflecting the more standard
classical regime of statistics.

While in this paper we emphasize this single-batch, high-dimensional learn-
ing setting, future work in the teacher-student-notebook framework could in-
vestigate more complex scenarios where examples continue to arrive over time.

3 Interaction policies & performance

The single-batch learning setting still allows diverse possible interaction poli-
cies between the modules in the teacher-student-notebook framework. These
interaction policies specify which modules undergo learning, from what activity
patterns (e.g. from the teacher, or from replay from the student), and which
modules are used to answer queries for new experiences. We consider four
interaction policies, meant to typify common approaches to learning and con-
solidation.

Online Student. Only the student is trained, without any replay. Each ex-
ample drives one update of error-corrective learning and is never revisited.
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This strategy provides a reference point for performance of a system based
on gradient descent learning, without replay.

Online Notebook. Only the notebook is used. Each example is stored in the
notebook with Hebbian updates, and predictions for novel inputs are gen-
erated using the notebook only. This strategy provides a reference point
for performance of a system based on Hebbian memorization, without
replay-guided learning.

Memory-optimized Replay. This strategy initially stores all experiences in
the notebook and trains the student using notebook-driven reactivations
until the student has fully memorized all examples in a manner similar to
standard systems consolidation theory.

Generalization-optimized Replay. This novel strategy, proposed in this work,
initially stores all experiences in the notebook but only trains the student
using notebook-driven reactivations so long as generalization performance
improves.

The next four sections of the supplement sequentially characterize the memo-
rization and generalization performance of each of these interaction policies.

4 Online Student Policy

In the online student policy, each example xµ ∈ RN , µ = 1, · · · , P, in the batch
is visited in order and a single step of error corrective gradient descent learning is
applied with a (possibly example-dependent) learning rate ηµ. In this section we
characterize the average generalization error dynamics under this scheme; and
to ensure a robust normative comparison to other policies, we derive the globally
optimal learning rate function that maximizes generalization performance after
all updates.

4.1 Generalization dynamics with time-dependent learn-
ing rate

Upon receiving each example µ = 1, · · · , P , the student weights are updated
according to

wµ+1 = wµ + ηµeµxµ
T

, (20)

where wµ+1 is the weight vector resulting from the µth learning step, xµ is the
µth input example, ηµ is the time-dependent learning rate, and eµ = yµ− ŷµ is
the error between the network’s output and the target output for this example.
We assume that the initial weights w1 = 0. Using the teacher model, yµ =
w̄xµ + εµ, we have

wµ+1 = wµ + ηµ (w̄xµ + εµ − wµxµ)xµ
T

= wµ + ηµ (w̄ − wµ)xµxµ
T

+ ηµεµxµ
T

. (21)
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In contrast to Eqn. (13), which expresses the generalization error Eg for a specific
student and teacher, here we ask what the expected generalization error is for
a randomly drawn teacher by averaging over the teacher weight distribution as
well. That is, we track the expected generalization error Eg = 〈Eg〉 where the
average is over the teacher weight distribution. In the high-dimensional regime,
the generalization error is self-averaging, such that any specific realization will
closely track this expected generalization error, as verified by the close match
between single simulations and the average dynamics we derive in the following.

The expected generalization error before example µ is

Eg[µ] = 〈(y − ŷ)2〉
= 〈((w̄ − wµ)x+ εµ)

2〉
= Tr〈(w̄ − wµ)xxT (w̄ − wµ)

T 〉+ 〈εµ(w̄ − wµ)x〉+ 〈(εµ)2〉
= Tr〈(w̄ − wµ)

T
(w̄ − wµ)xxT 〉+ σ2

e

=
1

N
〈‖w̄ − wµ‖2〉+ σ2

e

= 〈((w̄)i − (wµ)i)
2〉+ σ2

e (22)

where the index i is arbitrary and is used to replace the average of a vector norm
with a simpler average over a single component. Next, note that after example
µ, the expected generalization error becomes

Eg[µ+ 1] =
1

N
〈
∥∥w̄ − wµ+1

∥∥2〉+ σ2
e . (23)

Substituting Eqn. 21, we have

Eg[µ+ 1] =
1

N

〈∥∥∥w̄ − wµ − ηµ(w̄ − wµ)xµxµ
T

− ηµεµxµ
T
∥∥∥2
〉

+ σ2
e ,

=
1

N
〈Tr
[ (

(w̄ − wµ)(1− ηµxµxµ
T

)− ηµεµxµ
T
)

×
(

(w̄ − wµ)(1− ηµxµxµ
T

)− ηµεµxµ
T
)T ]
〉+ σ2

e

=
1

N
〈Tr (w̄ − wµ)(1− ηµxµxµ

T

)2(w̄ − wµ)T 〉

− 2

N
〈Tr ηεµxµ

T

(1− ηµxµxµ
T

)(w̄ − wµ)T 〉 (24)

+
1

N
〈Tr (ηµ)2(εµ)2xµ

T

xµ〉+ σ2
e . (25)

Because 〈εµ〉 = 0 and εµ is independent of all other terms, the term in Eqn. 24 is

zero. Using the fact that xµ is normal with variance 1
N I, we have Tr xµ

T

xµ = 1
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and the last term is
(ηµ)2σ2

e

N . Hence

Eg[µ+ 1] =
1

N
〈Tr (w̄ − wµ)(1− ηµxµxµ

T

)2(w̄ − wµ)T 〉

+

(
1 +

(ηµ)2

N

)
σ2
e

=
1

N
〈‖w̄ − wµ‖〉 − 2

N
〈Tr (w̄ − wµ)ηµxµxµ

T

(w̄ − wµ)T 〉

+
1

N
〈Tr (w̄ − wµ)(ηµxµxµ

T

)2(w̄ − wµ)T 〉

+

(
1 +

(ηµ)2

N

)
σ2
e (26)
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Using the fact that 〈xµxµT 〉 = 1
N I and 〈(xµxµT )2〉 = 2

N2 I + 1
N I we have,

Eg[µ+ 1] =

[
1− 2ηµ

N
+ (ηµ)2 2 +N

N2

]
1

N
〈‖w̄ − wµ‖〉

+

(
1 +

(ηµ)2

N

)
σ2
e

=

[
1− 2ηµ

N
+ (ηµ)2 2 +N

N2

]
Eg[µ]

−
[
1− 2ηµ

N
+ (ηµ)2 2 +N

N2

]
σ2
e

+

(
1 +

(ηµ)2

N

)
σ2
e

=

[
1− 2

ηµ

N
+

(
ηµ

N

)2

(2 +N)

]
Eg[µ]

+

[
1 +

(ηµ)2

N
− 1 +

2ηµ

N
− (ηµ)2 2 +N

N2

]
σ2
e

=

[
1− 2

ηµ

N
+

(
ηµ

N

)2

(2 +N)

]
Eg[µ]

+

[
(ηµ)2N + 2ηµN − 2(ηµ)2 − (ηµ)2N

N2

]
σ2
e

=

[
1− 2

ηµ

N
+

(
ηµ

N

)2

(2 +N)

]
Eg[µ]

+

[
2
ηµN − (ηµ)2

N2

]
σ2
e

=

[
1− 2

ηµ

N
+

(
ηµ

N

)2

(2 +N)

]
Eg[µ]

+

[
2
ηµ(N − ηµ)

N2

]
σ2
e

=

[
1− 2

ηµ

N
+

(
ηµ

N

)2

(2 +N)

]
Eg[µ]

+2

[
ηµ

N

(
1− ηµ

N

)]
σ2
e (27)

Now passing to the limit N >> 1, we have

Eg[µ+ 1] =

[
1− ηµ(2− ηµ)

N

]
Eg[µ] + 2

ηµ

N
σ2
e . (28)

We then enter the high dimensional regime where α = P/N and consider
the new continuous variables Eg(α) ≈ Eg[αN ] and η(α) ≈ ηαN . We wish to
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calculate an equivalent differential equation,

dEg(α)

dα
=
Eg(α+ dα)− Eg(α)

dα
(29)

where we take dα = 1/N which is infinitesimal in the limit N →∞. Thus

Eg(α+ dα)− Eg(α)

dα
= N(Eg[αN + 1]− Eg[αN ])

= −ηαN (2− ηαN )Eg[αN ] + 2ηαNσ2
e . (30)

We thus have the ordinary linear differential equation

d

dα
Eg(α) = −η(α)(2− η(α))Eg(α) + 2η(α)σ2

e . (31)

The solution can be found through the method of integrating factors. Define

H(α) =

∫ α

0

η(α′)(2− η(α′))dα′. (32)

Then

Eg(α) = Eg(0)e−H(α) + 2σ2
ee
−H(α)

∫ α

0

η(τ)eH(τ)dτ. (33)

4.2 Optimal online learning rate

Equation (33) yields the expected generalization error for arbitrary learning
rate functions. To ensure a fair normative comparison to other methods, we
now compute the optimal learning rate as a function of example, η∗(µ), which
minimizes the expected generalization error on example T = αN . Let

f(x, η) =

[
1− η(2− η)

N

]
x+ 2

η

N
σ2
e (34)

be the discrete time dynamics update from Eqn. (28), that is, the generalization
error on example µ + 1 if the generalization error on example µ is x and the
learning rate used on example µ is η.

At the penultimate example T − 1 before the deadline, because there is only
one update left, the best learning rate is given by greedily optimizing f ,

η∗(T − 1) = argminηf(Eg(T − 1), η). (35)

We directly perform the minimization by differentiating with respect to η and
setting this derivative to zero,

∂

∂η
f(x, η) = ηx/N − (2− η)x/N + 2σ2

e/N

0 = 2η∗x− 2x+ 2σ2
e

η∗ = 1− σ2
e

x
, (36)
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which yields the optimal η∗(T − 1) = 1− σ2
e

Eg(T−1) .

The final generalization error as a function of the penultimate generalization
error x is

g(x) ≡ min
η
f(x, η)

=

1−

(
1− σ2

e

x

)
(1 +

σ2
e

x )

N

x+ 2
1− σ2

e

x

N
σ2
e

=

1−

(
1− σ4

e

x2

)
N

x+ 2
1− σ2

e

x

N
σ2
e

= (1− 1/N)x− σ4
e

Nx
+ 2

σ2
e

N
. (37)

Differentiating with respect to x, we have

∂

∂x
g(x) = 1− 1/N +

σ4
e

Nx2
, (38)

which is strictly positive for N ≥ 1, x > 0, indicating that the function g(x) is
strictly increasing.

Let vµ(x) denote the optimal final generalization error on example T , start-
ing from an error of x at step µ and choosing the optimal learning rate thereafter.
We have shown that vT−1(x) = g(x), and it is strictly increasing. Now for the
inductive step, assume that vµ+1(x) is strictly increasing. Then

η∗(µ) = argminηvµ+1(f(x, η))

= argminηf(x, η). (39)

Therefore the optimal learning rate is again selected by greedily minimizing
f(x, n). Finally, we note that vµ(x) = vµ+1(g(x)) is the composition of strictly
increasing functions, and therefore strictly increasing. By induction this yields

the optimal learning rate function for all examples η∗(µ) = 1− σ2
e

Eg(µ) .

In the high-dimensional regime, the optimal learning rate is thus

η∗(α) = 1− σ2
e

Eg(α)
. (40)

Inserting this optimal learning rate function back into Eqn. (31) yields the
following optimal generalization error dynamics,

d

dα
Eg(α) = 2σ2

e − Eg(α)− σ4
e

Eg(α)
. (41)

5 Online Notebook Policy

In the online notebook policy, each example is stored in the notebook according
to the Hebbian scheme in Eqns. (15)-(19). The notebook is then used to make
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predictions even for novel inputs, by allowing the notebook to converge to an
attractor and reading off the predicted output.

In particular, an input x arriving at the student from the teacher can be
used to seed recurrent pattern completion in the notebook, by letting h(0) =
f(USx→Nx) and then running the notebook dynamics. In the simulations in
the main text, rather than run the recurrent dynamics to convergence, we use
the pattern obtained after 9 updates. At each update, the neurons are ranked
by net input and the threshold θ is chosen so that the top aM are active (in the
case of ties, slightly more neurons can be active). After the network dynamics
have settled on some pattern ξ̃, a predicted output can be generated (using just
the notebook) as ỹ = V N→Sy ξ̃.

This section shows that, in the high-dimensional setting considered here,
the notebook attains low memorization error (i.e. error on already-experienced
examples) but is incapable of generalization.

5.1 Hebbian learning rule scale factor and offset

The memorization ability of recurrent attractor networks, as well as the perfor-
mance of Hebbian plasticity rules in mapping from notebook activity patterns
to student activity patterns, is known to depend on the statistics of the pat-
terns and the specific form of the learning rule used to configure the weights
[10, 4, 5, 16]. We begin by justifying the scaling and subtractive offsets in
Eqns. (15)-(19), as an approximate implementation of the pseudo-inverse learn-
ing rule given our sparse pattern statistics.

5.1.1 Recurrent weights

The job of the notebook is to faithfully memorize example patterns as attrac-
tors of neural network dynamics. The pseudo-inverse learning rule is a flexible
mechanism to memorize these patterns, wherein the M×M matrix of recurrent
notebook connections would be

J = ξξ+ = ξ(ξT ξ)−1ξT , (42)

where ξ+ is the pseudo-inverse of ξ, and we assumed that P ≤ M . Suppose
that the neural network dynamics have the form h(u) = f(Jh(u − 1)), where
h is the pattern of notebook activity. Assuming that f(0) = 0 and f(1) = 1
(e.g. f may be linear, threshold-linear, or binary), then these weights would
successfully memorize all P patterns as steady-states of the network dynamics.
In particular, note that

f(Jξ) = f(ξ(ξT ξ)−1ξT ξ) = f(ξ) = ξ, (43)

so that the network dynamics map each memorized pattern back onto itself.
It is instructive to expand the pseudo-inverse weights in terms of the stored
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patterns,

Jij =
P∑
µ=1

P∑
ν=1

ξiµ(ξT ξ)−1
µν ξjν . (44)

This reveals a practical problem with the pseudo-inverse learning rule, as the
storage prescription for each pattern depends on the other stored patterns
through the inverse pattern correlation, (ξT ξ)−1

µν .
The Hopfield model can be viewed as a solution to this problem that assumes

simple random statistics for ξ in order to simplify the necessary structure of
the learning rule. In particular, suppose that each memory randomly assigns
aM neurons to the 1-state and (1 − a)M neurons to the 0-state. Thus, a
quantifies the fraction of 1-states in the memorized patterns, and we refer to a
as the sparseness parameter. We also assume that the memorized patterns are
statistically independent from each other. These statistics imply that

〈(ξT ξ)µν〉 =
M∑
i=1

〈ξiµξiν〉 =
M∑
i=1

(aδµν + a2(1− δµν))

= Ma2 +Ma(1− a)δµν . (45)

In matrix notation, this implies that

〈ξT ξ〉 = Ma(1− a)IP +Ma21P 1TP , (46)

where IP is the P × P identity matrix, and 1P is the P -vector of ones. This
form allows us to use the Sherwood-Morrison formula,(

A+ uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
, (47)

with A = Ma(1− a)IP , u = Ma21P , and v = 1P to obtain

〈ξT ξ〉−1 =
1

Ma(1− a)
IP −

Ma2/(Ma(1− a))21P 1TP
1 +MPa2/(Ma(1− a))

=
1

Ma(1− a)
IP −

1/(M(1− a)2)

1 + Pa/(1− a)
1P 1TP

=
1

Ma(1− a)
IP −

1

M(1− a)2 +MPa(1− a)
1P 1TP

≈ 1

Ma(1− a)
IP −

1

M2βa(1− a)
1P 1TP , (48)

where the final approximation used P = βM , β = O(1), and M � 1. The Hop-
field model approximates the pseudo-inverse learning rule by replacing (ξT ξ)−1

by 〈ξT ξ〉−1, To see what this means, we need to do a bit more algebra

J ≈ ξ〈ξT ξ〉−1ξT =
ξξT

Ma(1− a)
− (ξ1P )(ξ1P )T

M2βa(1− a)
. (49)
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The Hopfield model also approximates ξ1P by 〈ξ1P 〉 = Pa1M , where 1M is the
M -vector of ones, such that

J ≈ ξξT

Ma(1− a)
− a2P 21M1TM
M2βa(1− a)

=
1

Ma(1− a)
ξξT − βa

1− a
1M1TM . (50)

To compare this to the Hopfield model, we first consider a general Hebbian
weight matrix of the form,

Jij =
P∑
µ=1

B(ξiµ − b)(ξjµ − b), (51)

where B and b are constants that scale and center the learning rule. Again using
the approximation that ξ1P ≈ 〈ξ1P 〉 = Pa1M , we find

J = BξξT −Bb1M1TP ξ
T −Bbξ1P 1TM +Bb21M1TP 1P 1TM

≈ BξξT + (−2abBP + b2BP )1M1TM = BξξT + bBP (−2a+ b)1M1TM . (52)

Comparing Eqs. (50) and (52), we see that the two correspond when

B =
1

Ma(1− a)
(53)

and

− βa

1− a
= bBP (−2a+ b) =

bP (b− 2a)

Ma(1− a)
=
bβ(b− 2a)

a(1− a)

=⇒ 0 = b2 − 2ba+ a2 = (b− a)2 =⇒ b = a. (54)

Therefore, the pseudo-inverse rule can be approximated by the Hebbian rule,

Jij =
P∑
µ=1

(ξiµ − a)(ξjµ − a)

Ma(1− a)
, (55)

which is the weight matrix of the Hopfield model, and is the first term in
Eqn. (15) of the notebook learning rules.

5.1.2 Notebook-to-Student weights

Similar to the Hopfield storage prescription used to store binary indices as fixed
points of the recurrent notebook dynamics, here we assume Hebbian connectiv-
ity between the notebook and student. In particular, we can form the (N+1)×P
matrix Z by vertically stacking the matrices X and Y , such that Z represents
the combined student input-output activity to be stored. We also define the
(N + 1)×M matrix V by vertically stacking the matrices V N→Sx and V N→Sy ,
which represents the mapping from notebook activity to student activity. In this
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setting the relevant pseudo-inverse learning rule for the weights from notebook
to student neurons is

V = Zξ+ = Z(ξT ξ)−1ξT , (56)

and N is the number of student input neurons. The same approximations used
in the previous section lead to

V ≈ ZξT

Ma(1− a)
− (Z1P )(ξ1P )T

M2βa(1− a)
. (57)

Replacing ξ1P by 〈ξ1P 〉 = Pa1M , we find

V ≈ ZξT

Ma(1− a)
− Za1P 1TM
Ma(1− a)

=
Z(ξT − a1P 1TM )

Ma(1− a)
, (58)

or

Vij ≈
P∑
µ=1

Ziµ(ξjµ − a)

Ma(1− a)
. (59)

This is the Hebbian learning rule that we use to connect the notebook to the
student for purposes of pattern reactivation (Eqns. (18)-(19)).

5.2 Notebook memory error

With these Hebbian learning prescriptions in hand, we now characterize their
performance. In this section, we consider the statistics by which the notebook
reactivates stored patterns of student activity, in order to understand its typical
memory error. Previous studies of the Hopfield model [4, 5, 16] imply that large
notebooks can accurately recall each random index if the number of stored
patterns does not exceed the capacity of the network Pc = βcM . Here we
assume that M � 1 and P < Pc, such that erroneous index retrieval by the
notebook is rare. Once a notebook memory index is accurately retrieved by
the notebook’s dynamics, the notebook can generate a predicted output using
the Hebbian weights from notebook to student output ( V N→Sy ). The memory
error of the notebook can thus be approximated as the typical error of this
prediction.

As in the previous section, let Z be a (N+1)×P matrix that groups together
all input and output neuron responses for all memorized patterns. Then the
notebook reactivated student pattern is

Ẑiµ =

M∑
j=1

Vijξjµ =

M∑
j=1

P∑
ν=1

1

Ma(1− a)
Ziν(ξjν − a)ξjµ. (60)

We first consider how well the notebook reactivates the student on average. In
particular, averaging this expression over all possible notebook indices gives

〈Ẑiµ〉 = 1
Ma(1−a)

∑M
j=1

∑P
ν=1 Ziν〈(ξjν − a)ξjµ〉

= 1
Ma(1−a)

∑M
j=1

∑P
ν=1 Ziνa(1− a)δµν = Ziµ. (61)
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Therefore, the Hebbian learning rule is unbiased, and it on average reactivates
all student neuron responses accurately.

However, the randomness of notebook indices does cause notebook-driven
student reactivations to fluctuate away from these average values. To determine
the magnitude of notebook memory error quantitatively, first note that the
training error of the notebook is

Em =
1

P

P∑
µ=1

(Yµ − Ŷµ)2 =
1

P

P∑
µ=1

(Y 2
µ − 2YµŶµ + Ŷ 2

µ ). (62)

Averaging over possible notebook indices, we find

Em = 〈Em〉 =
1

P

P∑
µ=1

(Y 2
µ − 2Y 2

µ + 〈Ŷ 2
µ 〉) =

1

P

P∑
µ=1

Var(Ŷµ). (63)

This variance term can be written

Var(Ŷµ) =

〈
P∑
ν=1

M∑
j=1

Yν(ξjν − a)

Ma(1− a)
ξjµ

P∑
ρ=1

M∑
k=1

Yρ(ξkρ − a)

Ma(1− a)
ξkµ

〉
− Y 2

µ . (64)

This expression shows that the exact value of the notebook training error de-
pends on the specific realizations of the student outputs. However, for practical
purposes, it will be good enough to average over these possibilities. Letting 〈〈·〉〉
denote the average over student patterns, and noting that 〈〈YµYν〉〉 = δµν , we
find

〈〈Var(Ŷµ)〉〉 =
1

(Ma(1− a))
2

P∑
ν=1

M∑
j=1

M∑
k=1

〈(ξjν − a)ξjµ(ξkν − a)ξkµ〉 − 1

=
1

(Ma(1− a))
2

M∑
j=1

M∑
k=1

(
〈(ξjµ − a)ξjµ(ξkµ − a)ξkµ〉

+
∑
ν 6=µ

〈(ξjν − a)ξjµ(ξkν − a)ξkµ〉
)
− 1. (65)

It is straightforward to evaluate the first expectation as

〈(ξjµ − a)ξjµ(ξkµ − a)ξkµ〉 = δjk(1− a)2P (ξjµ = 1)

+(1− δjk)(1− a)2P (ξjµ = 1)P (ξkµ = 1|ξjµ = 1)

= δjk(1− a)2a+ (1− δjk)(1− a)2a
aM − 1

M − 1

= δjka(1− a)2 + (1− δjk)
(
Ma2(1− a)2/(M − 1)− a(1− a)2/(M − 1)

)
. (66)

Because µ 6= ν in the second expectation, it straightforwardly separates into the
product of two terms:

〈(ξjν − a)ξjµ(ξkν − a)ξkµ〉 = 〈(ξjν − a)(ξkν − a)〉 〈ξjµξkµ〉 . (67)

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.10.13.463791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.463791


First,

〈(ξjν − a)(ξkν − a)〉 = δjka(1− a) + (1− δjk)
(

(1− a)2P (ξjν = 1)P (ξkν = 1|ξjν = 1)

−a(1− a)P (ξjν = 1)P (ξkν = 0|ξjν = 1)− a(1− a)P (ξjν = 0)P (ξkν = 1|ξjν = 0)

+a2P (ξjν = 0)P (ξkν = 1|ξjν = 0)
)

= δjka(1− a) + (1− δjk)
(

(1− a)2a
aM − 1

M − 1
− a(1− a)a

(1− a)M

M − 1

−a(1− a)(1− a)
aM

M − 1
+ a2(1− a)

(1− a)M − 1

M − 1

)
= δjka(1− a) + (1− δjk)

(
− a(1− a)2 1

M − 1
− a2(1− a)

1

M − 1

)
= δjka(1− a)− (1− δjk)

a(1− a)

M − 1
. (68)

Second,

〈ξjµξkµ〉 = δjka+ (1− δjk)P (ξjµ = 1)P (ξkµ = 1|ξjµ = 1)

= δjka+ (1− δjk)a
aM − 1

M − 1
. (69)

Combining these two terms, we find,

〈(ξjν − a)ξjµ(ξkν − a)ξkµ〉 = δjka
2(1− a)− (1− δjk)a2(1− a)

aM − 1

(M − 1)2
(70)

for µ 6= ν.
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Plugging these expressions back into the expression for 〈〈Var(Ŷµ)〉〉, we find

〈〈Var(Ŷµ)〉〉 =
1

(Ma(1− a))
2

M∑
j=1

M∑
k=1

(
δjka(1− a)2

+(1− δjk)
(
Ma2(1− a)2/(M − 1)− a(1− a)2/(M − 1)

)
+
∑
ν 6=µ

(
δjka

2(1− a)− (1− δjk)a2(1− a)
aM − 1

(M − 1)2

))
− 1

=
1

(Ma(1− a))
2

(
Ma(1− a)2

+M(M − 1)
(
Ma2(1− a)2/(M − 1)− a(1− a)2/(M − 1)

)
+(P − 1)Ma2(1− a)− (P − 1)a2(1− a)M(aM − 1)/(M − 1)

)
− 1

=
Ma(1− a)2 +M2a2(1− a)2 −Ma(1− a)2 −M2a2(1− a)2

M2a2(1− a)2

+(P − 1)
Ma2(1− a)− a3(1− a)M2/(M − 1) + a2(1− a)M/(M − 1)

M2a2(1− a)2

= (P − 1)
M − 1− aM + 1

M(1− a)(M − 1)

=
P − 1

M − 1
(71)

We therefore find that the training error of the notebook is simply

〈〈〈Em〉〉〉 =
P − 1

M − 1
, (72)

where the triple average, 〈〈〈·〉〉〉, denotes an average over the notebook patterns
followed by the average over teacher patterns. Remarkably, note that this ex-
pression is independent of the notebook’s sparseness. If P = βM and M � 1,
this implies that

〈〈〈Em〉〉〉 ≈ β. (73)

We thus see that the expected memorization error of the notebook scales with
the number of memories stored in the system and can become significant when
the loading is large. Note that this expression only makes sense if β < βc,
because we’ve assumed faithful index reactivation within the notebook itself.

5.3 Notebook generalization error

Next we examine the expected error when the notebook is used to predict the
teacher output on a novel example. Because we operate the Hopfield network
below capacity, it successfully embeds all patterns as fixed points, and does so
with relatively large basins of attraction. We therefore model the notebook as
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a nearest neighbor algorithm, that operates by returning the output associated
to the nearest stored pattern to any given input.

Let xµ, 1, · · · , P be the N -dimensional column vectors of stored inputs, and
yµ, 1, · · · , P the associated outputs. For a novel input x ∈ RN , we find the
nearest neighbor as

µ∗ = argminµ ‖x− xµ‖
2
. (74)

With the nearest neighbor identified, the prediction is ŷ = yµ
∗

= w̄xµ
∗

+εµ
∗
.

The expected generalization error is thus

Eg = 〈(y − ŷ)2〉

=

〈(
w̄
(
x− xµ

∗
)

+ ε− εµ
∗
)2
〉

= Tr

〈
w̄
(
x− xµ

∗
)(

x− xµ
∗
)T

w̄T
〉

+ 〈(ε− εµ
∗
)w̄(x− xµ

∗
)〉

+〈(ε− εµ
∗
)2〉

= σ2
w̄Tr

〈(
x− xµ

∗
)T (

x− xµ
∗
)〉

+ 2σ2
e

= σ2
w̄

〈∥∥∥x− xµ∗
∥∥∥2

2

〉
+ 2σ2

e . (75)

We note that x−xµ ∼ N (0, 2
N I) for all µ, and so zµ =

√
N
2 (x−xµ) ∼ N (0, I).

By the Gaussian Annulus Theorem (see e.g. Thm 2.9, pg 15 of [7]),

P
(∣∣∣‖zµ‖22 −N ∣∣∣ ≥ β√N) ≤ 3e−cβ

2

,

P

(∣∣∣∣N2 ‖x− xµ‖22 −N
∣∣∣∣ ≥ β√N) ≤ 3e−cβ

2

,

P
(∣∣∣‖x− xµ‖22 − 2

∣∣∣ ≥ 2β/
√
N
)
≤ 3e−cβ

2

, (76)

where c > 0 is a constant independent ofN . By the union bound, the probability
that one or more patterns among the µ = 1, · · · , αN fails to concentrate is no
more than

P

(
αN⋃
µ=1

{∣∣∣‖x− xµ‖22 − 2
∣∣∣ ≥ 2β/

√
N
})
≤ 3αNe−cβ

2

. (77)

Therefore the minimum over all patterns will fail to concentrate with probability
no more than

P

(∣∣∣∣∥∥∥x− xµ∗
∥∥∥2

2
− 2

∣∣∣∣ ≥ 2β/
√
N

)
≤ 3αNe−cβ

2

. (78)
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Figure 1: Numerical simulation of the generalization error of the nearest neigh-
bor algorithm, for α = 1 and SNR S = ∞ (red) and S = 0 (blue). As input
dimension N approaches infinity, generalization error in both cases approaches
2, consistent with our analytical derivation.

Choosing β = N1/4 we have,

P

(∣∣∣∣∥∥∥x− xµ∗
∥∥∥2

2
− 2

∣∣∣∣ ≥ 2N−1/4

)
≤ 3αNe−c

√
N , (79)

such that as N → ∞, the minimum concentrates near 2 with probability one.
Substituting back into the expression for the expected generalization error, in
the high dimensional limit with high probability we have

Eg = 2σ2
w̄ + 2σ2

e . (80)

For our standard scaling where σ2
w̄ + σ2

e = 1, the error is therefore 2 regard-
less of the SNR. We note that this result applies in the high-dimensional limit
where N,P → ∞ and their ratio is α = P/N . In finite size simulations, the
generalization error can modestly differ, as shown in Fig. 1.

In essence, in the high dimensional regime, the nearest neighbor is typically
very far away from the new sample, such that generalization fails completely.
In fact, it is so poor that always predicting zero would be better (attaining
generalization error of 1 rather than 2 for our setting). This finding strongly
motivates the need for a trained student, but we note that notebook-mediated
generalization could be better in different settings where, for instance, input
examples arise from a low number of clusters [9].

6 Memorization-optimized Replay Policy

In the memorization-optimized replay policy, each example is stored in the note-
book according to the Hebbian scheme in Eqns. (15)-(19). These patterns can
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then be reactivated offline to drive learning. In the simulations reported in the
main text, offline notebook reactivations undergo a two-step retrieval process:

1. A random binary pattern is used to seed the reactivation event. Starting at
this random state, the notebook updates through the recurrent dynamics
9 times synchronously to retrieve a stored pattern. On each update, the
threshold θ is chosen to enforce a sparsity of a (up to ties, which can cause
slightly more neurons to be active). Without this adaptive threshold, a
silent attractor dominates retrieval.

2. The notebook then uses the retrieved pattern from (1) to seed a second
round of pattern completion using a fixed threshold θ = −0.15, which
in combination with the global inhibition parameter γ = 0.6 provides
good retrieval alongside the possibility of retrieving a silent state (see [8]
for detailed derivation of performance as a function of these parameters).
This two step process enables retrieval of patterns that are not forced to
have a fixed sparseness, and a “silent state” attractor can be retrieved
when the seeding pattern lies far away from any of the encoded patterns.

This models a simple form of replay. Supposing that the notebook pattern at
convergence is ξ̃, the student input and target output are then reconstructed
based on the Hebbian connectivity as x̃ = V N→Sx ξ̃ and ỹ = V N→Sy ξ̃. This
provides an {x̃, ỹ} sample from which the student can learn using gradient de-
scent.

The policy is memory-optimized, in the sense that this replay continues in-
definitely, such that all samples stored in the notebook are eventually learned
by the student. This section characterizes the memory and generalization per-
formance of the student resulting from this replay process. If reactivations
perfectly reconstructed the stored examples, this replay strategy would be sim-
ilar to ‘batch’ learning strategies in machine learning, in which the same stored
dataset is repeatedly revisited to update network weights. However, errors in
reactivation could in principle degrade the learning process. In Section 6.1 we
show that although reactivations introduce errors, remarkably, these errors are
correlated in such a way that learning still proceeds like batch learning from
perfectly recalled examples up to a rescaling of the learning rate. Using this
fact, in Section 6.2 we provide the expected memory and generalization errors,
based on results known in prior work [11, 3].

In this policy, both the notebook and student learn potentially beneficial
information, and in principle either could be used to answer a specific query for
a point x. We take the normative assumption that the best system is selected
to make the prediction. Often, this means that the output for a previously
stored input will be predicted by the notebook, while that for a novel input will
be predicted by the student. However, in Section 6.1 we show that there are
conditions under which the student memory error in fact surpasses the notebook,
and the student would be used to make predictions for previously stored inputs.
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6.1 Accurate learning despite errors in reactivation

How do reactivation errors influence learning dynamics in the student? One hint
that learning from reactivations can be effective comes from Fig. 2 of the main
text. Given that the notebook is specifically designed to rapidly store memories,
it often has a lower memory error than the student. Surprisingly, however, Figs.
2a-h of the main paper show that the student’s training error can fall below that
of the notebook. How could it be that the student learns to accurately produce a
memory that was imperfectly memorized by the notebook? Our key theoretical
observation is that although the notebook imperfectly activates the output of
the student, it also imperfectly activates the inputs of the student. These errors
are correlated between input and output neurons in a way that does not harm
student learning. We demonstrate this fact in this section.

Reactivations have subtly different statistics to the original samples. In par-
ticular, when the notebook settles on a pattern ξµ (one column of the matrix ξ)
that was associated with an original sample xµ, yµ from the teacher, this results
in reactivated student activity input and output patterns x̃µ = V N→Sxξµ and
ỹµ = V N→Syξµ, respectively. Horizontally concatenating the input and output
reactivations into the matrices X̃ ∈ RN×P and Ỹ ∈ R1×P , this reactivation
leads the weights in the student network to change (in the reactivated gradient
direction) by the amount,

∆̃µwi = −λ ∂

∂wi

∑
j

wjX̃jµ − Ỹµ

2

= −2λ

∑
j

wjX̃jµ − Ỹµ

 X̃iµ

= −2λ

∑
j

wjX̃iµX̃jµ − X̃iµỸµ

 . (81)

Therefore, the change expected from gradient descent learning with a random
notebook index is

〈∆̃µwi〉 = −2λ

∑
j

wj〈X̃iµX̃jµ〉 − 〈X̃iµỸµ〉

 . (82)

To evaluate these expectations, we form the matrix Z̃ by vertically stacking X̃
and Ỹ , then note that

〈Z̃iµZ̃jµ〉 =
1

M2a2(1− a)2

P∑
ν=1

M∑
k=1

P∑
ρ=1

M∑
l=1

ZiνZjρ〈(ξkν − a)ξkµ(ξlρ − a)ξlµ〉. (83)

When µ 6= ν 6= ρ, the statistical independence of memories allows us to factor
out 〈ξkν − a〉, which is zero and causes the whole term to vanish. Similarly, we
get no contributions if µ 6= ρ 6= ν. This implies that both the ν and ρ indices
must either pair with each other or with µ, and the only terms that contribute
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are thus ν = ρ = µ and ν = ρ 6= µ.

〈Z̃iµZ̃jµ〉 =
1

M2a2(1− a)2

M∑
k=1

M∑
l=1

(
ZiµZjµ〈(ξkµ − a)ξkµ(ξlµ − a)ξlµ〉

+
∑
ν 6=µ

ZiνZjν〈(ξkν − a)ξkµ(ξlν − a)ξlµ〉
)
. (84)

Both of these expectations have been calculated en route to calculating the
notebook’s training error. Plugging Eqs. 66 and 70 into the above expression,
we find,

〈Z̃iµZ̃jµ〉 =
1

M2a2(1− a)2

M∑
k=1

M∑
l=1

(
ZiµZjµ

(
δkla(1− a)2

+(1− δkl)
(
Ma2(1− a)2/(M − 1)− a(1− a)2/(M − 1)

))
+
∑
ν 6=µ

ZiνZjν

(
δkla

2(1− a)− (1− δkl)a2(1− a)
aM − 1

(M − 1)2

))

=
1

M2a2(1− a)2

(
ZiµZjµ

(
Ma(1− a)2 +M2a2(1− a)2 −Ma(1− a)2

)
+
∑
ν 6=µ

ZiνZjν

(
Ma2(1− a)−Ma2(1− a)

aM − 1

M − 1

))

= ZiµZjµ +
∑
ν 6=µ

ZiνZjν
(M − 1)a− a(aM − 1)

(M − 1)Ma(1− a)

= ZiµZjµ +
∑
ν 6=µ

ZiνZjν
M − 1

. (85)

Therefore,

〈∆̃µwi〉 = −2λ
(∑M

j=1 wj

(
XiµXjµ +

∑
ν 6=µ

XiνXjν
M−1

)
−XiµYµ −

∑
ν 6=µ

XiνYν
M−1

)
= ∆µwi + 1

M−1

∑
ν 6=µ ∆νwi (86)

where ∆µwi is the weight update that would occur if the student were perfectly
reactivated by the notebook pattern µ. Equivalently, ∆µwi is the weight update
that would occur from online learning to the teacher’s example. Importantly,
all contributions to 〈∆̃wi〉 are in the gradient direction of one of the teacher
examples. Rearranging this expression slightly, we find:

〈∆̃µwi〉 =

(
1− 1

M − 1

)
∆µwi +

1

M − 1

P∑
ν=1

∆νwi. (87)

Therefore, each notebook reactivation of pattern µ is equivalent to a mini-batch

update for that particular pattern with effective learning rate λ
(

1− 1
M−1

)
,
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plus a batch update for all stored patterns with effective learning rate λ
M−1 .

Similarly, the learning expected by sequential notebook reactivation of all P
patterns is

〈∆̃wi〉 ≡
P∑
µ=1

〈∆̃µwi〉 =

(
1 +

P − 1

M − 1

) P∑
µ=1

∆µwi (88)

This is equivalent to batch learning with an effective learning rate of

λ̃ = λ

(
1 +

P − 1

M − 1

)
(89)

In sum, the notebook’s imperfect reactivation patterns hurt notebook memory
performance, but they do not harm the student’s ability to learn from past
memories if the learning rate is appropriately controlled.

6.2 Student memory and generalization error from replay

As shown in Sections 5.2 and 6.1, notebook reactivations closely recapitulate
stored student activity patterns when run below a critical capacity, and reacti-
vation errors are correlated in such a way as to preserve the relevant statistics
for student learning. In this regime, when replay events are random and the
learning rate is small, the student effectively learns from the whole batch of
samples. We therefore leverage known solutions to the batch learning dynamics
of student-teacher models in our high-dimensional setting [11, 3]. Batch learn-
ing dynamics differ fundamentally from online learning dynamics, because in
the batch setting the noise associated with each example is repeatedly revisited.
This difference raises the danger of overfitting to the specific batch of stored
data, rather than learning the general rule.

The average memory error is (see Section 2 of [3])

Em(t) =
1

α

∫
ρMP (λ)

(
1 + λS
1 + S

)
e−

2λt
τ dλ+

(
1− 1

α

)
1

1 + S
1{α > 1}, (90)

and the generalization error is

Eg(t) =
S

1 + S

∫
ρMP(λ)

[
e−

2λt
τ +

1

λS
(1− e− λtτ )2

]
dλ+

1

1 + S
, (91)

where here t measures time in units of epochs, such that as t goes from 0 to
1, and each stored example will be replayed once. The density ρMP(·) denotes
the Marchenko-Pastur distribution [13, 12], which describes the eigenvalue dis-
tribution of the input correlations XXT in the high-dimensional regime. It has
the form

ρMP(λ) =
1

2π

√
(λ+ − λ)(λ− λ−)

λ
+ 1{α < 1}(1− α)δ(λ) (92)
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Figure 2: Heatmaps of student memorization performance (a, b) and generaliza-
tion performance (c, d) as a function of SNR and α, when optimized for student
memorization (a, c) or generalization (b, d).

for λ = 0 or λ ∈ [λ−, λ+], and is zero elsewhere. Here 1{·} is an indicator func-
tion that is 1 when the argument is true and zero otherwise. The distribution
comprises a delta function “spike” at zero (corresponding to input directions
with zero variance that occur when there are fewer samples than the input di-
mension, i.e., α < 1), and a “bulk” with upper and lower limits λ± = (

√
α±1)2

that depend on the load α.
We call this strategy memory-optimized, because Eqn. (90) is strictly de-

creasing in time, so to optimize student memory, replay should be continued in-
definitely. However, while sustained replay optimizes student memory, Eqn. (91)
shows that this strategy can cause catastrophic overfitting at the “student ca-
pacity” or interpolation threshold α = 1, where the number of samples is equal
to the input dimension and training error can just reach zero at long times.
This overfitting behavior emerges in the high-dimensional regime, and better
performance can be obtained for larger and smaller α, a finding known as the
“double descent” phenomenon [12, 11, 3, 6]. The behavior of this strategy for
a range of SNRs and loads α is depicted in Supplementary Fig. 2a,c. While
memorization performance is good throughout this space, generalization suffers
for low SNRs and loads near one.

6.3 Weight norm dynamics

While memory and generalization error are two key measures of learning progress,
we can also ask how the strength of student weights changes throughout learn-
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ing. This quantity could enable certain experimental links, for instance, as
a proxy for functional connectivity in the context of the Sweegers et al. [15]
experiment discussed in the main text.

A straightforward modification to the derivation in Section 2.1 of [3] yields
the time-dependent average student weight norm as

〈||w(t)||22〉 =
∫
ρMP (λ)

[
σ2
we
−2λt/τ +

(
σ2
w̄ +

σ2
ε

λ

) (
1− e−λt/τ

)2]
dλ,

=
∫
ρMP (λ)

[
σ2
we
−2λt/τ + 1+λS

λ(1+S)

(
1− e−λt/τ

)2]
dλ, (93)

where σ2
w denotes the initialization variance of the student weights, i.e., w(0)i ∼

N (0, σ2
w). For large σ2

w, this equation can describe an initial decrease in norm,
followed by an increase in norm as weights align with the teacher. While in most
of the supplement we have assumed w(0) = 0, we note that solutions for memory
and generalization error dynamics for other weight initialization variances are
well known [11, 3].

7 Generalization-optimized Replay Policy

The generalization-optimized replay policy is similar to the memory-optimized
replay policy. Samples are stored in the notebook and replayed to the student
to drive learning. When it comes time to make a prediction, the system with the
best error is used. The key difference, however, is that replay is not continued
indefinitely. Instead, replay is terminated when generalization error stops im-
proving and starts to worsen due to overfitting. That is, this strategy regulates
replay to maximize generalization error.

7.1 Student memory and generalization error with regu-
lated replay

In detail, this strategy continues replay until the optimal early stopping time
t∗, defined as

t∗ = argmintE
MO
g (t), (94)

where EMO
g (t) is the memorization-optimized generalization error trajectory

(i.e. unregulated trajectory) from Eqn. (91). The student memory and general-
ization error therefore have the piece-wise form

Em(t) =

{
EMO
m (t) t < t∗

EMO
m (t∗) t ≥ t∗

(95)

Eg(t) =

{
EMO
g (t) t < t∗

EMO
g (t∗) t ≥ t∗

(96)

where EMO
m (t) denotes the memorization-optimized memory error trajectory

from Eqn. (90). Crucially, under this regulated strategy, the student memory
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error can remain large indefinitely. Conversely, regulation avoids potentially
catastrophic overfitting. The performance of the student under this strategy is
depicted in Fig. 2b,d as a function of SNR S and load α. Finally, we note that,
for this strategy, weight norm dynamics have a similar piece-wise form, such
that the dynamics follow Eqn. 93 for t < t∗, at which point they stop.

7.2 Properties of early stopping

To gain a better understanding of this strategy, we can ask how the optimal
stopping time depends on dataset parameters. While there is no closed form
expression for t∗, some intuition can be obtained by computing the optimal
stopping time for one fixed value of λ in the integral of Eqn. (91) (a strategy
that would be exact if the MP distribution were a delta function at a single
value of λ). The optimal stopping time is then (see Sec 2.2 of [3])

t∗ =
τ

λ
log(λS + 1), (97)

which shows that replay can continue longer for higher SNR relationships,
though the relationship is logarithmic.

Early stopping is only one out of a variety of regularization strategies that
can combat overfitting. Another possibility is to explicitly penalize large weight
values. The L2 regularization strategy sets the student weights according to

wL2 = argminwEm(w) +
ω

2
||w||22, (98)

where ω denotes the regularization strength. The optimal L2 regularization
strength for our setting is known to be inversely proportional to SNR, ωopt =
1/S (see [1, 2, 3]). Further, for the specific teacher and student regression
problem we consider here, this regularization is known to be Bayes optimal,
such that no algorithm can outperform it [1, 2]. It therefore can serve as a
normative standard of comparison for early stopping. Prior work has shown
that, in our setting, early stopping closely approximates the effect of explicit
L2 regularization (see, e.g., Fig. 5a of [3]), providing a normative basis for the
early stopping strategy.

Finally, we can exploit the similar performance of early stopping and op-
timal L2 regularization to obtain an explicit (but approximate) expression for
the performance of the generalization-optimized replay strategy after the early
stopping time. In particular, for t > t∗ we have

Eg(t) ≈ EL2
g for t ≥ t∗

=
S

2(1 + S)

(
1− α− 1/S +

√
(1/S + α− 1)2 + 4/S

)
+

1

1 + S
, (99)

where the latter step is the known generalization error of optimal L2 regular-
ization on this problem [1, 2, 3].
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Using a similar approach, we can approximate the weight norm at the op-
timal stopping time as the weight norm of the optimal L2 regularized solution
(see Eqn. 66 [3]),〈∥∥∥wL2

opt

∥∥∥2

2

〉
= σ2

w̄

∫
ρMP(λ)

λ

λ+ 1/S
dλ,

=

∫
ρMP(λ)

λS2

(1 + S)(1 + λS)
dλ, (100)

which we note limits to 1 as S → ∞ and 0 as S → 0, such that high-SNR rela-
tionships have larger weight norms than low-SNR relationships at the optimal
stopping time.

8 Example of generalization non-limiting unpre-
dictability

The main text provides several examples of generalization-limiting unpredictabil-
ity, with the canonical example being a teacher with output noise. However, not
all sources of unpredictability are generalization limiting. For example, suppose
that the teacher generates noiseless data,

y = w̄x, (101)

but the student has internal noise in its input neurons that affects its predictions

ŷ = w̄(x+ η). (102)

Averaging over the input and noise distributions (but not the teacher weights),
the generalization error of the student is

Eg = 〈(y − ŷ)2〉 = 〈(y −
∑
i

wi(xi + ηi))
2〉

= 〈y2〉 − 2
∑
i

wi〈y(xi + ηi)〉+
∑
i

∑
j

wiwj〈(xi + ηi)(xj + ηj).〉 (103)

Assuming that x, y, and η are zero mean random variables, and that η is
uncorrelated with x and y, this is equal to

Eg = σ2
y − 2Cyxw + wT (Cxx + Cηη)w. (104)

Setting the derivative with respect to w equal to zero,

0 =
∂Eg
∂w

= −2Cyx + 2wT (Cxx + Cηη) (105)

we find that the student weights that optimize generalization are

w∗ = (Cxx + Cηη)−1Cxy (106)
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In contrast, the teacher weights satisfy

Cyx = w̄TCxx =⇒ w̄ = C−1
xx Cxy. (107)

Since w∗ 6= w̄, the generalization-optimized student is statistically biased,

〈ŷ〉η − y = (w∗ − w̄)Tx 6= 0, (108)

and the generalization error is nonzero. The teacher is unpredictable by the
student.

Nevertheless, this type of unpredictability does not require strongly regu-
lated systems consolidation. For example, suppose that the notebook perfectly
memorizes P input-output patterns of the student. Then, the memory error
averaged over student neuron noise is

〈Em〉η =
1

P

∑
µ

〈(
yµ −

∑
i

wi(xiµ + ηi)

)2〉

=
1

P

∑
µ

y2
µ − 2

∑
i

wiyµxiµ +
∑
i

∑
j

wiwj(xiµxjµ + 〈ηiηj〉)


=

1

P

(
yT y − 2yXTwT + wT (XXT + Cηη)w

)
. (109)

Setting the derivative with respect to w equal to 0,

0 =
∂〈Em〉η
∂w

=
1

P

(
−2yXT + 2w(XXT + Cηη)

)
(110)

we find that the weights minimizing the training error are

ŵ = yXT (XXT + Cηη)−1. (111)

Noting that XXT and yXT are (proportional to) estimates of Cxx and Cxy
given the P teacher examples, we see that this is the same basic form as the
weights that minimize the generalization error.

In terms of the learning dynamics, the role played by eigenvalues of XXT

is now played by eigenvalues of XXT + Cηη, which are lower bounded by the
minimum eigenvalue of Cηη. For white noise, this is just σ2

η. Overfitting was
previously due to eigenvalues near 0, but those have now been shifted up to σ2

η.
The student input noise regularizes the learning process.

9 Complex teacher

Here we show that a mismatch between teacher and student, such that the
teacher is deterministic but more complex than the student, is a form of generalization-
limiting predictability that behaves similarly to observing a teacher with noise.
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Because of the importance of this fact, we include a derivation in our nota-
tion for completeness. Our derivation follows Appendix C of [3]. Suppose the
teacher generates inputs independently from some distribution x ∼ p(x), and
labels them using the possibly nonlinear, stochastic function y = g(x). The
best possible linear student (i.e., the student trained on infinite data) will have
weights

ŵopt = CyxC
†
xx (112)

where Cyx =
〈
yxT

〉
is the input-output correlation matrix, Cxx =

〈
xxT

〉
is the

input correlation matrix, and † denotes the pseudoinverse.
We can rewrite the teacher output as the prediction of this optimal student

and a residual,

y = CyxC
†
xxx+ δy, (113)

where the residual is δy = g(x)− CyxC†xxx.
Next, we consider learning the student weights from a finite batch of data

with P examples, given in matrices Y,X with examples in the columns. The
student weights are

ŵls = Y XT
(
XXT

)†
(114)

= ŵopt + δY XT
(
XXT

)†
(115)

where δY = Y − CyxC†xxX is the matrix of residuals. This formulation clearly
separates contributions to the student weights into an optimal component and

an overfitting component. Notably, the overfitting term δY XT
(
XXT

)†
has the

same form as for additive noise.

10 Testable predictions of the theory

Future experiments could test our core theoretical prediction that the brain
regulates the amount of systems consolidation based on the predictability of
experience. This requires a behavioral paradigm that can vary the degree of
predictability and a means to measure systems consolidation as a function of
time. Sweegers et al. [15] performed a closely-related psychology experiment
that associated visual stimuli with spatial locations on a computer screen, and
they concluded that systems consolidation increased functional connectivity in
human neocortex only when the stimulus-location association was predictable
(Figs. 3l). However, the experimental details of Sweegers et al. were tailored
for human participants, and an adapted paradigm that works in rodents would
permit better characterizations of neural mechanism. In addition, although the
different functional connectivity between brain areas was qualitatively observed
for rule vs no-rule tasks in Sweegers et al., no rigorous statistical analysis was
performed. It would be beneficial to verify this results in future work, including
rodent studies.
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Interestingly, Reinert et al. [14] recently showed that mice can learn pre-
dictable associations between visually oriented grating stimuli and appropriate
behavior. A rodent-tailored paradigm could therefore present oriented grating
stimuli in a cue location and require the animal to lick for water reward in one
of two stimulus-instructed goal locations. As in Sweegers et al., the associations
between stimuli and goal-locations could be assigned according to either a pre-
dictable rule or randomly. Memories of past associations could be assessed by
measuring behavioral performance at various times after task acquisition, and
generalization performance could be quantified by comparing the time required
to learn new associations from the predictable and random rules.

We predict that systems consolidation would gradually allow mice to recall
associations from the general rule without hippocampal involvement, but not
associations from the random rule. This could be tested directly by measuring
memory performance during reversible chemogenetic inactivation of the hip-
pocampus at various times after memory acquisition. It could also be informa-
tive to extend the paradigm to intermediate predictability levels by associating
stimuli with locations through partially predictable rules. Note that it would
also be possible to train humans on an adapted version of this task. This would
permit a study of human neural correlates using functional magnetic resonance
imaging, but precisely timed and reversible inactivation of hippocampus is not
possible in humans.

References

[1] M. Advani and S. Ganguli. An equivalence between high dimensional bayes
optimal inference and m-estimation. Advances in Neural Information Pro-
cessing Systems, 2016.

[2] M. Advani and S. Ganguli. Statistical mechanics of optimal convex infer-
ence in high dimensions. Physical Review X, 6(3):031034, 2016.

[3] M.S. Advani, A.M. Saxe, and H. Sompolinsky. High-dimensional dynamics
of generalization error in neural networks. Neural Networks, 132:428–446,
2020.

[4] D.J. Amit, H. Gutfreund, and H. Sompolinsky. Storing infinite numbers of
patterns in a spin-glass model of neural networks. Physical Review Letters,
55(14):1530–1533, 1985.

[5] D.J. Amit, H. Gutfreund, and H. Sompolinsky. Information storage in
neural networks with low levels of activity. Physical Review A, 35(5):2293–
2303, 1987.

[6] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of
the National Academy of Sciences, 116(32):15849–15854, August 2019.

31

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.10.13.463791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.463791


[7] A. Blum, J. Hopcroft, and R. Kannan. Foundations of Data Science. Cam-
bridge University Press, 2020.

[8] J. Buhmann, R. Divko, and K. Schulten. Associative memory with high
information content. Physical Review. A, General Physics, 39(5):2689–
2692, March 1989.

[9] J.F. Fontanari. Generalization in a hopfield network. J Phys France,
51:2421–2430, 1990.

[10] J.J. Hopfield. Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the National Academy of
Sciences, 79(8):2554–2558, April 1982.

[11] A. Krogh and J.A. Hertz. Generalization in a linear perceptron in the
presence of noise. Journal of Physics A: Mathematical and General,
25:1135–1147, 1992.

[12] Y. LeCun, I. Kanter, and S.A. Solla. Eigenvalues of covariance matri-
ces: Application to neural-network learning. Physical Review Letters,
66(18):2396, 1991.

[13] V.A. Marchenko and L.A. Pastur. Distribution of eigenvalues for some sets
of random matrices. Matematicheskii Sbornik, 114:507–536, 1967.
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